

Highway Safety Improvement Program Data Driven Decisions

Ohio Highway Safety Improvement Program 2014 Annual Report

Prepared by: OH

Disclaimer

Protection of Data from Discovery & Admission into Evidence

23 U.S.C. 148(h)(4) states "Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for any purpose relating to this section [HSIP], shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location identified or addressed in the reports, surveys, schedules, lists, or other data."

23 U.S.C. 409 states "Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential accident sites, hazardous roadway conditions, or railway-highway crossings, pursuant to sections 130, 144, and 148 of this title or for the purpose of developing any highway safety construction improvement project which may be implemented utilizing Federal-aid highway funds shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data."

Table of Contents

Disclaimer	ii
Executive Summary	1
Introduction	2
Program Structure	2
Program Administration	2
Program Methodology	8
Progress in Implementing Projects	40
Funds Programmed	40
General Listing of Projects	51
Progress in Achieving Safety Performance Targets	80
Overview of General Safety Trends	80
Application of Special Rules	95
Assessment of the Effectiveness of the Improvements (Program Evaluation)	98
SHSP Emphasis Areas	100
Groups of similar project types	105
Systemic Treatments	
Glossary	119

Executive Summary

One of the greatest challenges facing Ohio is reducing the number of fatalities and injuries and the costs associated with traffic crashes statewide.

In 2013, there were 269,078 crashes in Ohio – 990 people were killed and 100,145 people were injured. In addition to the emotional impact, the economic cost to Ohio is about \$15 billion per year in lost wages, increased health care and other related costs.

The vast majority of these crashes are caused by driver error. To reduce crashes and injuries, and save lives, the Ohio Department of Transportation is working with the Department of Public Safety, the public and local, state and federal agencies to: identify and improve high-crash and severe-crash locations through engineering; enforce traffic laws; and promote safe driving behavior through public education.

Despite these numbers, Ohio has made significant improvements in highway safety over the past several years. Since 2004, Ohio fatalities have decreased 23%; serious injuries decreased 23%; all injuries decreased 29%; and all crashes decreased 30%.

To reduce crashes and injuries, and save lives, the Ohio Department of Transportation routinely works with local, state and federal safety advocates to:

- Identify and improve locations with potential for safety improvement (physical construction projects)
- Enforce traffic laws
- Promote safe driving behavior through public education

Many fatalities are preventable. Hundreds of lives could be saved each year if all motorists used a seatbelt, drove sober and traveled at appropriate speeds.

Introduction

The Highway Safety Improvement Program (HSIP) is a core Federal-aid program with the purpose of achieving a significant reduction in fatalities and serious injuries on all public roads. As per 23 U.S.C. 148(h) and 23 CFR 924.15, States are required to report annually on the progress being made to advance HSIP implementation and evaluation efforts. The format of this report is consistent with the HSIP MAP-21 Reporting Guidance dated February 13, 2013 and consists of four sections: program structure, progress in implementing HSIP projects, progress in achieving safety performance targets, and assessment of the effectiveness of the improvements.

Program Structure

Program Administration

How are Highway Safety Improvement Program funds allocated in a State?

Central

District

Other

Describe how local roads are addressed as part of Highway Safety Improvement Program.

Local road safety improvements are a focus of both Ohio's SHSP and HSIP. Through our close collaboration with the Local Technical Assistance Program, County Engineers Association and Metropolitan Planning Organizations, we have been expanding training, technical assistance, and funding opportunities available to our local partners.

This collaboration begins with local involvement in developing and implementing Ohio's SHSP. Our plan focuses on the safety of all public roads and all road users, including cars, trucks, trains, motorcycles, pedestrians and bikes.

Ohio has formed a statewide steering committee with local government representation and involvement. This committee meets quarterly to 1) review crash trends and 2) discuss key strategies being implemented across agencies and jurisdictions to reduce fatalities and serious injuries on all Ohio roads. These agencies are then tasked with sharing information and resources with other safety organizations throughout Ohio.

Emphasis Areas

Ohio has identified five emphasis areas in the plan based on crash data:

1. Improve the quality, accuracy, timeliness and availability of crash data.

2. Reduce the occurrence and severity of run-off-road, intersection and head-on collisions.

3. Address high-risk drivers and behaviors such as young drivers, impaired driving, low seat belt use, distracted driving and excessive speed.

4. Target motorcycle and bicycle riders, pedestrians and commercial vehicles, which are more likely to be involved in serious crashes.

5. Reduce the high number of rear-end collisions caused by congestion and work zones.

These emphasis areas were chosen because they represent the greatest causes of serious injuries and deaths on Ohio roads. A complete listing of target areas and strategies are elaborated in the Highway Safety Improvement Program implementation section of this report, prior to the project listings.

Local governments can qualify for funding and technical assistance to address emphasis areas through HSIP programs administered by ODOT and the County Engineers Association.

ODOT uses the SHSP as a basis for developing its HSIP. ODOT has one of the largest programs in the country, dedicating about \$102 million annually for engineering improvements at high-crash and severecrash locations across the state. We also dedicate a portion of the funding for low-cost, systematic safety improvements that prevent roadway departure and intersection crashes identified in the SHSP. A small portion of this funding is also used to conduct work zone enforcement efforts and other small enforcement and education efforts.

This funding can be used by ODOT District Offices or local governments to improve safety on any public roadway. While the majority of HSIP investments focus on engineering improvements, ODOT uses a portion of the funding to supplement education (everymove.ohio.gov) and enforcement programs that encourage safer driving.

To qualify for funding, local governments identify and study high-crash or severe-crash locations within their own jurisdiction. To determine the best countermeasures for these locations, local governments typically conduct an engineering analysis that includes a review of existing roadway conditions and crash reports. This analysis will help identify common crash patterns and determine the best strategies to reduce crashes. Projects sponsors are encouraged to examine a full range of options from short-term, low-cost strategies, such as new signs, pavement markings and drainage improvements to mid-cost, mid-term strategies such as new traffic signals, turn lanes and realignments.

Local governments may pay for these improvements through their annual budget or they can seek money each spring (April 30) and fall (September 30) through ODOT's Highway Safety Improvement Program. The maximum amount of funding available is \$5 million per project. A multi-discipline committee at ODOT headquarters reviews all applications and supporting safety studies. The committee can approve a proposal, select a different safety strategy or request further study before allocating money. ODOT spends approximately \$85 million dollars in safety funds annually through this program.

Once funding is secured, safety projects are scheduled for construction. How quickly projects proceed to construction depends on the available funding and complexity of the project. Short-term, low-cost projects can be implemented within a few months. Other projects that require environmental mitigation, complex engineering design and/or utility and right of way relocation may take several years. In all cases, ODOT encourages sponsors to act as quickly as possible. Upon project completion, the department monitors locations to make sure the improvements are reducing crashes as designed.

ODOT also provides an additional \$12 million, separate from \$102 million, annually to the County Engineers Association of Ohio (CEAO) to make safety improvements on county-maintained roads. This funding can be used to make spot and systematic improvements tied to the SHSP. Applications are accepted once a year and scored using criteria developed in conjunction with ODOT.

The CEAO subdivides the \$12 million in to several smaller funding categories. Each county is permitted to program eligible construction projects up to \$5 million overall for spot safety improvements. In addition to spot safety improvements, CEAO provides up to \$300,000 per county for each guardrail project, \$150,000 per county for each pavement marking project, \$75,000 per county for each raised pavement marker project, and \$15,000 per county for curve signage upgrade projects.

ODOT continues to look for opportunities for deployment of safety improvements. With a data driven focus, we have been able to use innovative contracting practices and partnerships through LTAP and CEAO to improve safety performance on local maintained roads. We have developed creative methods to quickly produce signage for local governments and allow them to install them with their own forces. This methodology is being used to upgrade signage in curves to prevent roadway departure crashes and around schools to make walking and biking safer for kids.

Identify which internal partners are involved with Highway Safety Improvement Program planning.

Design

Planning

Maintenance

Operations

Governors Highway Safety Office

Other:

Briefly describe coordination with internal partners.

ODOT's Office of Program Management accepts applications – accompanied by safety studies – from ODOT District Offices and local governments twice a year. Applications must be submitted through the District Offices, which have a multi-disciplinary committee that reviews and approves them for Central Office consideration. Projects are then reviewed and selected for funding by the Safety Review Committee in Central Office, which includes expertise in safety, planning, geometric design, and traffic operations.

Priority is given to any project that improves safety at a roadway location with high frequency, severity and rate of crashes. Projects are scored based on:

- Expected Crash Frequency
- Ratio of Observed Fatal and Serious Injuries to Observed Total Crashes
- Relative Severity Index
- Equivalent Property Damage Only Index
- Percentage of truck traffic

• Benefit-Cost Ratio (anticipated savings in crash costs, property damage, injuries and fatalities relative to the cost of the improvement plus cost of maintenance for the life of the project). Consideration is also given to lower-volume, lower-crash local roads with identified needs and cost-effective countermeasures.

• Highway Safety Improvement Program Funding Percentage

Funding awarded through the program is used to make traditional safety improvements at spot locations, such as intersections, and along sections or corridors throughout the state.

Ohio's program also works collaboratively with other local, state and federal agencies to develop multiagency safety initiatives through the Strategic Highway Safety Plan. These efforts allow ODOT to pair engineering expertise with education and enforcement initiatives that play a key role in reducing injuries and deaths.

Identify which external partners are involved with Highway Safety Improvement Program planning.

Metropolitan Planning Organizations

Governors Highway Safety Office

Local Government Association

Other:

Identify any program administration practices used to implement the HSIP that have changed since the last reporting period.

Multi-disciplinary HSIP steering committee

Other: Other-Scoring Criteria

Describe any other aspects of Highway Safety Improvement Program Administration on which you would like to elaborate.

Ohio uses a focused approach to safety that targets resources based on the greatest need and greatest opportunity for improvements. We also promote the use of proven, cost-effective, systematic safety solutions that target critical, severe-crash types such roadway departure and intersections crashes. These focus areas are embodied in both the HSIP and the state's Strategic Highway Safety Plan.

We advanced the HSIP through the balanced deployment and implementation of a host of traditional spot safety investments and a host of systematic safety investments.

ODOT's Highway Safety Improvement Program and AASHTOWare Safety Analyst Implementation

Each year, ODOT staff reviews the top safety locations in Ohio. Ohio is one of the first states in the country to fully implement Safety Analyst and use it to prioritize safety locations across Ohio. Safety Analyst uses state-of-the-art statistical methodologies to identify roadway locations and safety improvements with the highest potential for reducing crashes. The software systems flags spot locations and road segments that have higher-than-predicted crash frequencies. It also flags locations for review based on crash severity. This methodology is more efficient and cost effective and will allow the department to study fewer locations yet address more crashes each year.

ODOT has developed six priority lists based on rural and urban roadway types. The urban system covers all streets, roads, and highways located within urban boundaries designated by the U.S. Census Bureau. The Bureau defines two types of urban areas based on population. Small urban areas are urban places with a population or 5,000 or more and not located within any urbanized area. An urbanized area is an area with a population of 50,000 or more. As might be expected, the rural functional classification system covers all other streets, roads, and highways that are not located within the boundaries of small urban and urbanized areas. Approximately, \$85 million is used to fund projects through this program.

The priority lists are:

- 1. Rural Intersection Peak Searching Excess Locations: These locations were selected because they have a higher-than-predicted crash frequency for each intersection. Approximately, the Top 50 locations will be studied.
- Rural Non-Freeway Peak Searching Excess Segment Locations: These locations were selected because they have a higher-than-predicted crash frequency for this roadway type. Approximately, the Top 50 locations will be studied. Only crashes indicated on the OH-1 as being non-intersection crashes were included in this analysis.
- 3. Rural Freeway Peak Searching Excess Locations: These locations were selected because they have a higher-than-predicted crash frequency for this roadway type or interchange location. Approximately, the Top 50 locations will be studied.
- Urban Intersection Peak Searching Excess Locations: These locations were selected because they have a higher-than-predicted fatal and injury crash frequency for each intersection. Approximately, the Top 50 locations will be studied.
- 5. Urban Non-Freeway Peak Searching Excess Segment Locations: These locations were selected because they have a higher-than-predicted fatal and injury crash frequency for this roadway type. Approximately, the Top 50 locations will be studied. Only crashes indicated on the OH-1 as being non-intersection crashes were included in this analysis.
- 6. Urban Freeway Peak Searching Excess Locations: These locations were selected because they have a higher-than-predicted fatal and injury crash frequency for this roadway type or interchange location. Approximately, the Top 50 locations will be studied.

Systematics Safety Program

The Ohio Department of Transportation spends approximately \$15 million annually of the \$102 million program on systematic safety improvements. These are safety improvements that can be installed across hundreds of road miles for a relatively small public investment. Systematic safety improvements are low cost improvements that are complete at similar locations to address a specific type of crash pattern.

Examples of systematic project types are Curve Signing Upgrade, Edge Line Rumble Stripes, Cable Barrier, Signal Upgrade, Intersection Signing Upgrade, Wider Pavement Markings, and Guardrail End Treatment Upgrade Projects.

Safe Routes to School Program

ODOT uses \$4 million from the Transportation Alternatives Program to fund Ohio's Safe Routes to School Program. Again, this is separate and in addition to the \$102 million ODOT HSIP program. Funds can be used on any public roadway as long as the school has completed a School Travel Plan. The School Travel Plan outlines where investments should be made for a specific school district.

Other Programs

Small portions of ODOT's HSIP Program funding (\$102 million) are used for work zone enforcement, OVI checkpoints, and other educational opportunities. Although money is not specifically set aside for the High Risk Rural Roads Program in Ohio at this time, we still encourage agencies to apply for funding through our traditional application process. Any projects that are prioritized based on the HRRR Program are funded through the ODOT's HSIP Program (\$102 million).

ODOT also combines HSIP funding with other funding sources (such as MPO and Ohio Rail Development Commission) to make safety improvements.

Program Methodology

Select the programs that are administered under the HSIP.

Highway Safety Improvement Program

Program

Other: Other-ODOT Systematic - Guardrail

Other: Other-ODOT Systematic - Median Barrier

Other: Other-CEAO Systematic - Guardrail

Other: Other-CEAO Systematic - Curve Signage Program

Other: Other-ODOT Systematic - Signal Upgrade

Other: Other-ODOT Systematic - Roadway Departure

Other: Other-CEAO Systematic - Pavement Markings **Rural Road**

Other: Other-ODOT Systematic - Wet Pavement

Other: Other-ODOT Systematic - Intersection Signage

Other: Other-CEAO Systematic - RPMs

Program:	Other-State HSIP Program	
Date of Program Methodology:	1/1/2014	
What data types were used in the program methodology?		
Crashes	Exposure	Roadway
All crashes	Traffic	Median width
Fatal crashes only	Volume	Horizontal curvature
Fatal and serious injury crashes only	Population	Functional classification
Other	Lane miles	Roadside features
	Other-Truck Volume	Other

What project identification methodology was used for this program?

Crash frequency

Expected crash frequency with EB adjustment

Equivalent property damage only (EPDO Crash frequency)

EPDO crash frequency with EB adjustment

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other-Truck AADT

Other-Volume to Capacity Ratio

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C	1
Available funding	3
Incremental B/C	
Ranking based on net benefit	
Cost Effectiveness	2

Program: Date of Program Methodology:	Other-CEAO HSIP Program 7/1/2011		
What data types were used in the program methodology?			
Crashes	Exposure	Roadway	
All crashes	Traffic	Median width	
Fatal crashes only	Volume	Horizontal curvature	
Fatal and serious injury	Population	Functional classification	

crashes only			
Other	Lane miles	Roadside features	
	Other	⊠Other-Rural County Highway System	
What project identification metho	odology was used for this program?		
Crash frequency			
Expected crash frequency with	EB adjustment		
Equivalent property damage on	ly (EPDO Crash frequency)		
EPDO crash frequency with EB a	adjustment		
Relative severity index			
Crash rate			
Critical rate			
Level of service of safety (LOSS)			
Excess expected crash frequency using SPFs			
Excess expected crash frequency with the EB adjustment			
Excess expected crash frequency using method of moments			
Probability of specific crash types			
Excess proportions of specific crash types			
Other-Amount of Funding Requested			
Are local roads (non-state owned	and operated) included or addresse	ed in this program?	

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C	1
Available funding	3
Incremental B/C	
Ranking based on net benefit	
Cost Effectiveness	2

Program:

Other-State High Risk Rural Road

Date of Program Methodology: 6/1/2008

What data types were used in the program methodology?

Crashes	Exposure	Roadway
All crashes	Traffic	Median width
Fatal crashes only	⊠Volume	Horizontal curvature
Fatal and serious injury crashes only	Population	Functional classification
Other	Lane miles	Roadside features
	Other	Other

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

⊠Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

ig angleRanking based on B/C	1
Available funding	3
Incremental B/C	
Ranking based on net benefit	
Cost Effectiveness	2

Program:	Other-ODOT Systematic - Guardrail	
Date of Program Methodology:	1/1/2012	
What data types were used in th	e program methodology?	
Crashes	Exposure	Roadway
All crashes	Traffic	Median width
Fatal crashes only	Volume	Horizontal curvature
Fatal and serious injury crashes only	Population	Functional classification
Other	Lane miles	Roadside features

Other

What project identification methodology was used for this program?

Other-NHS System

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other-Systematic Safety Program

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C	1
Available funding	3
Incremental B/C	
Ranking based on net benefit	
Other	
Systematic Safety	2
Improvement	

Program:	Other-ODOT Systematic - Signal U	pgrade
Date of Program Methodology:	6/1/2009	
What data types were used in th	e program methodology?	
Crashes	Exposure	Roadway
All crashes	Traffic	Median width
Fatal crashes only	⊠Volume	Horizontal curvature
Fatal and serious injury crashes only	Population	Functional classification
Other	Lane miles	Roadside features
	Other	Other
What project identification met	nodology was used for this program	?
Crash frequency		
Expected crash frequency with EB adjustment		
Equivalent property damage of	only (EPDO Crash frequency)	
EPDO crash frequency with EB adjustment		
Relative severity index		
Crash rate		
Critical rate		
Level of service of safety (LOSS)		
Excess expected crash frequency using SPFs		

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other-Systematic Safety Program

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C 1

Available funding 3

Incremental B/C

Ranking based on net benefit

Other

Systematic Safety Improvement	2	
Program:	Other-ODOT Systematic - Wet Pav	ement
Date of Program Methodology:	7/1/2012	
What data types were used in the	e program methodology?	
Crashes	Exposure	Roadway
All crashes	Traffic	Median width
Fatal crashes only	⊠Volume	Horizontal curvature
Fatal and serious injury crashes only	Population	Functional classification
Other-Wet crashes	Lane miles	Roadside features
Other-Fixed object crashes	Other	Other

What project identification methodology was used for this program?

Crash frequency

Expected crash frequency with EB adjustment

Equivalent property damage only (EPDO Crash frequency)

EPDO crash frequency with EB adjustment

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other-Systematic Safety Program

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C 1 Available funding 3 2

Incremental	B/C	

Ranking based on net benefit

Other

Systematic Safety

_							
D	r	0	σ	r	2	m	۰.
		υ	Б		α		

Other-ODOT Systematic - Median Barrier

Date of Program Methodology: 10/1/2009

What data types were used in the program methodology?

Crashes	Exposure	Roadway
All crashes	Traffic	Median width
Fatal crashes only	⊠Volume	Horizontal curvature
Fatal and serious injury crashes only	Population	Functional classification
Other-Cross-Median Crashes	Lane miles	Roadside features
	Other	Other

What project identification methodology was used for this program?

Crash frequency

Expected crash frequency with EB adjustment

Equivalent property damage only (EPDO Crash frequency)

EPDO crash frequency with EB adjustment

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes	1 1 4 3
-----	---------

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other-Systematic Safety Program

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C	1
Available funding	3
Incremental B/C	
Ranking based on net benefit	
Other	
Systematic Safety	2

Program:	Other-ODOT Systematic - Roadway	y Departure
Date of Program Methodology:	8/1/2013	
What data types were used in th	e program methodology?	
Crashes	Exposure	Roadway
All crashes	Traffic	Median width
Fatal crashes only	⊠Volume	Horizontal curvature
Fatal and serious injury crashes only	Population	Functional classification
Other	Lane miles	Roadside features
	Other	Other-Shoulder width
		Other-Lane width
		🖂 Other-Urban / Rural

What project identification methodology was used for this program?

Crash frequency

Expected crash frequency with EB adjustment

Equivalent property damage only (EPDO Crash frequency)

EPDO crash frequency with EB adjustment

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other-FHWA Roadway Departure Safety Project Identification Methods

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other-Systematic Safety Program

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C	1
Available funding	3
Incremental B/C	
Ranking based on net benefit	
Other	
Systematic Safety	2

Program:	Other-ODOT Systematic - Intersecti	on Signage
Date of Program Methodology:	7/12/2012	
What data types were used in the	e program methodology?	
Crashes	Exposure	Roadway
All crashes	Traffic	Median width
Fatal crashes only	Volume	Horizontal curvature

Fatal and serious injury crashes only	Population	Functional classification	
Other	Lane miles	Roadside features	
	Other	Other	
What project identification metho	odology was used for this program?		
Crash frequency			
Expected crash frequency with	EB adjustment		
Equivalent property damage on	ly (EPDO Crash frequency)		
EPDO crash frequency with EB a	adjustment		
Relative severity index			
Crash rate			
Critical rate			
Level of service of safety (LOSS)			
Excess expected crash frequence	y using SPFs		
Excess expected crash frequency with the EB adjustment			
Excess expected crash frequency using method of moments			
Probability of specific crash types			
Excess proportions of specific c	rash types		
Other-FHWA Intersection Safet	y Project Location Identification Met	hods	

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other-Systematic Safety Program

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C	1
Available funding	3
Incremental B/C	
Ranking based on net benefit	
Other	
Systematic Safety	2

Program:

Other-CEAO Systematic - Guardrail

Date of Program Methodology: 6/1/2011

What data types were used in the program methodology?

Crashes	Exposure	Roadway
All crashes	Traffic	Median width
Fatal crashes only	⊠Volume	Horizontal curvature
Fatal and serious injury crashes only	Population	Functional classification
Other	Lane miles	Roadside features
	Other	⊠Other-Rural County Roadway System

What project identification methodology was used for this program?

Expected crash frequency with EB adjustment

Equivalent property damage only (EPDO Crash frequency)

EPDO crash frequency with EB adjustment

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

 \square Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C

Available funding

3

Incremental B/C

Ranking based on net benefit

Other

Relative County Ranking	1 2			
Program: Date of Program Methodology:	Other-CEAO Systematic - Pavemer 5/1/2011	nt Markings		
What data types were used in the program methodology?				
Crashes	Exposure	Roadway		
All crashes	Traffic	Median width		
Fatal crashes only	⊠Volume	Horizontal curvature		
Fatal and serious injury crashes only	Population	Functional classification		
Other	Lane miles	Roadside features		
	Other	⊠Other-Rural County Roadway System		
What project identification methodology was used for this program?				

Expected crash frequency with EB adjustment

Equivalent property damage only (EPDO Crash frequency)

EPDO crash frequency with EB adjustment

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

 \square Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

⊠Yes

No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C	
Available funding	3
Incremental B/C	
Ranking based on net benefit	
Other	
Relative County Ranking	1
Systematic Safety	2

Program:

Other-CEAO Systematic - RPMs

Date of Program Methodology: 5/1/2011

What data types were used in the program methodology?

Crashes	Exposure	Roadway
All crashes	Traffic	Median width
Fatal crashes only	⊠Volume	Horizontal curvature
Fatal and serious injury crashes only	Population	Functional classification
Other	Lane miles	Roadside features
	Other	⊠Other-Rural County Roadway System
What project identification methodology was used for this program?

Crash frequency

Expected crash frequency with EB adjustment

Equivalent property damage only (EPDO Crash frequency)

EPDO crash frequency with EB adjustment

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C	
Available funding	3
Incremental B/C	
Ranking based on net benefit	
Other	
Relative County Rankin	1
Systematic Safety	2

Program:

Other-CEAO Systematic - Curve Signage

Date of Program Methodology: 5/1/2012

What data types were used in the program methodology?

Crashes

Exposure

Roadway

Highway Safety Improvement Program

All crashes	Traffic	Median width
Fatal crashes only	⊠Volume	Horizontal curvature
Fatal and serious injury crashes only	Population	Functional classification
Other	Lane miles	Roadside features
	Other	⊠Other-Rural County Roadway System

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C
Available funding
Incremental B/C
Ranking based on net benefit
Other
Relative County Ranking
Systematic Safety Improvement

What proportion of highway safety improvement program funds address systemic improvements?

15

Highway safety improvment program funds are used to address which of the following systemic improvments?

Cable Median Barriers	Rumble Strips
Traffic Control Device Rehabilitation	Pavement/Shoulder Widening
⊠Install/Improve Signing	☐Install/Improve Pavement Marking and/or Delineation
Upgrade Guard Rails	Clear Zone Improvements
Safety Edge	Install/Improve Lighting
Add/Upgrade/Modify/Remove Traffic Signal	Other Other-Wet Pavement Locations
Other Other-Roadway Departure	

What process is used to identify potential countermeasures?

Engineering Study

Road Safety Assessment

Other: Other-Using Safety Analyst software to identify potential systematic safety improvement locations.

Identify any program methodology practices used to implement the HSIP that have changed since the last reporting period.

Highway Safety Manual

Road Safety audits

Systemic Approach

Other:

Describe any other aspects of the Highway Safety Improvement Program methodology on which you would like to elaborate.

None.

Progress in Implementing Projects

Funds Programmed

Reporting period for Highway Safety Improvement Program funding.

Calendar Year

State Fiscal Year

Federal Fiscal Year

Enter the programmed and obligated funding for each applicable funding category.

Funding Category	Programmed*		Obligated	
HSIP (Section 148)	74398069	31 %	63842083	30 %
HRRRP (SAFETEA-LU)	3409981	1%	7462210	4 %
HRRR Special Rule				
Penalty Transfer - Section 154				
Penalty Transfer – Section 164	26369579	11 %	26369579	12 %
Incentive Grants - Section 163				
Incentive Grants (Section 406)				
Other Federal-aid Funds (i.e. STP, NHPP)	67457897	28 %	44234396	21 %
State and Local Funds	70481028	29 %	70481028	33 %

Totals 242116	554 100%	212389296	100%
---------------	----------	-----------	------

How much funding is programmed to local (non-state owned and maintained) safety projects?

\$21,124,248.00

How much funding is obligated to local safety projects?

\$25,732,826.00

How much funding is programmed to non-infrastructure safety projects?

\$40,500.00

How much funding is obligated to non-infrastructure safety projects?

\$40,500.00

How much funding was transferred in to the HSIP from other core program areas during the reporting period?

\$0.00

How much funding was transferred out of the HSIP to other core program areas during the reporting period?

\$0.00

Discuss impediments to obligating Highway Safety Improvement Program funds and plans to overcome this in the future.

In FFY 2013, Ohio obligated 100% of its HSIP funds. For SFY 2014, Ohio has obligated approximately 63%. ODOT's safety program is making great progress working with our SHSP partners to further highway safety in Ohio.

Describe any other aspects of the general Highway Safety Improvement Program implementation progress on which you would like to elaborate.

Ohio uses the Strategic Highway Safety Plan to guide project selection for the HSIP Program. The following contains a complete list of Emphasis Areas, Targets Areas, and Strategies contained in the current plan posted at the following link:

http://www.dot.state.oh.us/Divisions/Planning/SPPM/MajorPrograms/Safety/Documents/SHSP%20Rep ort.pdf

These have been provided at the end of each SHSP Strategy field in the project listing table in the following section. An example of improve signage or install warning signs for a fixed object crash location would be coded as "II-a-4".

Emphasis Area I – Data and Support Systems

Targets

- α . Timely Data
- β . Reliable Data
- χ. Comprehensive Data
- δ. Integrated Data and Analysis Systems

Strategies

1. Provide statistical crash information and reports to outside agencies through web-based applications that allow local governments, law enforcement and the public to download the information quickly.

- 2. Develop a multi-jurisdictional, statewide road inventory network that contains accurate centerline information, valid address ranges and other information features critical to improving crash information, analysis and emergency response.
- 3. Design and implement a centralized statewide citation tracking system so law enforcement officers, court personnel and prosecutors have up-to-date driver histories
- 4. Improve railroad crossing data and integrate into statewide crash analysis system
- 5. Identify those municipal and county law enforcement agencies that report the largest number of crashes and work with them to reduce delays in submitting crash reports to ODPS
- 6. Implement Ohio's Crash Outcome Data Evaluation System (CODES)
- 7. Use this information in crash analysis, problem identification, and program evaluation to improve decision-making at the local, state and national levels
- 8. Update the Emergency Medical System Incident Reporting System to meet the standards set forth by the National EMS Information System (NEMSIS).

Emphasis Area II – Serious Crash Types

Targets

- α . Fixed Object Crashes
- β. Intersection Crashes
- χ. Head-On Crashes
- δ . Cross-Median Crashes
- ε. Highway/Railroad Crossing Crashes

Strategies – Fixed Object Crashes (a)

- 1. Identify areas with disproportionate number of roadway departure crashes
- 2. Implement asset management for roadside safety features
- 3. Conduct roadway safety audits
- 4. Improve signs or install warning signs
- 5. Remove or relocate obstacles, or delineate with reflective paint and/or reflectors
- 6. Provide adequate clear zones, flatten slopes and reduce sharp curves
- 7. Shield motorists from trees, poles, or other fixed objects using guardrail or other barrier types
- 8. Alertmotorists by installing rumble strips (pilot locations to be selected)
- 9. Provide selective enforcement aimed at speeding and impaired driving
- 10. Investigate new technologies

Strategies – Intersection Crashes (b)

1. Stop approach rumble strips

- 2. Improve signs and visibility of the intersection including the installation of sign post/drive post delineators, dual stop and stop ahead signs and flashing LED or beacon enhanced stop signs
- 3. Improve sight distance
- 4. Improve signal timing
- 5. Dynamic flashing beacons
- 6. Install or enhance intersection lighting
- 7. Increase enforcement of intersection violations
- 8. Access management to reduce intersection conflicts
- 9. Conduct roadway safety audits
- 10. Investigate new technologies
- 11. Educate motorists on intersection crash issues and encourage safer driving behavior

<u>Strategies – Head-On Crashes (c)</u>

- 1. Identify areas with disproportionate number of roadway departure crashes
- 2. Deploy centerline rumble strips
- 3. Deploy, as appropriate, "No Passing Zone" signs
- 4. Deploy, as appropriate, passing lanes on rural, two-lane roads
- 5. Train and educate motorists on passing zone markings and lanes
- 6. Provide selective enforcement aimed at speeding and impaired driving

Strategies - Cross-Median Crashes (d)

- 1. Identify areas with a disproportionate number of cross-median crashes
- 2. Establish policy and guidelines for installing median barrier
- 3. In congested areas, install "Watch for stopped traffic" signs to prevent cross-median crashes
- 4. Provide selective enforcement aimed at speeding, impaired and aggressive driving

Strategies – Highway/Railroad Crossing Crashes (e)

- 1. Streamline the process to help local governments reduce crossing profiles, eliminate redundant crossings and separate highway/rail crossings
- 2. Market existing programs that expand the use of alternative crash prevention methods, such as improved street lighting at approaches, rumble strips, warning signs and flashing lights
- 3. Continue the use of visible, high-profile law enforcement programs at problem crossings to deter drivers from violating gates and lights
- 4. Use automated enforcement of crossing violations to the extent allowed by law
- 5. Encourage greater participation in programs that establish multi-disciplinary teams to examine railroad corridors for improvements and fatal crash locations for quick corrective action
- 6. Modify the project selection by hazard index to include the review of older circuitry on gates and lights

- 7. Encourage all Ohio counties to develop or expand the County Task Force Program to encourage grass roots interest in railroad safety and to identify problem locations
- 8. Expand involvement with Operation Lifesaver and other highway safety education and enforcement programs
- Encourage railroads to provide accurate and timely railroad crossing data such as crash, train volume and speed data, which can be better integrated into the Federal Railroad Administration's Accident Prediction Model and other statewide analysis systems used to create safer crossings
- 10. Develop policies that encourage ODOT district offices and local governments to identify and include rail improvements early in the project development process for highway improvements
- 11. Encourage the closure of redundant crossings through policies and funding commitments To ensure railroad compliance at crossings, FRA will increase inspection activities with railroad managers by conducting field test and observations of crossing activation failures

Emphasis Area III – High-Risk Behaviors/Drivers

Targets

- α. Occupant Protection Devices Nonuse and Misuse
- β . Impaired by Alcohol
- χ . Young Driver 15 to 25
- $\delta. \quad \text{Distracted or Fatigued Driver}$
- ε. Aggressive Driving
- ϕ . Older Driver 65 or Older

Strategies – Occupant Protection Devices – Nonuse and Misuse (a)

- 1. Support efforts to enact primary safety belt legislation through state law or local ordinances
- 2. Upgrade child restraint law to include booster seats
- 3. Expand the Rural Demonstration Project designed to increase safety belt use in rural areas
- 4. Implement media and education campaign targeting pick-up drivers
- 5. Encourage law enforcement to aggressively enforce safety belt and child restraint laws
- 6. Increase emphasis on special occupant protection mobilizations (public information and high visibility enforcement campaigns)
- 7. Continue campaigns to educate the general public and target groups about the importance of occupant protection
- 8. Pilot test the "I'm Safe" Occupant Protection Program for K through Second Grade and continue to provide other child-based educational programs
- 9. Educate parents, caregivers, and grandparents about proper selection and installation of child safety seats and booster seats

10. Encourage corporations to enact policies to require safety belt use in company vehicles or when driving on company or personal time

Strategies – Impaired by Alcohol (b)

- 1. Targeted Alcohol Counties –Continue target law enforcement and educational grants to those counties with the worst fatal alcohol crash problems
- You Drink & Drive. You Lose. (YD&DYL) Crackdown Ohio will continue to participate in the national crackdown, which combines highly visible law enforcement with both local and national media exposure.
- 3. Continued use of OVI checkpoints
- 4. Implement an OVI Tracking System to collect data from all law enforcement, courts and treatment facilities
- 5. Develop Statewide Citation Tracking System to improve the OVI process and Conviction rate
- 6. Streamline the impaired driving arrest process and provide standardized electronic OVI reporting format to all law enforcement agencies
- 7. Pilot Test the OVI Court Model, which is a multidisciplinary effort to forcefully intervene and break the cycle of substance abuse, addiction, crime and impaired driving
- 8. Expand "Traffic Safety Resource Prosecutor Program" to improve prosecution of impaired driving cases, serve as an information resource for prosecutors and conduct training for prosecutors as needed
- 9. Expand alcohol server programs for on and off-premise sales
- 10. Increase law enforcement training on alcohol-related detection techniques and issues, including training to address underage consumption and detection of impaired motorcyclists
- 11. Secure Ohio Department of Health approval for law enforcement agencies to use portable evidential breath testing instruments by 2007

Strategies – Young Driver – 15 to 25 (c)

- 1. Support strengthening the Graduated Driver Licensing (GDL) law to restrict the number of passengers and nighttime driving
- Continue Safe Communities programs that target young drivers and passengers. These community-based organizations conduct youth educational programs, including safety belt challenges, mock crashes, "None for Under 21" rallies and teen countermeasure programs like "Every 15 Minutes," "You Hold the Key," and "Buckle Up for a Successful Season"
- 3. Expand alcohol server programs for on and off-premise sales
- 4. Increase law enforcement training on alcohol-related youth programs
- 5. Provide selective enforcement aimed at speeding and impaired drivers
- Support court-based programs, such as the Clermont County Sheriff's Office, "Last Chance" program, which uses educational strategies to reduce repeat driving offenses among 16 to 24year-olds.

Strategies – Distracted or Fatigued Driver (d)

- 1. Deploy shoulder, edge line and centerline rumble strips
- 2. Expand available parking in rest areas
- 3. Educate roadway users and employers on the dangers of distracted and fatigued driving
- 4. Consider public and corporate policies regulating cell phone use and other electronic devices

Strategies – Aggressive Driving (e)

- 1. Develop common definition for aggressive driving in Ohio
- 2. Expand high visibility enforcement, such as Operation TRIAD (Targeting Reckless Intimidating and Aggressive Drivers), which uses aircraft and on-road target enforcement and media coverage to discourage unsafe driving behavior
- 3. Educate roadway users on the dangers of aggressive driving and the rules of the road
- 4. Expand use of speed monitoring and changeable message signs
- 5. Minimize work zone delays, which can lead to aggressive driving
- 6. Support legislative efforts to define aggressive driving and impose increasing penalties and fines on repeat offenders of aggressive driving laws
- 7. Add aggressive driving as a causative crash factor on Ohio's crash reports (OH-1) once it is defined by law

Strategies - Older Driver - 65 or Older (f)

- 1. Expand use of Mature Driver Program and senior driver presentations that educate older drivers and their caregivers about driving risks associated with this age group
- 2. Expand number of facilities to test older drivers
- 3. Expand and maintain roadway features including larger signs and more visible pavement markings
- 4. Increase safety belt use among older drivers

Emphasis Area IV – Special Vehicles/Roadway Users

Targets

- α. Commercial Vehicles
- β. Motorcycles
- χ. Bicycles
- δ . Pedestrians

Strategies – Commercial Vehicles (a)

- 1. Enhance the electronic data capture software used to report commercial vehicle crashes to increase the accuracy and timeliness of data reported by local law enforcement (90-day requirement to report)
- 2. Expand use of Commercial Vehicle Information Systems and Networks program, which electronically collects and exchanges motor carrier safety, registration and other related information used for national roadside screening
- 3. Reduce the percentage of "at-fault" commercial vehicle drivers involved in work zone crashes by raising the awareness of the possibility of enforcement in work zones
- 4. Expand number of work zones targeted for increased enforcement, crash data and speed monitoring. Post "Target Zone Enforcement" signs to alert and deter unwanted behavior
- 5. Maintain and improve efforts to ensure only qualified drivers and properly maintained vehicles are used on Ohio highways. (Continue FMSCA audit of new carriers and compliance reviews on existing carriers)
- 6. Continue aggressive driver/vehicle inspections throughout Ohio
- 7. Identify high-crash corridors and initiate appropriate engineering and enforcement interventions
- 8. Coordinate efforts regarding hazardous moving violations by cars and trucks under the new SAFETEA-LU FMCSA authority
- 9. Educate roadway users, motor carriers and the agriculture community on commercial vehicle performance, visibility, and regulations including the Share the Road Program, hazardous materials, Highway Watch, etc.
- 10. Conduct analysis on commercial motor vehicle seat belt use in Ohio to better understand geographic locations and causes for nonuse.
- 11. Expand commercial motor vehicle seat belt outreach efforts

Strategies – Motorcycles (b)

- 1. Encourage the use of FMVSS 218 compliant helmets and other protective gear
- 2. Initiate a program to decrease the number of unendorsed motorcyclists
- 3. Expand Ohio motorcycle rider education programs through public and private sponsors and continue marketing campaigns to encourage training
- 4. Increase the awareness among motorcyclists of the dangers of riding impaired and enlist the support of motorcycle organizations to promote the separation between drinking and riding
- 5. Distribute NHTSA's "Detection of DWI Motorcyclists" materials to law enforcement agencies
- 6. Increase the use of warning signs to alert motorcyclists when roadway surface conditions are changing significantly (metal bridge gratings, bumps, rain grooves, grating of roadway surface, etc.)
- 7. Provide training to law enforcement on OH-1 Failure to Control code relative to motorcycle crashes
- 8. Educate roadway users on motorcycle performance, visibility, sharing the roadway with motorcyclists, etc.

- 9. Establish a motorcycle liaison at OSHP facilities who can speak to groups about motorcycle safety and respond to related inquiries and issues
- 10. Hold motorcycle awareness month to educate the public about motorcycle safety issues.

Strategies – Bicycles (c)

- 1. Increase enforcement, education and training in bicycle/pedestrian laws and safety through Ohio's Safe Routes to Schools Program
- 2. Increase problem identification and infrastructure planning for bicycle and pedestrian facilities through Ohio's Safe Routes to Schools Program
- 3. Conduct target enforcement of bicycle/pedestrian traffic laws in high crash zones
- 4. Strengthen penalties/enforcement for right of way, assured clear distance and marked lane violations that endanger bicyclists and pedestrians
- 5. Conduct law enforcement and judicial awareness seminars to educate these groups in the violations and penalties associated with bicycle/pedestrian related traffic violations

Strategies – Pedestrians (d)

- 1. Improve pedestrian signs and road markings
- 2. Increase enforcement, education and training in bicycle/pedestrian laws and safety through Ohio's Safe Routes to Schools Program
- 3. Increase problem identification and infrastructure planning for bicycle and pedestrian facilities throughOhio's Safe Routes to Schools Program
- 4. Conduct target enforcement of bicycle/pedestrian traffic laws in high crash zones
- 5. Strengthen penalties/enforcement for right of way, assured clear distance and marked lane violations that endanger bicyclists and pedestrians.
- 6. Conduct law enforcement and judicial awareness seminars to educate these groups in the violations and penalties associated with bicycle/pedestrian related traffic violations.

Emphasis Area V – Incident and Congestion Related Crashes

<u>Targets</u>

- α. Rear End Crashes
- β. Work Zone Crashes

Strategies - Rear End Crashes (a)

1. Target congested highway segments for improvements, including adding roadway capacity and Intelligent Transportation Systems, as well as deploying access management techniques

- 2. Continue to develop innovative practices designed to maintain traffic flow throughout construction
- 3. Develop pre-planned detours for closures on any link of the state freeway system to reduce the impact of lane closures due to spills, crashes etc.
- 4. Educate motorists to move minor crashes off the road
- 5. Educate law enforcement and fire departments on "Quick Clear" protocols
- 6. Work with law enforcement agencies to develop special enforcement programs that target congested, high-crash areas, such as Ohio Safe Commute
- 7. Educate motorists and EMS on the use of urban freeway reference markers so cellular telephone callers can accurately report crash locations
- 8. Deploy freeway service patrols to clear debris and minor incidents before they cause a major problem
- 9. Develop intelligent transportation systems (cameras, overhead message signs) to inform motorists of incidents, congestion and detours
- 10. Develop Homeland Security and Critical Incident Management Plan to prepare and respond to natural disasters and terrorism incidents.

Strategies - Work Zone Crashes (b)

- 1. Evaluate effectiveness of 2005 special enforcement and crash data collection effort in select work zones for possible expansion
- 2. Consider use of innovative technology in candidate work zones to supplement available law enforcement officers
- 3. Advertise (signs) work zones with increased law enforcement
- 4. Reduce the percentage of "at-fault" commercial vehicle drivers involved in work zone crashes by raising the awareness of the possibility of enforcement in work zones
- 5. Provide work zone training to ODOT, local agencies, law enforcement, contractors, and utility companies
- 6. Provide work zone information to the public
- Update current state guidelines, policies, regulations and statutes pertaining to work zone safety including those of public safety and motor vehicles to adopt the FHWA final rule on Work Zone Safety and Mobility
- 8. Utilize new and innovative ITS technologies to obtain traffic count data, verify traffic queue lengths in order to deploy a reliable traffic alert system.
- 9. Require trucks to use lanes that don't have conflicting merges/diverges due to ramps
- 10. Require paved shoulders of at least 2' wherever practical and possible
- 11. Use rumble strips to alert motorists of construction work zones and changes in traffic patterns

General Listing of Projects

List each highway safety improvement project obligated during the reporting period.

Project	Improvement Category	Outpu	HSIP	Total	Fundin	Function	AAD	Spe	Roadw	Relationsh	ip to SHSP
		t	Cost	Cost	g	al	т	ed	ay		
					Catego	Classifica			Owners	Emphasis	Strategy
					ry	tion			hip	Area	
93030 - FRA	Lighting Intersection	0.02	380268	443494	HSIP	Urban	1504	55	State	Intersecti	Adding
IR 71 19.430	lighting	Miles			(Sectio	Principal	60		Highwa	ons	lighting to
(Lighting)					n 148)	Arterial -			у		reduce
						Interstat			Agency		night-
						е					time/dark
											crashes (II-
											b-6)
92273 -	Roadside Barrier- metal	1.23	306516.	306516.1	HSIP	Rural	0	0	County	Roadway	Installed
		Miles	11	1	(Sectio	Major			Highwa	Departur	guardrail to
Guardrail					n 148)	Collector			У	е	address
Phase 4									Agency		issue of
											roadway
											departure
											crashes (II-
											a-7)
89193 -	Intersection geometry	0.11	290748.	456857.1	HRRRP	Rural	6461	55	State	Intersecti	Improving
MAR SR	Intersection geometrics	Miles	14	3	(SAFET	Major			Highwa	ons	roadway to
423 4.210	-				EA-LU)	Collector			y		reduce rear
	miscellaneous/other/u										end and

-												
		nspecified								Agency		angle crashes (II- b-3)
9 L 2	91927 - AW SR 243 17.83	Roadway Roadway widening - travel lanes	0.12 Miles	368742. 54	1070259	HRRRP (SAFET EA-LU)	Rural Major Collector	2415	25	State Highwa Y Agency	Intersecti ons	Widening a highway corridor to reduce the number of sideswipe crashes (II- b-7)
9 G F L	91050 - GEA GR 7Y2016 .OCAL	Roadside Barrier- metal	1.41 Miles	435626. 37	435626.3 7	HSIP (Sectio n 148)	Rural Major Collector	0	55	County Highwa Y Agency	Roadway Departur e	Installed guardrail to address issue of roadway departure crashes (II- a-7)
9 D F	93518 - 012 GR 7Y2014(B)	Roadside Barrier end treatments (crash cushions, terminals)	105 Numb ers	226520	226520	HSIP (Sectio n 148)	Urban Minor Arterial	3040	0	State Highwa Y Agency	Roadway Departur e	Installed guardrail to address issue of roadway departure crashes (II- a-7)

90948 - ALL Lima Elizabeth/ West Streets	Roadway Roadway narrowing (road diet, roadway reconfiguration)	0.19 Miles	108000 0	1633712. 59	HSIP (Sectio n 148)	Urban Local Road or Street	2180	35	City of Munici pal Highwa y Agency	Intersecti ons	Narrowing a highway corridor to reduce sideswipe and angle crashes (II- b-2)
81541 - SCI SR 140 4.94 Safety	Alignment Horizontal and vertical alignment	0.21 Miles	121810 8.6	1357509	HSIP (Sectio n 148)	Urban Minor Collector	4160	0	State Highwa Y Agency	Roadway Departur e	Realigned roadway to reduce fixed object and overturnin g crashes (II-a-6)
93027 - FRA NORTHWE ST BLVD	Alignment Horizontal curve realignment	0.22 Miles	332478. 24	356531.8	HSIP (Sectio n 148)	Urban Minor Arterial	8609	45	City of Munici pal Highwa y Agency	Roadway Departur e	Realigned roadway to reduce fixed object crashes (II- a-6)
93543 - SHE SR 47 13.45	Access management Change in access - close or restrict existing access	0.24 Miles	348097. 14	387108.6	HSIP (Sectio n 148)	Urban Minor Arterial	1026 0	0	City of Munici pal Highwa	Roadway Departur e	Limiting in and out movement s to

									y Agency		driveways in order to reduce turning related crashes (II- b-8)
92498 - MED CR GR FY2013	Roadside Barrier- metal	0.26 Miles	475887. 5	475887.5	HSIP (Sectio n 148)	Rural Local Road or Street	1200	55	County Highwa Y Agency	Roadway Departur e	Installed guardrail to address issue of roadway departure crashes (II- a-7)
94460 - FRA IR 70/Hilliar d Rome Int	Roadway Roadway widening - add lane(s) along segment	0.38 Miles	254830. 61	5543621	HSIP (Sectio n 148)	Urban Principal Arterial - Other	4672 2	25	City of Munici pal Highwa y Agency	Intersecti ons	Widening a highway corridor to add turn lanes and reduce the number of rear end and angle crashes (II- b-6)
97305 -	Roadside Barrier- metal	0.5	300000	364848	HSIP	Rural	0	35	County	Roadway	Installed

CLE VAR Guardrail FY 14		Miles			(Sectio n 148)	Local Road or Street			Highwa y Agency	Departur e	guardrail to address issue of roadway departure crashes (II- a-7)
89541 - CAR SR 542 13.18	Alignment Vertical alignment or elevation change	0.5 Miles	153859 8.3	1961591. 77	HRRRP (SAFET EA-LU)	Rural Major Collector	1130	35	State Highwa Y Agency	Roadway Departur e	Realigned roadway to reduce fixed object crashes (II- a-6)
86846 - HEN SR 108 16.10 Minor Widen	Roadway Roadway widening - add lane(s) along segment	0.53 Miles	277723 9.24	3452250. 88	HSIP (Sectio n 148)	Urban Principal Arterial - Other	8480	0	State Highwa y Agency	Intersecti ons	Widening a highway corridor to add turn lanes and reduce the number of rear end and angle crashes (II- b-3)
93801 - BRO US 68	Intersection geometry Auxiliary lanes - add	0.61 Miles	174501 9	2105455. 5	HSIP (Sectio	Rural Minor	1525 3	45	State Highwa	Intersecti ons	Constructin g turn

30.72 Safety	left-turn lane				n 148)	Arterial			y Agency		lanes to rear end and left turn crashes (II- b-2)
97304 - CLE VAR Pavement Markings FY 14	Roadway delineation Roadway delineation - other	0.64 Miles	150000	150000	HSIP (Sectio n 148)	Urban Minor Collector	0	45	County Highwa Y Agency	Roadway Departur e	Added pavement markings to reduce roadway departure crashes (II- a-5)
86923 - SUM 31st Street (CR17)	Roadway Roadway widening - add lane(s) along segment	0.66 Miles	121400 3.25	3857537. 72	HSIP (Sectio n 148)	Urban Minor Collector	0	40	County Highwa y Agency	Intersecti ons	Widening a highway corridor to add turn lanes and reduce the number of rear end and angle crashes (II- b-5)
83018 - FRA US 40	Access management Change in access - close	0.69 Miles	420026	4697736. 26	Other Federa	Urban Principal	2820 0	0	City of Munici	Roadway Departur	Limiting in and out

6.31	or restrict existing				l-aid	Arterial -			pal	е	movement
	access				Funds	Other			Highwa		s to
					(i.e.				V V		driveways
					STP,				, Agency		, in order to
					NHPP)				υ,		reduce
					,						turning
											related
											crashes (II-
											b-8)
89090 -	Roadside Barrier- metal	0.71	316826.	316826.1	HSIP	Rural	1183	40	County	Roadway	Installed
MAH		Miles	1		(Sectio	Major	4		Highwa	Departur	guardrail to
Guardrail					n 148)	Collector			У	е	address
CEAO FY13									Agency		issue of
											roadway
											departure
											crashes (II-
											a-7)
	Daaduuru Daaduuru	0.0	447022	5750405		L Lub e u	2407	0	Chata	latere et:) A /i al a uri ur ar a
77563 -	Roadway Roadway	0.9	41/823	5759485.	HSIP	Urban	2107	0	State	Intersecti	widening a
AIB US 0020 12 70	widening - add lane(s)	Miles	4	01	(Sectio	Principal	0		Highwa	ons	nignway
0020 13.78	along segment				n 148)	Arterial -			У		corridor to
						Other			Agency		add turn
											lanes and
											reduce the
											number of
											rear end
											and angle
											crashes (II-

											b-4)
94665 - BUT CR VAR RPM FY 2013	Roadway delineation Raised pavement markers	0.94 Miles	64747.7 6	64747.76	HSIP (Sectio n 148)	Urban Minor Collector	0	0	County Highwa Y Agency	Roadway Departur e	Added pavement markings to reduce roadway departure crashes (II- a-5)
96002 - MAR Campbell St CSX Preemptio n	Intersection traffic control Modify traffic signal - modernization/replace ment	1 Numb ers	267307	268531.4 8	HSIP (Sectio n 148)	Urban Minor Arterial	5480	35	City of Munici pal Highwa y Agency	Intersecti ons	Improving signal operation and visibility to reduce intersectio n related crashes (II- b-4)
90154 - MUS PM 2014	Roadway delineation Longitudinal pavement markings - new	1 Miles	150000	160134.7	HSIP (Sectio n 148)	Urban Minor Collector	0	0	County Highwa Y Agency	Roadway Departur e	Added pavement markings to reduce roadway departure crashes (II- a-5)

96841 - FRA- Cosgray Rd RRFB	Pedestrians and bicyclists Pedestrian signal - Pedestrian Hybrid Beacon	1 Numb ers	127376. 97	138364.9 7	HSIP (Sectio n 148)	Urban Minor Collector	4303	55	City of Munici pal Highwa y Agency	Pedestria ns	Constructin g signal to reduce pedestrian crashes (IV- d-1)
92557 - DEL SR 37 10.36	Intersection traffic control Modify traffic signal timing - signal coordination	1 Numb ers	250660. 43	274139.4 3	HSIP (Sectio n 148)	Urban Minor Arterial	1031 0	40	City of Munici pal Highwa Y Agency	Intersecti ons	Improving signal operation and visibility to reduce intersectio n related crashes (II- b-4)
85602 - JAC CR 9 0.12 Keystone Furnace	Intersection geometry Intersection geometrics - miscellaneous/other/u nspecified	1 Numb ers	494381 9.85	5502505. 63	HSIP (Sectio n 148)	Rural Major Collector	0	45	County Highwa Y Agency	Intersecti ons	Realigning roadway intersectio ns to reduce rear end, angle, and sideswipe passing crashes (II- b-3)

96210 - FRA SR 161 15.240	Pedestrians and bicyclists Install new crosswalk	1 Numb ers	98829	110130	HSIP (Sectio n 148)	Urban Principal Arterial - Other	2419 0	55	City of Munici pal Highwa y Agency	Pedestria ns	Providing crossing lanes to reduce pedestrian related crashes (IV- d-1)
93564 - LUC US 20 10.65 Safety	Intersection traffic control Modify traffic signal - modernization/replace ment	1 Numb ers	205060	235050.9 6	HSIP (Sectio n 148)	Urban Principal Arterial - Other	3234 0	60	City of Munici pal Highwa y Agency	Intersecti ons	Improving signal operation and visibility to reduce intersectio n related crashes (II- b-4)
87664 - POR Summit Rd. (CR- 148-3.85)	Intersection traffic control Modify control - all-way stop to roundabout	1 Numb ers	487680. 55	613349.9 8	HSIP (Sectio n 148)	Urban Minor Arterial	0	40	County Highwa Y Agency	Intersecti ons	Constructin g a roundabou t to reduce angle and rear end crashes (II- b-10)
94639 -	Intersection traffic	1	100933	1360771	HSIP	Rural	3425	25	State	Intersecti	Constructin

CLA SR 41/235 30.79/8.65	control Modify control - traffic signal to roundabout	Numb ers	9		(Sectio n 148)	Major Collector			Highwa y Agency	ons	g a roundabou t to reduce angle and rear end crashes (II- b-10)
94723 - CUY IR 480 11.60 Interchang e	Interchange design Interchange design - other	1 Numb ers	142353 9.01	2109332. 5	HSIP (Sectio n 148)	Urban Principal Arterial - Interstat e	1253 36	65	State Highwa Y Agency	Intersecti ons	Reconfigur ation of the interchang e to reduce rear end, sideswipe passing and angle crashes (V- a-1)
83548 - ERI US 0250 01.92	Intersection geometry Intersection geometrics - miscellaneous/other/u nspecified	1 Numb ers	149117 9	3732936. 13	HSIP (Sectio n 148)	Urban Principal Arterial - Other	2242 0	45	State Highwa y Agency	Intersecti ons	Realigning roadway intersectio ns to reduce rear end, angle, and sideswipe passing crashes (II-

											b-3)
93427 - FUL US 20A 19.65 (Signals)	Pedestrians and bicyclists Pedestrian signal - Pedestrian Hybrid Beacon	1 Numb ers	50944.0 7	277455.6 4	HSIP (Sectio n 148)	Rural Minor Arterial	7480	45	City of Munici pal Highwa y Agency	Pedestria ns	Constructin g signal to reduce pedestrian crashes (IV- d-1)
93938 - WAR IR 71 0.07	Intersection geometry Auxiliary lanes - add right-turn lane	1 Numb ers	85409.7	1338879. 2	Other Federa I-aid Funds (i.e. STP, NHPP)	Urban Principal Arterial - Interstat e	7692 0	35	State Highwa y Agency	Intersecti ons	Constructin g turn lanes to rear end crashes (II- b-2)
89488 - MER CR VAR PM PH 6	Roadway delineation Longitudinal pavement markings - new	1.03 Miles	183329. 37	184329.3 7	HSIP (Sectio n 148)	Rural Local Road or Street	0	45	County Highwa Y Agency	Roadway Departur e	Added pavement markings to reduce roadway departure crashes (II- a-5)
76439 - STA SR 0800 07.05	Intersection geometry Auxiliary lanes - add left-turn lane	1.03 Miles	614875 5	8779524	HSIP (Sectio n 148)	Urban Minor Arterial	1255 0	35	State Highwa y Agency	Intersecti ons	Constructin g turn lanes to rear end and left

					1	1				1	i.
											turn crashes (II- b-2)
84977 - SUM Graham Road (Widening)	Intersection geometry Auxiliary lanes - add left-turn lane	1.21 Miles	170000 0	7358324. 75	Other Federa I-aid Funds (i.e. STP, NHPP)	Urban Minor Arterial	1245 1	55	City of Munici pal Highwa y Agency	Intersecti ons	Constructin g turn lanes to rear end and left turn crashes (II- b-2)
92500 - CRA CR GR FY2013	Roadside Barrier- metal	1.21 Miles	307867. 76	307867.7 6	HSIP (Sectio n 148)	Rural Minor Collector	621	0	County Highwa y Agency	Roadway Departur e	Installed guardrail to address issue of roadway departure crashes (II- a-7)
92452 - HAN US 224 15.67	Intersection geometry Auxiliary lanes - modify turn lane storage	1.24 Miles	389853	440461.6 5	HSIP (Sectio n 148)	Urban Principal Arterial - Other	1969 0	45	State Highwa Y Agency	Intersecti ons	Constructin g turn lanes to reduce sideswipe passing and rear end

											crashes (II- b-2)
92514 - OTT CR Var GR FY- 2013	Roadside Barrier- metal	1.3 Miles	259897	259897	HSIP (Sectio n 148)	Rural Principal Arterial - Other	8290	60	County Highwa Y Agency	Roadway Departur e	Installed guardrail to address issue of roadway departure crashes (II- a-7)
92957 - HUR CR GR FY2014	Roadside Barrier- metal	1.33 Miles	283652. 18	283652.1 8	HSIP (Sectio n 148)	Urban Local Road or Street	0	0	County Highwa Y Agency	Roadway Departur e	Installed guardrail to address issue of roadway departure crashes (II- a-7)
95413 - JAC PM Various Routes	Roadway delineation Longitudinal pavement markings - new	1.49 Miles	132080	190288.4	HSIP (Sectio n 148)	Rural Major Collector	860	0	County Highwa Y Agency	Roadway Departur e	Added pavement markings to reduce roadway departure crashes (II- a-5)

91743 - CUY IR 090 00.06 Barrier Rail	Roadside Barrier- metal	1.76 Miles	409390	409390	HSIP (Sectio n 148)	Urban Principal Arterial - Interstat e	6521 0	55	State Highwa y Agency	Roadway Departur e	Installed guardrail to address issue of roadway departure crashes (II- a-7)
85297 - CUY CLEMENS ROAD	Interchange design Installation of new lane on ramp	1.76 Miles	158914 4	4872585. 5	State and Local Funds	Urban Minor Arterial	0	60	City of Munici pal Highwa y Agency	Intersecti ons	Reconfigur ation of the interchang e to reduce rear end, sideswipe passing and angle crashes (V- a-1)
95229 - BEL VAR GR Phase 3	Roadside Barrier- metal	2 Miles	300000	300000	HSIP (Sectio n 148)	Rural Minor Collector	0	0	County Highwa y Agency	Roadway Departur e	Installed guardrail to address issue of roadway departure crashes (II- a-7)

95547 -	Intersection traffic	2	59319	65909.25	HSIP	Urban	2244	45	City of	Intersecti	Improving
LIC	control Modify traffic	Numb			(Sectio	Principal	0		Munici	ons	signal
Newark	signal - add backplates	ers			n 148)	Arterial -			pal		operation
Signal						Other			Highwa		and
Upgrade									у		visibility to
									Agency		reduce
											intersectio
											n related
											crashes (II-
											b-4)
91655 -	Intersection geometry	2	984008	1281964.	HSIP	Urban	6521	55	City of	Intersecti	Constructin
CUY IR 090	Auxiliary lanes - add	Numb		61	(Sectio	Principal	0		Munici	ons	g turn
00.95	right-turn lane	ers			n 148)	Arterial -			pal		lanes to
						Interstat			Highwa		rear end
						е			У		crashes (II-
									Agency		b-2)
89434 -	Intersection geometry	2	889514.	1404355.	HSIP	Rural	3446	65	City of	Intersecti	Realigning
CLA UPPER	Intersection geometrics	Numb	31	35	(Sectio	Major			, Munici	ons	roadway
VALLEY	-	ers			, n 148)	Collector			pal		, intersectio
BRIDGE	miscellaneous/other/u				,				Highwa		ns to
	nspecified								v		reduce rear
									, Agency		end, angle,
									ς,		and
											sideswipe
											passing
											crashes (II-
											b-3)

90771 - MOT SR 741 5.80	Intersection traffic control Modify traffic signal - modernization/replace ment	2 Numb ers	763436. 7	1585285. 9	HSIP (Sectio n 148)	Urban Principal Arterial - Other	2327	55	City of Munici pal Highwa y Agency	Intersecti ons	Improving signal operation and visibility to reduce intersectio n related crashes (II- b-4)
95064 - DEL SR 750 5.880	Intersection geometry Auxiliary lanes - add left-turn lane	2 Numb ers	93647.3 5	662878.4 7	HSIP (Sectio n 148)	Urban Principal Arterial - Other	1393 0	45	State Highwa Y Agency	Intersecti ons	Constructin g turn lanes to rear end and left turn crashes (II- b-2)
94732 - LUC IR 475 9.05 Ramp Reconfig	Interchange design Interchange design - other	2 Numb ers	0	1761301 7.28	State and Local Funds	Urban Principal Arterial - Interstat e	8057 0	55	State Highwa y Agency	Intersecti ons	Reconfigur ation of the interchang e to reduce rear end, sideswipe passing and angle crashes (V-

67

											a-1)
93871 - LIC CR VAR PM FY2013	Roadway delineation Longitudinal pavement markings - new	2.07 Miles	121932. 23	124155.4 2	HSIP (Sectio n 148)	Rural Major Collector	7590	0	County Highwa Y Agency	Roadway Departur e	Added pavement markings to reduce roadway departure crashes (II- a-5)
95338 - ASD CR GR FY2014	Roadside Barrier- metal	2.27 Miles	321338	321338	HSIP (Sectio n 148)	Urban Local Road or Street	0	45	County Highwa Y Agency	Roadway Departur e	Installed guardrail to address issue of roadway departure crashes (II- a-7)
96859 - HUR CR PM FY2014	Roadway delineation Longitudinal pavement markings - new	2.37 Miles	147986. 53	163913.8 4	HSIP (Sectio n 148)	Rural Minor Arterial	3220	55	County Highwa Y Agency	Roadway Departur e	Added pavement markings to reduce roadway departure crashes (II- a-5)
93870 - LIC CR VAR	Roadside Barrier- metal	2.51	300000	320486.7	HSIP (Sectio	Rural Minor	2782	45	County Highwa	Roadway Departur	Installed guardrail to

GR FY13		Miles		5	n 148)	Collector			y Agency	e	address issue of roadway departure crashes (II- a-7)
89853 - COS/GUE GR2013	Roadside Barrier- metal	2.66 Miles	42720	532122.2 3	Other Federa I-aid Funds (i.e. STP, NHPP)	Rural Local Road or Street	0	35	County Highwa Y Agency	Roadway Departur e	Installed guardrail to address issue of roadway departure crashes (II- a-7)
94664 - BUT CRVAR Pavement Markings FY13	Roadway delineation Longitudinal pavement markings - new	2.81 Miles	141267. 48	162385.9 7	HSIP (Sectio n 148)	Urban Principal Arterial - Other	2108 0	35	County Highwa Y Agency	Roadway Departur e	Added pavement markings to reduce roadway departure crashes (II- a-5)
89876 - STA Parks Bike Crossings	Pedestrians and bicyclists Install new crosswalk	3 Numb ers	74360	74360	HSIP (Sectio n 148)	Urban Minor Arterial	8434	55	County Highwa y Agency	Pedestria ns	Providing crossing lanes to reduce pedestrian
86863 -	Intersection traffic	3	217361	3034557.	HSIP	Urban	3400	0	City of	Intersecti	related crashes (IV- d-1)
---	--	------------------	---------------	---------------	--------------------------------	---	-----------	----	--	--------------------------	---
WAS SR 7 22.900 Green/7th ST	control Intersection traffic control - other	Numb ers	2.5	39	(Sectio n 148)	Principal Arterial - Other	0		Munici pal Highwa y Agency	ons	intersectio n to reduce rear end and angle crashes (II- b-2)
96675 - MOT SR 48/201 VAR	Roadway Pavement surface - high friction surface	3 Numb ers	0	147090	State and Local Funds	Urban Principal Arterial - Other	2435 0	55	State Highwa Y Agency	Roadway Departur e	Installing high friction surfaces to reduce the number of roadway departure and rear end crashes (II- a-1)
95269 - SCI CEAO GR Various FY2013	Roadside Barrier- metal	3.31 Miles	362230. 25	362230.2 5	HSIP (Sectio n 148)	Rural Principal Arterial - Other	1197 0	55	County Highwa y Agency	Roadway Departur e	Installed guardrail to address issue of roadway

											departure crashes (II- a-7)
80450 - CLA CR 333 0.00	Intersection geometry Auxiliary lanes - add two-way left-turn lane	3.36 Miles	482054 1.52	6822751. 09	HSIP (Sectio n 148)	Urban Minor Collector	0	40	County Highwa Y Agency	Intersecti ons	Constructin g a Two Way Left Turn Lane to reduce the number of head-on, sideswipe meeting, rear end and turning- related crashes (II- b-2)
95218 - TUS VAR GR Phase 3	Roadside Barrier- metal	3.59 Miles	276392. 03	276392.0 3	HSIP (Sectio n 148)	Rural Major Collector	1892	45	County Highwa Y Agency	Roadway Departur e	Installed guardrail to address issue of roadway departure crashes (II- a-7)

2014 Ohio

			1		Ĩ					1	
79011 -	Intersection traffic	4	141932	1792032.	HSIP	Urban	1262	55	County	Intersecti	Improving
CLA CR	control Modify traffic	Numb	8.88	52	(Sectio	Minor	4		Highwa	ons	signal
327 0.55	signal -	ers			n 148)	Arterial			у		operation
	modernization/replace								Agency		and
	ment										visibility to
											reduce
											intersectio
											n related
											crashes (II-
											b-4)
0.40.40											
86843 -	Intersection geometry	4	402651	5/32965.	HSIP	Urban	3234	0	State	Intersecti	Constructin
	Auxiliary lanes - add	Numb	6.31	37	(Sectio	Principal	0		Highwa	ons	g turn
10.12	right-turn lane	ers			n 148)	Arterial -			У		lanes to
(Central/H						Other			Agency		rear end
-591)											crashes (II-
											b-2)
89293 -	Intersection traffic	1	168673	2081045	нсір	Urban	2/89	40	City of	Intersecti	Improving
	control Modify traffic	Numh	100075	81	(Sectio	Princinal	0		Munici	ons	signal
16.61	signal -	Arc	4.05	01	n 1/8)	Arterial -	U		nal	0113	operation
Safety	modernization/replace	613			11 140)	Attendi -			Highwa		and
Resurf	mont					Other			v		visibility to
	ment								y Agency		reduce
									Agency		intersectio
											n related
											v-4)
93363 -	Roadside Barrier- metal	4.31	286543.	286543.7	HSIP	Rural	3061	65	County	Roadway	Installed
									,	· · ·	

BUT CR VAR Guardrail		Miles	73	3	(Sectio n 148)	Major Collector			Highwa y Agency	Departur e	guardrail to address issue of roadway departure crashes (II- a-7)
90536 - STA Long Line PM FY 2013	Roadway delineation Longitudinal pavement markings - new	4.36 Miles	176110. 71	176110.7 1	HSIP (Sectio n 148)	Rural Local Road or Street	1000	55	County Highwa Y Agency	Roadway Departur e	Added pavement markings to reduce roadway departure crashes (II- a-5)
91127 - COL SR 45 16.27	Pedestrians and bicyclists Pedestrian signal - audible device	5 Numb ers	87360	325914.3	HSIP (Sectio n 148)	Urban Principal Arterial - Other	9660	25	State Highwa Y Agency	Pedestria ns	Constructin g signal to reduce pedestrian crashes (IV- d-1)
77920 - GRE IR 675 9.48	Roadway Roadway widening - travel lanes	5.48 Miles	198000 0	1808826 4.6	Other Federa I-aid Funds (i.e. STP,	Urban Principal Arterial - Interstat e	7178 5	35	State Highwa Y Agency	Intersecti ons	Widening a highway corridor to reduce the number of rear end

83062 - SCI-335- 1.89	Roadside Barrier- metal	5.73 Miles	131447 0	2145330	NHPP) HSIP (Sectio n 148)	Urban Minor Collector	4383	0	State Highwa y Agency	Roadway Departur e	and angle crashes (II- b-8) Installed guardrail to address issue of roadway departure crashes (II- a-7)
90588 - MEG CR 14/VAR PM FY2014	Roadway delineation Longitudinal pavement markings - new	6.38 Miles	139770	139770	HSIP (Sectio n 148)	Rural Major Collector	1520	55	County Highwa y Agency	Roadway Departur e	Added pavement markings to reduce roadway departure crashes (II- a-5)
91593 - WOO SR 64 0.00 BG signal upgrade	Intersection traffic control Modify traffic signal - add backplates	7 Numb ers	164000	214610	HSIP (Sectio n 148)	Urban Principal Arterial - Other	5120	25	State Highwa Y Agency	Intersecti ons	Improving signal operation and visibility to reduce intersectio n related

											crashes (II- b-4)
96973 - HAM US 127 Ped Improvem ents	Pedestrians and bicyclists Pedestrian signal - modify existing	8 Numb ers	0	40270	State and Local Funds	Urban Minor Arterial	0	60	City of Munici pal Highwa y Agency	Pedestria ns	Constructin g signal to reduce pedestrian crashes (IV- d-1)
87902 - D05 GR FY 2014	Roadside Barrier- metal	8.25 Miles	865580	1273885. 84	HSIP (Sectio n 148)	Rural Principal Arterial - Other	7240	55	State Highwa Y Agency	Roadway Departur e	Installed guardrail to address issue of roadway departure crashes (II- a-7)
92496 - RIC CR PM FY2014	Roadway delineation Longitudinal pavement markings - new	9.18 Miles	150000	150000	HSIP (Sectio n 148)	Urban Principal Arterial - Other	1226 6	55	County Highwa y Agency	Roadway Departur e	Added pavement markings to reduce roadway departure crashes (II- a-5)
93087 - D10 Signal Maint. FY	Intersection traffic control Modify traffic signal -	10 Numb	154105. 07	363557.4 8	HSIP (Sectio	Rural Principal Arterial -	8300	55	State Highwa Y	Intersecti ons	Improving signal operation

2014	modernization/replace ment	ers			n 148)	Other			Agency		and visibility to reduce intersectio n related crashes (II- b-4)
91021 - TRU CR Guardrail Repair FY2013	Roadside Barrier- metal	10.10 Miles	22572.8	297494.3 5	Other Federa I-aid Funds (i.e. STP, NHPP)	Rural Major Collector	2090	0	County Highwa y Agency	Roadway Departur e	Installed guardrail to address issue of roadway departure crashes (II- a-7)
92495 - D05 FY2014 Signal Upgrade	Intersection traffic control Modify traffic signal - modernization/replace ment	11 Numb ers	100295 0	1032668. 95	HSIP (Sectio n 148)	Rural Principal Arterial - Other	1134 0	0	State Highwa Y Agency	Intersecti ons	Improving signal operation and visibility to reduce intersectio n related crashes (II- b-4)
93473 - D02 GR	Roadside Barrier- metal	15.53 Miles	332167 0	3321670	HSIP (Sectio	Rural Principal	5100	65	State Highwa	Roadway Departur	Installed guardrail to

FY2013 Safety					n 148)	Arterial - Other			y Agency	e	address issue of roadway departure crashes (II- a-7)
95270 - SCI CEAO PM Various FY2013	Roadway delineation Longitudinal pavement markings - new	18.76 Miles	80476.2	80876.55	HSIP (Sectio n 148)	Rural Minor Arterial	0	50	County Highwa Y Agency	Roadway Departur e	Added pavement markings to reduce roadway departure crashes (II- a-5)
93389 - D07 Systematic GR FY 13	Roadside Barrier end treatments (crash cushions, terminals)	29 Numb ers	741810	788198.7	HSIP (Sectio n 148)	Urban Minor Arterial	0	45	State Highwa y Agency	Roadway Departur e	Installed guardrail to address issue of roadway departure crashes (II- a-7)
93553 - FRA Loop FY13	Intersection traffic control Intersection flashers - add miscellaneous/other/u nspecified	47 Numb ers	31650	437900.2 7	HSIP (Sectio n 148)	Urban Principal Arterial - Interstat e	9213 0	0	State Highwa Y Agency	Roadway Departur e	Improving signing to reduce angle and rear end

											crashes (II- b-2)
93750 - D01 GR FY13 End Trtmnt Upgrade	Roadside Barrier end treatments (crash cushions, terminals)	60 Numb ers	166420	167831	HSIP (Sectio n 148)	Urban Minor Arterial	8340	0	State Highwa Y Agency	Roadway Departur e	Installed guardrail to address issue of roadway departure crashes (II- a-7)
93303 - STA/SUM TSG FY2013 (UPS)	Intersection traffic control Modify traffic signal - miscellaneous/other/u nspecified	72 Numb ers	436648.	502857.2 2	HSIP (Sectio n 148)	Urban Principal Arterial - Other	1690 0	0	State Highwa Y Agency	Intersecti ons	Improving signal operation and visibility to reduce intersectio n related crashes (II- b-4)
92218 - HEN CR Var PM FY2013	Roadway delineation Longitudinal pavement markings - new	240 Miles	14099.2 2	142316.8 3	State and Local Funds	Rural Minor Arterial	0	0	County Highwa y Agency	Roadway Departur e	Added pavement markings to reduce roadway departure crashes (II-

					a-5)

Funding contained in the project listing is total project cost. Larger projects are likely funded in multiple fiscal years. The total safety dollars shown in the project listing will not match the fiscal year expenditures.

Progress in Achieving Safety Performance Targets

Overview of General Safety Trends

Present data showing the general highway safety trends in the state for the past five years.

Performance Measures*	2009	2010	2011	2012	2013
Number of fatalities	1208	1158	1114	1087	1047
Number of serious injuries	10427	10249	10041	9902	9727
Fatality rate (per HMVMT)	1.09	1.05	1.01	0.98	0.94
Serious injury rate (per HMVMT)	9.41	9.22	9.04	8.91	8.68

*Performance measure data is presented using a five-year rolling average.

To the maximum extent possible, present performance measure* data by functional classification and ownership.

Function Classification	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)
RURAL PRINCIPAL ARTERIAL - INTERSTATE	31	173	0.35	1.93
RURAL PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXPRESSWAYS	0	0	0	0
RURAL PRINCIPAL ARTERIAL - OTHER	61	404	0.96	6.3
RURAL MINOR ARTERIAL	78	542	1.8	12.51
RURAL MINOR COLLECTOR	46	331	2.45	17.51
RURAL MAJOR COLLECTOR	180	1330	2.08	15.31
RURAL LOCAL ROAD OR STREET	123	839	2.18	14.86
URBAN PRINCIPAL	74	701	0.33	3.07

2014 Ohio

ARTERIAL - INTERSTATE				
URBAN PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXPRESSWAYS	20	191	0.34	3.37
URBAN PRINCIPAL ARTERIAL - OTHER	137	1708	1.08	13.45
URBAN MINOR ARTERIAL	135	1626	1.02	12.26
URBAN MINOR COLLECTOR	0	0	0	0
URBAN MAJOR COLLECTOR	82	906	0.95	10.54
URBAN LOCAL ROAD OR STREET	35	354	0.28	2.76

Fatalities by Roadway Functional Classification

Serious Injuries by Roadway Functional Classification

Fatality Rate by Roadway Functional Classification

Serious Injury Rate by Roadway Functional Classification

Roadway Ownership	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)
STATE HIGHWAY AGENCY	369	2720	0	0
COUNTY HIGHWAY AGENCY	136	983	0	0
TOWN OR TOWNSHIP HIGHWAY AGENCY	59	375	0	0
CITY OF MUNICIPAL HIGHWAY AGENCY	475	5555	0	0
STATE PARK, FOREST, OR RESERVATION AGENCY	0	0	0	0
LOCAL PARK, FOREST OR RESERVATION AGENCY	0	0	0	0
OTHER STATE AGENCY	0	0	0	0
OTHER LOCAL AGENCY	0	0	0	0
PRIVATE (OTHER THAN RAILROAD)	0	0	0	0
RAILROAD	0	0	0	0
STATE TOLL AUTHORITY	8	52	0	0
LOCAL TOLL AUTHORITY	0	0	0	0
OTHER PUBLIC INSTRUMENTALITY (E.G. AIRPORT, SCHOOL, UNIVERSITY)	0	0	0	0
OTHER	2	27	0	0

Number of Fatalities by Roadway Ownership

Number of Serious Injuries by Roadway Ownership

Fatality Rate by Roadway Ownership

Serious Injury Rate by Roadway Ownership

Describe any other aspects of the general highway safety trends on which you would like to elaborate.

Ohio has also been effective in developing policies that expand the use of new treatments and strategies to drive down fatalities, serious injuries and crashes.

The department sets aside up to \$20 million each year for systematic safety improvements. National studies have shown these types of treatments can significantly reduce crashes, including injury and fatal crashes that cost Ohioans millions of dollars each year.

Cable Barrier

ODOT installs cable barrier at freeway locations where the median is 59 feet wide or less, and the average daily traffic is at least 20,000 vehicles. The department also installs cable barrier at locations with a strong history of cross-median crashes. Since 2003, 350 miles of cable barrier have been installed across Ohio with the majority of it being funded through the HSIP Program. The typical cost per mile is \$105,000. One in 16 cross-median crashes typically results in death. In those areas where cable barrier has been installed, deadly cross-median crashes have been nearly eliminated. Property damage crashes will increase, but the severity of crashes is dramatically reduced.

Edge Line Rumble Stripes

ODOT is developing a statewide policy to require the use of edge line rumble stripes on two-lane, rural roads with a minimum lane width of 11 feet and shoulder width of 2 feet. About 7,700 miles of roadway are potentially eligible for the treatment. ODOT is focusing on two-lane rural roads because they have a high percentage of fatal crashes, many involving motorists that veer from the travel lane and hit oncoming vehicles, or trees, ditches and utility poles close to the road. Adding shoulder and centerline rumble stripes to a two-lane resurfacing project, one-mile long, costs about \$2,000. National studies have shown that this safety improvement can reduce crashes between 7% and 25%. In addition, adding the rumble to the pavement stripe will increase pavement marking visibility.

Curve and Intersection Upgrade

In 2011, ODOT kicked-off a new systematic curve improvement program that targets more than 500 high-crash curves on the state highway system. ODOT staff can select from a menu of options that include bigger, more reflective signs, and pavement treatments meant to prevent drivers from skidding off the road. In 2012, the department also began a multi-year effort to upgrade signage, pavement markings and lighting at high-crash intersections. In 2013, a second round of curve signage was completed to address locations with a significant number of roadway departure crashes. The locations were identified by the FHWA Roadway Departure Project location identification methods.

Wet Pavement Locations

In 2012, the department reviewed almost 500 locations with a high number of crashes occurring under wet conditions. ODOT staff can select from a menu of treatment options to address problem locations, including milling the surface to roughen the pavement texture, and various overlays to the pavement surface to restore friction or skid resistance to acceptable levels. The Top 20 locations will be

investigated every year for possible countermeasures.

Wider Pavement Markings

In 2012, ODOT changed its pavement marking standards to require 6-inch edge and lane line markings on all interstates, interstate lookalikes and rural, high-speed, multi-lane divided roadways. Previously, theses pavement markings were 4 inches wide. Wider pavement markings can increase visibility and help reduce crashes, particularly for older drivers.

Centerline Rumble Stripes

A committee has been assembled to determine the standards for centerline rumble stripes for Ohio. Pilot locations will be completed in SFY2015 which will be used to develop a formal policy and standard. This improvement will be used to target roadway departure crashes as identified by the FHWA Roadway Departure Project. A policy update on where centerline rumble stripes should be installed is currently under review. Moving forward, they will be installed whenever the criteria is met.

Application of Special Rules

Present the rate of traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65.

Older Driver	2009	2010	2011	2012	2013
Performance Measures					
Fatality rate (per capita)	1.1	1.06	1.03	1.04	1.01
Serious injury rate (per capita)	5.17	5.2	5.2	5.19	5.15
Fatality and serious injury rate (per capita)	6.26	6.25	6.22	6.22	6.14

*Performance measure data is presented using a five-year rolling average.

Note: Assumed 2013 population was equal to 2012 because the 2013 population estimate was not available at the time of the report)

Example calculation for 2009:

[(F+SI 2009 Drivers and Pedestrians 65 years of age and older/2009 Population Figure) + (F+SI 2008 Drivers and Pedestrians 65 years of age and older/2008 Population Figure) + (F+SI 2007 Drivers and Pedestrians 65 years of age and older/2007 Population Figure) + (F+SI 2006 Drivers and Pedestrians 65 years of age and older/2006 Population Figure) + (F+SI 2005 Drivers and Pedestrians 65 years of age and over/2005 Population Figure)]/5

Does the older driver special rule apply to your state?

No

Assessment of the Effectiveness of the Improvements (Program Evaluation)

What indicators of success can you use to demonstrate effectiveness and success in the Highway Safety Improvement Program?

None

Benefit/cost

Policy change

Other: Other-Downward Crash and Severity Trends

Ohio routinely evaluates crash trends, quarterly and annually, to determine the effectiveness of its Highway Safety Improvement Program.

The safety benefits are calculated by using the total number of crashes by year and severity in order to determine a 5-year average. Crash cost were calculated for 2012 based on the Highway Safety Manual methodologies. For each year, the crash severity was multiplied by its associated cost and then summed for all severity levels. A five-year rolling average was calculated for 2012 (2008-2012) and 2013 (2009-2013). The difference between these two values equates to the safety benefits between the two years and is equal to \$400,000,000. ODOT spends a total of \$102,000,000 annually on safety projects. The ratio of the safety benefits and program cost equates to a benefit-cost ratio of 3.92.

We also track our statewide progress in implementing systematic safety treatments that target serious crash types and roadway features that can potentially increase the likelihood of crashes. This program element has been successful in reducing crashes based on the naïve before-and-after results for the different systematic treatments. In addition, we have increased our efforts to complete systematic projects on locally

maintained roads by working with MPOs, County Engineers and LTAP to provide technical assistance and funding for local road safety improvements.

What significant programmatic changes have occurred since the last reporting period?

Shift Focus to Fatalities and Serious Injuries

Include Local Roads in Highway Safety Improvement Program

Organizational Changes

None

Other: Other-Systematic Safety Improvements

Briefly describe significant program changes that have occurred since the last reporting period.

ODOT has made changes in the safety program based on past experiences and new research. We strive to increase our systematic safety programs (median barrier, LED signals & backplates, rumble stripes, guardrail upgrades, curve signing, etc) to continue to reduce crashes. ODOT has also increased outreach efforts to other state, federal, and local agencies as a result of the SHSP. ODOT has also worked closely with MPOs and county engineers on local roadways as a result of the HSIP.

SHSP Emphasis Areas

For each SHSP emphasis area that relates to the HSIP, present trends in emphasis area performance measures.

HSIP-related SHSP Emphasis Areas	Target Crash Type	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)	Other- 1	Other- 2	Other- 3
Roadway Departure	Roadway Departure	609	3944	0.55	3.53	0	0	0
Intersections	Intersection	297	4069	0.27	3.63	0	0	0
Pedestrians	Vehicle/pedestrian	99	523	0.09	0.47	0	0	0
Bicyclists	Vehicle/bicycle	17	221	0.02	0.2	0	0	0
Motorcyclists	Motorcycle Involved	159	1112	0.15	1	0	0	0
Work Zones	Work Zone Related	16	153	0.02	0.14	0	0	0

Groups of similar project types

Present the overall effectiveness of groups of similar types of projects.

HSIP Sub-program Types	Target Crash Type	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)	Other- 1	Other- 2	Other- 3
Other-ODOT Systematic - Median Barrier	Freeway	135	1135	0.14	1.11	13691	0	0
Other-State High Risk Rural Road	Serious Rural Crashes	348	2481	2.15	15.28	15295	0	0
Other-CEAO Systematic - Curve Signage	Curve Related	49	303	0.85	5.28	1772	0	0
Other-State HSIP Program	All	1047	9727	0.94	8.68	105985	0	0
Other-CEAO Systematic - RPMs	Run-off-road	102	640	1.77	11.14	3649	0	0
Other-ODOT Systematic - Intersection Signage	Unsignalized Intersection	88	822	0.34	3.15	6377	0	0
Other-ODOT Systematic - Roadway Departure	Run-off-road	260	1572	1	6.02	10115	0	0
2014 Ohio

Other-ODOT Systematic - Guardrail	Fixed object	199	1310	0.77	5.01	8075	0	0
Other-CEAO HSIP Program	All	144	1020	2.5	17.75	6200	0	0
Other-CEAO Systematic - Pavement Markings	Run-off-road	102	640	1.77	11.14	3649	0	0
Other-CEAO Systematic - Guardrail	Fixed object	94	630	1.64	10.97	3627	0	0
Other-ODOT Systematic - Wet Pavement	Wet road	55	506	0.06	0.46	4537	0	0
Other-ODOT Systematic - Signal Upgrade	Signalized Intersections	77	1513	0.07	1.35	25023	0	0

Systemic Treatments

Present the overall effectiveness of systemic treatments.

Systemic	Target	Number of fatalities	Number of	Fatality rate (per	Serious injury rate	Other-	Other-	Other-
improvement	Crash Type		serious injuries	HMVMT)	(per HMVMT)	1	2	3

Describe any other aspects of the overall Highway Safety Improvement Program effectiveness on which you would like to elaborate.

<u>Cable Barrier</u> Since 2003 - 350 miles installed

Edge Line Rumble Stripes 2010 - Installed 1,380 miles of edgeline rumble stripes

Curve and Intersection Upgrade

2010 - Upgraded 904 intersections with LED signal heads, backplates, and battery backups were applicable

2011 - 576 curves investigated and signing improvements programmed

- 2012 800 stop controlled intersection signing layout to be investigated
- 2013 840 curves to be investigated for signing and other improvement needs

Wet Pavement Locations

2012 - 177 projects implemented to reduce wet pavement related crashes 2013/2014 - 20 sites identified and improvements programmed

Pedestrian Corridors

2014 - 19 one mile corridors have been identified for investigation

Intersection Enhancements

2014 - 14 coordinated signal corridors have been identified to upgrade the signal coordination with a combination of technology, equipment and timings

Provide project evaluation data for completed projects (optional).

Location	Functional	Improvement	Improvement	Bef-	Bef-	Bef-	Bef-	Bef-	Aft-	Aft-	Aft-	Aft-	Aft-	Evaluation
	Class	Category	Туре	Fatal	Serious	Other	PDO	Total	Fatal	Serious	Other	PDO	Total	Results
					Injury	Injury				Injury	Injury			(Benefit/
														Cost Ratio)
Not														
Completed														
Completed														

Optional Attachments

Sections

Files Attached

Glossary

5 year rolling average means the average of five individual, consecutive annual points of data (e.g. annual fatality rate).

Emphasis area means a highway safety priority in a State's SHSP, identified through a data-driven, collaborative process.

Highway safety improvement project means strategies, activities and projects on a public road that are consistent with a State strategic highway safety plan and corrects or improves a hazardous road location or feature or addresses a highway safety problem.

HMVMT means hundred million vehicle miles traveled.

Non-infrastructure projects are projects that do not result in construction. Examples of noninfrastructure projects include road safety audits, transportation safety planning activities, improvements in the collection and analysis of data, education and outreach, and enforcement activities.

Older driver special rule applies if traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65 in a State increases during the most recent 2-year period for which data are available, as defined in the Older Driver and Pedestrian Special Rule Interim Guidance dated February 13, 2013.

Performance measure means indicators that enable decision-makers and other stakeholders to monitor changes in system condition and performance against established visions, goals, and objectives.

Programmed funds mean those funds that have been programmed in the Statewide Transportation Improvement Program (STIP) to be expended on highway safety improvement projects.

Roadway Functional Classification means the process by which streets and highways are grouped into classes, or systems, according to the character of service they are intended to provide.

Strategic Highway Safety Plan (SHSP) means a comprehensive, multi-disciplinary plan, based on safety data developed by a State Department of Transportation in accordance with 23 U.S.C. 148.

Systemic safety improvement means an improvement that is widely implemented based on high risk roadway features that are correlated with specific severe crash types.

Transfer means, in accordance with provisions of 23 U.S.C. 126, a State may transfer from an apportionment under section 104(b) not to exceed 50 percent of the amount apportioned for the fiscal year to any other apportionment of the State under that section.