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APPENDIX F 

AN EMPIRICAL EXAMINATION OF THE RELATIONSHIP 
BETWEEN SPEED AND ROAD ACCIDENTS 
INTRODUCTION 

At the expert panel meeting to develop AMFs for urban/suburban arterials (conducted at 
the UNC Highway Safety Research Center in July 2005), the findings of Elvik et al. about the 
relationship between speed and accidents were discussed. (1)  The following questions were 
raised: 

1. Does the power model hold for North American data? 
2. Does the power model appropriately account for a variety of ‘before’ speed 

conditions? 
3. Are there no conditions (variables) about which we have information other than 

before and after mean speed that significantly affect the speed-accidents relationship? 

To answer these questions, consultants Dr. Ezra Hauer and Dr. James Bonneson, 
conducted a study: 

1. To examine whether it is possible to provide a logical justification to the power model 
or whether a different model from is indicated and could be derived from ‘first 
principles.’  

2. To use Elvik’s data in an attempt to answer questions 1, 2 and 3 above. 

Both researchers used the same common data base to conduct their own analyses. 
Preliminary results and insights were frequently exchanged. This mode of research co-operation 
proved very fruitful by ensuring a certain amount of commonality and the ability to correct 
missteps and errors while still enabling each author to pursue directions they thought promising.  
The two approaches are described in separate sections and compared in the last section.  

DATA 

The data used for the examination were provided by Elvik et al.  A sample of these data 
is provided in the table below.  It shows the headings and the data for three studies, as reported in 
the literature by the original authors. Column headings 1-30 and 41-51 identify the original data.  
Column headings 31 to 40 identify additional variables estimated for this examination. 

 
Columns 31 to 40 (in italics) contain the variables that were added to the original data.  

The notations (rc, rf, etc.) and the formulae are based on Hauer (1997). (2)  Using the authors 
estimated number of accidents expected in the after period, had there been no change in speed (π 
in column 34). This quantity is later referred to as N.  The expected change in accidents (Delta in 
column 36, later referred to as dN) and its standard error (se(Delta) in column 37) were also 
estimated.  Similarly, the ratio Theta of expected with speed change/expected without speed 
change (column 38) and its standard error (column 39) were estimated.  
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1 2 3 4 5 6 7 8 9 10 

Study Result  Publ Data Publ Study Main Accomp Traffic 
rec no rec no Authors year country type design measure measure environ 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 
          

1 1 Munden 1966 GBR REP BAC POLIS  URBAN 
1 2 Munden 1966 GBR REP BAC POLIS  URBAN 
1 3 Munden 1966 GBR REP BAC POLIS  URBAN 

 
11 12 13 14 15 16 17 18 19 20 

Veh/users Types of Acc/inj Accs or Speed Speed Mean Mean Veh km Veh km 
Involved accident severity victims limit – b Limit - a speed - b speed - a before (case) after (case) 

F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 
      mph mph O P 

ALL ALL SER ACC 0.0 0.0 31.5 30.0 1 1.0 
ALL ALL SLI ACC   31.5 30.0   
ALL ALL SER ACC   30.0 30.8   

 
21 22 23 24 25 26 27 28 29 30 

Veh km Veh km Acc/Vic Acc/Vic Comp Comp Duration Duration Speed Acc/Vic 
before (contr) after (contr) before after before after before after change change 

F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 
Q R K L M N     

1.0 1.0 11 7 82 117 1 1 0.951 0.446 
  22 13 146 154 1 1 0.951 0.560 
  11 4 414 418 1 1 1.029 0.360 

 

31 32 33 34 35 36 37 38 39 40 

          
          

rc= rt= VAR(rt)/rt^2= Pi VAR{Pi} Delta se(Delta) Theta se{Theta} MCF 
(N*Q/R)/M rc*P/O 1/M+1/N        

1.427 1.427 0.021 15.7 27.5 8.7 5.9 0.45 0.225 3.0 

1.055 1.055 0.013 23.2 31.7 10.2 6.7 0.56 0.206 3.0 

1.010 1.010 0.005 11.1 11.8 7.1 4.0 0.36 0.212 3.0 

 
41 42 43 44 45 46 47 48 49 50 51 

Fnc Est of RTM Trend Volume Factor FE Speed Speed Mean Mean 
power power bias bias bias bias weight limit - b limit - a speed – b speed - a 

F41 F42 F43 F44 F45 F46 F47   km/h km/h 
           

0.446 15.968 YES NO NO NO 3.93   50.7 48.2 
0.560 11.459 YES NO NO NO 7.37   50.7 48.2 
0.360 -35.667 YES NO NO NO 2.89   48.2 49.6 

 
 

 
In some instances, the values of Theta (i.e., the computed AMF in column 38) for various 

studies did not agree with the equivalent value computed by Elvik (shown in column 30).  
Through correspondence with Elvik et al., many of these discrepancies were eliminated.   
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Elvik et al. (p.29) categorized each published study they identified in the literature in 

terms of its study design (see column 7).   The seven study design designations they used are 
listed in Table F-1. 

 

Table F-1. Study Design Designations. 

 Designation Study Design 
1 EXP Randomized Controlled Trial 
2 BAM Before-After with Matched Comparison Group 
3 BAC Before-After with Non-Equivalent Comparison Group 
4 BAS Before-After, NO Comparison Group 
5 CST Cross-Section 
6 CACO Case-Control 
7 TI-SE Time Series Analysis 

 
A subsequent comparison of study design with the data provided for comparison sites 

revealed a few discrepancies.  In some instances, comparison site data were provided yet the 
study was classified as a simple before-after study.  In some other instances, no comparison site 
data were provided yet the study was classified as a before-after with comparison group.   The 
design designation of the following studies (as identified in column 1) was modified to reflect 
the provision of comparison group data.   

Study Designation Changed from BAC to BAS: 
 Study 12 Kemper, Byington, and 
 Study 48 Andersson (PDO records only). 
 
Study Designation Changed from BAS to BAC:   
 Study 18 Christensen,  
 Study 72 Lamm, Psarianos, Mailaender, and 
 Study 77 Kronberg, Nilsson. 

The standard errors se(Delta) and se(Theta) reflect mainly the number of accidents in the 
study. They are ‘ideal’ in the sense that they rely on the assumption that all confounding factors 
were appropriately accounted for and all functional forms used are the correct ones. Since this is 
never true, a multiplicative Method Correction Factor (MCF in column 40) was used to adjust 
the standard errors. The magnitude of the MCF depends on the study design.  Judgement was 
used to establish the set of MCFs listed in Table F-2. These MCFs are an elaboration of the 
values used in the forthcoming Highway Safety Manual.   



NCHRP 17-25 Final Report Appendixes  F-4 

Table F-2.  Method Correction Factors. 
  MCF 

B-A traffic correction for both treatment and comparison group 1.2 
B-A traffic correction only for treatment group 1.5 EXP 
No traffic correction 1.8 
B-A traffic correction for both treatment and comparison group 2.0 
B-A traffic correction only for treatment group 2.4 BAM 
No traffic correction 2.8 
B-A traffic correction for both treatment and comparison group 2.2 
B-A traffic correction only for treatment group 2.6 BAC 
No traffic correction 3 
With traffic correction 4.5 BAS Without traffic correction 5 

CST With traffic correction 5 
 

The database thus developed was used by both authors in their modeling efforts.  The 
findings from these efforts are described in sections 3 and 4.  The potential for regression-to-the-
mean bias was identified by Elvik et al. in the database on a study-by-study basis.  The effect of 
this bias was examined in the context of the regression modeling, as described in subsequent 
sections of this report.  

MODELING APPROACH 1 

Model Examination 

This section examines two models that relate speed to crash frequency.  The first model 
examined is that described by Elvik et al. (2004) as the "power" model.  This model relates crash 
frequency to speed, where the speed variable has an exponent of two or more.  The second model 
is developed by the authors of this paper.  It relates crash frequency to the probability of a crash, 
where crash probability is based on the travel time required for the crash avoidance maneuver. 

Power Model 

The power model developed by Elvik et Al.(2004) is defined as: 

 
αvEcN 0=    ... 1 

 where: 
 

  N = crash frequency of specified severity (i.e., PDO, injury, fatal); 
 E = exposure; 

  v = mean speed, mph; 
  α = power term; and 
  c0 = empirical constant. 

 
Values of c0 and α vary, depending on whether the model is used to estimate PDO, injury, or 
fatal crash frequency.  
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Equation 1 could also be restated as: 
 

)|()( crashcrashseverePcrashPEN =  ... 2 
 

The rationale for this model is that crash occurrence is related to the distance required to 
stop, which is a function of the square of speed.  If a vehicle is unable to stop prior to reaching a 
roadway hazard, then a collision will likely occur.  From this relationship, it is postulated that 
crash frequency is proportional to the square of speed (i.e., P(crash) ∝  v2 ).  Hence, when 
Equation 1 is calibrated to property-damage-only (PDO) crash data, the power term is 
theoretically equal to about 2.0. 
 

Elvik et al. (2004) also rationalize that the kinetic energy involved in a collision is related 
to the square of speed and that the likelihood of a severe (i.e., injury or fatal) crash is related to 
the amount of kinetic energy in the collision (i.e., P(severe crash|crash) ∝  v2 ).  Hence, when 
Equation 1 is calibrated to severe crash data, the power term α is theoretically equal to 4.0 (= 2.0 
+ 2.0).  
 

The first derivative of the power model is: 
 

N
v
a

dv
dN

=  ... 3 

 
In the context of a before-after study, the change in crash frequency dN equals the crash 
frequency with (i.e., after) treatment Nw minus the crash frequency without (i.e., before) 
treatment Nw/o.  Similarly, the change in speed dv represents the difference between the mean 
speed with, and without, treatment.  Thus, the derivative in Equation 3 is used in its discrete (as 
opposed to "continuous") form when applied to before-after data.  In recognition of this discrete 
nature, the value of N on the right side of Equation 3 can be set to equal Nw/o and v can be set to 
equal vw/o.  Substitution of these two variables yields the following variation of Equation 3:  
 

ow
ow

N
v

a
dv
dN

/
/

=  ... 4 

 where: 
 
  Nw/o = crash frequency without treatment to effect a change in speed; and 
  vw/o =  mean speed without treatment, mph. 
 

Equation 4 indicates that the change in crash frequency associated with a change in speed 
is proportional to the number of crashes before the change and inversely proportional to the 
speed before the change.  The magnitude of the change in crash frequency is also proportional to 
the power term. 
 
 The "percent change ratio" can be defined as the ratio of the percent change in crashes to 
the percent change in speed.  It is computed as:  
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 where: 
  
 Rc = percent change ratio. 
 

Equation 5 indicates that the percent change ratio is a constant.  The percent change in 
crash frequency does not depend on the percent change in speed (i.e., that the percent change in 
crashes is the same irrespective of whether the speed changes from 30 to 31 mph or from 60 to 
62 mph).  

Exponential Model 

 
The exponential model is defined as: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

+
= −

−

21 c/)vc(
MT/MT

3 e1
1ecEN   ... 6 

 where: 
 
  c3  =  constant of proportionality; 
  MT =  maneuver time needed to avoid a crash (= Dc/v), s; 
  TM  = average maneuver time (= Dc/m), s; 
  m =  average maneuver speed based on facility design, mph; 
  ci =  empirical constants, i = 1, 2, 3; and 
  Dc =  maneuver distance needed to avoid a crash, miles. 
 

The first term in parentheses represents the probability of a crash P(crash).  It is based on 
maneuver time which, in turn, is based on speed and the "critical maneuver distance" Dc.  This 
distance could be stopping distance or lane-change distance.  It would include the distance 
traveled during perception-reaction time plus the distance traveled during the avoidance 
maneuver.  With some cancellation, this term can be reduced to e(m/v) , where m is the average 
maneuver speed.  This speed is related to the design speed of the road and represents the speed at 
which the roadway design can accommodate the critical maneuver with reasonable safety.  

The probability of a crash predicted from the power model and the exponential model is 
shown in Figure F-1.  The P(crash) term for the exponential model is equal to c3 e(m/v).  It is 
shown using a dashed line.  The P(crash) term for the power model is equal to c4 v2 .  The dashed 
trend line has a slight concave shape while the solid line has a convex shape.  It should be noted 
that a concave relationship between speed and crash frequency was developed by Kockelman 
(2006, Table 4-20) using HSIS data for 3370 miles of interstate and highway in Washington 
State. 
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Figure F-1.  Comparison of P(crash) for two models. 

 
The second term in the parentheses in Equation 6 represents the probability of a severe 

crash, given that a crash has occurred P(severe crash | crash).  This term would not be included 
if Equation 6 were used to estimate the expected PDO crash frequency.  For mathematical 
convenience, this probability is specified using the logistic function.  This probability is shown in 
Figure 2 using a dashed line.  It is compared to the P(severe crash | crash) term from the power 
model (i.e., P(severe crash | crash) = c5 v2 ).   

Figure F-2.  Comparison of P(severe crash |crash) for two models. 
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The logistic formulation has the logical bounds of 0.0 and 1.0 at very low and high 
speeds, respectively.  The formulation from the power model can yield values greater than 1.0 at 
exceptionally high speeds.  However, over the range of typically encountered speeds, the two 
probability functions yield effectively equivalent values for any given speed.  Therefore, the 
relationship P(severe crash | crash) = c5 v2  appears sufficiently accurate for the prediction of the 
probability of a severe crash, given that a crash occurred. 

Based on the preceding discussion, the exponential model is revised to the following 
form: 

( ) Icvm vecEN 6/
3

−=   ... 7 
 where: 
  
  I = indicator variable (0.0 when predicting PDO crash frequency, 1.0 when predicting 

severe crash frequency). 
 

The revised exponential and power models are compared in Figure 3.  The exponential 
model is shown using a dashed line.  The upper pair of trend lines illustrates the use of each 
model to predict PDO crashes.  The lower pair of trend lines illustrate the use of each model to 
predict severe crashes (i.e., injury + fatal).  To predict PDO crashes, the P(severe crash|crash) 
term was excluded from each model. 

The two models are shown in Figure 3 to have generally similar trends for the range of 
speeds shown.  However, the PDO versions of each model are less similar than the severe crash 
versions.  The PDO crash trend line for the exponential model has a concave shape and the 
power model has a convex shape.  In contrast, the severe crash versions of each model have a 
fairly similar convex shape.  The severe crash trend lines are similar for both models at speeds up 
to 60 mph.  Above 60 mph, the two models diverge slightly with the exponential model having a 
smaller rate of increase in slope. 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure F-3. Comparison of expected crash frequency from two models. 
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The first derivative of the exponential model is: 
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In recognition of the discrete nature of before-after crash data, the value of N on the right 

side of Equation 8 can be set to equal Nw/o and v can be set to equal vw/o.  Substitution of these 
two variables yields the following variation of Equation 8: 
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Equation 9 indicates that the change in crash frequency associated with a change in speed 

is proportional to the number of crashes before the change and inversely proportional to the 
speed before the change.  The magnitude of the change in crash frequency is also directly 
proportional to the value of m and c6. 

 
The "percent change ratio" can be computed as:  
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Examination of Equation 10 indicates that the percent change ratio is a function of speed 

for the exponential model.  This relationship suggests that the percent change in crash frequency 
for a given percent change in speed is larger at lower speeds than it is at higher speeds.  This 
trend holds when the exponential model is applied to the PDO, injury, or fatal crash frequency.  
It should be noted that if m = 0.0, I = 1.0, and c6 = α, then Equation 10 yields the percent change 
ratio for the power model. 

Accident Modification Functions 

The following equation was used to estimate the AMF for both models: 

ow

w

N
N

AMF
/

=   ... 11 

 where: 
  
   Nw/o = crash frequency without treatment; and 
   Nw = crash frequency with treatment to produce a change in speed. 
 

The crash frequency without treatment Nw/o was estimated using the following equation: 

ctfdow rrrKN =/   ... 12 
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where: 
  K = count of crashes in the before period;  
  rd = ratio of the after period duration to the before period duration; 
  rtf = ratio of the after period traffic volume to the before period traffic volume; and 
  rc = ratio of the after period crash frequency at the comparison sites to the before 

 period crash frequency at the comparison sites. 
 

It should be noted that some of the studies included in the database did not include data to 
compute the traffic volume ratio, in which case this ratio was assumed to equal 1.0.  Also, some 
studies were simple before-after studies that did not include comparison sites, in which case the 
comparison site ratio was assumed to equal 1.0.  

Combining Equation 1 with Equation 11 yields the following AMF for the power model: 
α
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  ... 13 

where:  
  vw =  mean speed without treatment, mph; and 
  vw/o =  mean speed with treatment applied to change speed, mph. 
 

Similarly, combining Equation 7 with Equation 11 yields the following AMF for the 
exponential model: 
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Model Evaluation 

 
The power and exponential models were evaluated using before-after data assembled by 

Elvik et al. (2004) from 98 studies conducted in 20 countries.  One objective of this evaluation 
was to determine whether the supports the power or exponential model forms (or perhaps a third 
model form).  A second objective was to determine if the trends in the data from U.S. studies 
were different from those in the data from other countries. 

Initially, a qualitative evaluation was undertaken that focused on the percent change in 
crashes relative to the percent change in speed.  Then, a quantitative evaluation was undertaken 
that focused on the change in crashes associated with a specified change in speed.  For this 
evaluation, the AMF for speed change was related to the data using regression analysis.  Finally, 
some alternative data subsets and model forms are discussed. 

Qualitative Evaluation 

The qualitative evaluation focused on graphically exploring the relationship between 
percent change in crash frequency and percent change in speed.  An examination of Equation 5 
suggested that the two percentages are related by a constant.  In contrast, an examination of 
Equation 10 suggests that the relationship between the two percentages is a function of speed.   
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To facilitate the graphical examination, the data were sorted to include only those studies 

that satisfied the following criteria: 

1. Crash count in the "before" period of 50 crashes or more. 
2. A change in mean speed from before to after period of ±1.0 mph or more. 
3. Mean speed in the "before" period of 40 mph or more. 

Criterion 1 was intended to provide some stability to the "percent change in crashes" 
variable used in the graphical examination. Similarly, Criterion 2 was established to provide 
some stability to the "percent change in speed" variable.   The mathematics of one of the 
statistics being examined (i.e., percent change ratio) caused it to have a high variability when the 
speed change was small.  Hence, to facilitate the graphical examination of trend, data associated 
with a very small speed change were excluded for convenience.  Finally, Criterion 3 was based 
on a preliminary examination of the correlation between traffic environment and crash change 
variability.  It was found that sites located in residential areas did not portray as well-defined a 
relationship between percent speed change and percent crash change as did the sites located in 
urban, rural, and freeway environments. 

For the graphical examination, no distinction was made between studies that quantified 
the change in crash frequency or the change in victims.  Also, studies that separately quantified 
"serious" injury crashes and "slight" injury crashes were combined with the studies that 
examined "all injury" crashes.  Thus, in the following discussion of findings from the qualitative 
evaluation, the data include both crashes and victims.  Also, reference to "injury" crashes 
includes studies that focused on "all," "serious," or "slight" injuries. 

A total of 166 studies satisfied the selection criteria.  They represent 50 separate studies 
and a mix of estimates that focused exclusively on either PDO, injury, or fatal crashes.  The 
percent change in crashes was computed as (AMF - 1) ×100.  The relationship found in the data 
is shown in Figure F-4.  The trend in this data confirms that there is a defined relationship 
between the percent change in speed and percent change in crashes. 

The first step in the evaluation was to determine if the relationship between the two 
percentages shown in Figure 4 is influenced by mean speed, as suggested by the exponential 
model (see Equation 10).   If this secondary influence is not found, then this finding would 
support the power model form, as suggested by Equation 5. 

To facilitate this examination, the data shown in Figure 4 were subset into two speed 
categories containing an approximately equal number of estimates.  One category included 
estimates where the speed in the "before" condition was between 40 and 60 mph.  The other 
category included estimates where the speed in the "before" condition was between 60 and 75 
mph. The relationship between percent change in speed and percent change in crashes for the 
low-to-moderate speed category is shown in Figure F-5.  A best-fit trend line (with a forced 
intercept at 0.0) is shown in the figure.  The slope of the trend line is 2.92. 
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Figure F-4.  Relationship between percent change in speed and percent change in crashes. 
 

 

Figure F-5.  Percent change in crashes for sites with low-to-moderate speeds. 
 

Figure F-6 shows the relationship between the percent change in crashes and percent 
change in speed for the high-speed category.  The slope of the best-fit trend line is 2.39.  It is 
smaller than that for the low-to-moderate speed category and indicates that the relationship 
between the two percentages is influenced by speed in a manner consistent with the exponential 
model. 
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Figure F-6.  Percent change in crashes for sites with high speeds. 
 

Further exploration of the relationship between percent change in crashes and percent 
change in speed was conducted to determine if the effect was consistent for each road 
environment (i.e., freeway, rural highway, and urban street).  From this examination, it was 
found that the pattern shown in Figures F-5 and F-6 was consistent for each road environment.  
Specifically, the slope of the line is consistently larger for the low-to-moderate-speed sites than it 
was for the high-speed sites for all three road environments.  

The next step in the graphical evaluation was to compare the two models using 
Equations 13 and 14.  For this comparison, the estimated AMF for PDO crashes was used 
because it facilitated an examination of whether the power or exponential model provided a 
better fit to the data.  The forms of these two models are most distinct when applied to PDO 
crashes, as noted previously with respect to Figure F-3. The findings from this analysis are 
shown in Figures F-7 and F-8. 

Figure F-7.  Power model AMF for PDO crashes. 
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Figure F-8.  Exponential model AMF for PDO crashes. 

 
The trend line in Figure F-7 shows the best-fit trend line using the power model AMF.   

The power term is estimated as 1.96; however, the trend line is effectively linear over the range 
of the independent variable.  In fact, a linear model provides a slightly better fit to the data (i.e., 
R2 of 0.27).  

Figure F-8 shows the best-fit trend line using the exponential model AMF.  Based on the 
R2 value shown, the fit of the data in Figure 8 is slightly better than that for the power model 
AMF.  The trends in Figures F-7 and F-8 cast some doubt on whether PDO crash frequency, and 
the PDO AMF, has a convex shape over the range of typical speeds.  In fact, the trends suggest 
that the concave shape of the exponential model may be more reasonable. 

Quantitative Evaluation 

The quantitative examination considered the relationship between AMF and speed.  In 
recognition of the fact that most AMFs are used with crash frequency, the examination focused 
on data that reflected a change in crash frequency (as opposed to the number of victims).  Also, 
to ensure the maximum utility of the AMF developed for this research, the analysis focused on 
records that were based on PDO, injury, or fatal crashes.  No data were excluded due solely to 
their country-of-origin, presence of regression-to-the-mean bias, trend bias, or volume bias, as 
identified in the database prepared by Elvik et al. (2004).  However, as is discussed in a 
subsequent paragraph, only AMFs based on crash data for urban streets, rural highways, and 
freeways were ultimately used to calibrate the regression models. 

To facilitate the examination of AMFs, a regression modeling analysis was undertaken.  
It was rationalized that the distribution of the natural log of the AMF (i.e., LN[AMF]) is 
normally distributed.  Thus, a least-squares regression model was used for this purpose.  
Equations 13 and 14 were converted to the following forms for this analysis: 

 
Power model: 

)/()()( /210 owwfi vvLNIbIbbAMFLN ++=  ... 15 
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Exponential model: 

 

)/1/1()/()()( /3/21 owwowwfi vvbvvLNIbIbAMFLN −−+=  ... 16 
 
 where: 
   Ii = indicator variable for injury crashes (= 1.0 if severity type is injury, 0.0  

  otherwise); and 
   If = indicator variable for fatal crashes (= 1.0 if severity type is fatal, 0.0  

  otherwise). 
 
In Equation 16, the b3 regression coefficient represents the average critical maneuver speed 
(previously referred to as variable m). 
 

Weighted regression was used because of the differences in variance associated with the 
AMF estimate for each record.  The reciprocal of the variance of the natural log of each AMF 
estimate was used as the weight for each observation.  This variance was estimated as: 

 

2

][)]([
AMF

AMFVarAMFLNVar =   ... 17 

 
The variance of the AMF (i.e., Var[AMF]) was estimated using the methods described by 

Hauer (3).  This variance was subsequently adjusted using a method correction factor to reflect 
the quality of the various studies used to estimate each of the AMF estimates.  

After some preliminary regression analysis, it was found that the studies of residential 
street treatments yielded AMFs that were highly varied and had trends quite different from those 
for urban streets, rural highways, and freeways.  A closer examination of the residential data 
indicated that seven of nine studies evaluated the effect of a traffic-calming, or self-enforcing-
geometry, technique.  These seven studies accounted for 34 of the 37 AMF estimates from 
residential street studies.  It was rationalized that the difference between the two groups of data 
(i.e., AMFs from residential streets and AMFs from non-residential streets) may be related to the 
use of "active" versus "passive" methods of speed control.  In this context, active methods use 
road humps, traffic circles, chicanes, etc. to control speed through ride discomfort or oscillatory 
path changes.  Passive methods use heightened enforcement or a change in speed limit to control 
speed by encouraging drivers to be lawful and, thereby, avoid citation.  Passive methods were 
typically applied to urban streets, rural highways, and freeways.  Based on this finding, 
residential data were excluded from the analysis and the analysis focused on streets, highways, 
and freeways.  The effect of speed change due to traffic calming could not be evaluated using 
this database.  

The preliminary analysis also revealed that AMFs associated with urban street studies 
exhibited a different value for b3 relative to that for studies of rural highways and freeways.  
From these preliminary findings, the exponential model's regression equation was revised to the 
following form:  
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 where: 
 
   Iu = indicator variable for urban records (= 1.0 if facility type is urban street,  

  0.0 otherwise). 
 

The results of the regression analysis are listed in Tables F-3 and F-4 for the power and 
exponential models, respectively.  The coefficient of determination Rw

2 in both tables is 
computed using the weighted average of the squared error in AMF estimates, where the weight 
used is the reciprocal of the variance of the AMF.  The variance of the natural log of the AMF 
(from Equation 17) was not used to estimate this coefficient of determination.  The same weight 
used to compute the coefficient of determination was used to compute the weighted standard 
error.  It should be noted that three AMF estimates were determined to be outliers (i.e., records 
69, 292, and 103).  These three estimates were excluded from the database. 

The regression coefficients for the power model are listed in the last three rows of Table 
F-3 and F-4.  The values listed coincide with the power term α for each severity type.  The power 
term for PDO crashes is 0.949.  The power term for injury crashes is 2.513 (= 0.949 + 1.564).  
The power term for fatal crashes is 3.884 (= 0.949 + 2.935).  These terms are consistent with the 
power estimates reported by Elvik (1) of 0.73, 2.61 and 3.65 for PDO, injury, and fatal crashes, 
respectively, based on data from "well-controlled" studies.  

The results of the regression modeling for the exponential model are summarized in 
Table F-4.  Comparison of the model statistics in this table with the statistics in Table F-3 
suggest that the exponential model provides a slightly better fit to the data.  However, it is noted 
that the exponential model has one more term and thus, would be expected to obtain a lower 
coefficient of determination. An F-test of the full (exponential) versus partial (power) models 
indicates that the fourth variable in the exponential model makes a statistically significant 
improvement in model fit, relative to the power model. 

 

Table F-3.  Calibrated Power Model Statistical Description. 
 

Model Statistics 
 

Value  
Rw

2: 
 
0.54  (0.45 based on natural log of AMF)  

Observations: 
 
323 AMF observations  

Weighted Standard Error: 
 
±0.13  

Range of Model Variables  
Variable 

 
Variable Name 

 
Units 

 
Minimum 

 
Maximum  

vw 
 
Mean speed with treatment 

 
mph 

 
16 

 
74  

vw/o 
 
Mean speed without treatment 

 
mph 

 
19 

 
74  

Calibrated Coefficient Values  
Variable 

 
Definition 

 
Value 

 
Std. Dev. 

 
t-statistic  

b0 
 
PDO crash power term 

 
0.949 

 
0.435 

 
2.2  

b1 
 
Incremental injury crash power term 

 
1.564 

 
0.535 

 
2.9  

b2 
 
Incremental fatal crash power term 

 
2.935 

 
1.182 

 
2.5 
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Table F-4.  Calibrated Exponential Model Statistical Description. 
 

Model Statistics 
 

Value  
Rw

2: 
 
0.55  (0.47 based on natural log of AMF)  

Observations: 
 
323 AMF observations  

Weighted Standard Error: 
 
±0.13  

Range of Model Variables  
Variable 

 
Variable Name 

 
Units 

 
Minimum 

 
Maximum  

vw 
 
Mean speed with treatment 

 
mph 

 
16 

 
74  

vw/o 
 
Mean speed without treatment 

 
mph 

 
19 

 
74  

Calibrated Coefficient Values  
Variable 

 
Definition 

 
Value 

 
Std. Dev. 

 
t-statistic  

b1 
 
Injury crash power term 

 
1.368 

 
0.552 

 
2.5  

b2 
 
Fatal crash power term 

 
2.742 

 
1.172 

 
2.3  

b3 
 
Average maneuver speed for rural highways 
and freeways, mph 

 
70.9 

 
25.3 

 
2.8 

 
b4 

 
Incremental average maneuver speed for 
urban streets, mph 

 
-51.2 

 
25.2 

 
-2.0 

 
 

The power term coefficients listed in Table F-4 for the exponential model have 
magnitudes that are similar to the incremental power terms in Table F-3.  However, the effect of 
speed on the probability of a severe crash appears to be lower in the exponential model.  For 
example, the term in the power model for a fatal crash is 3.884.  In the exponential model, the 
power term for a fatal crash is 2.742.  A similar trend exists for the injury power term in the two 
models (i.e.,  2.513 vs. 1.368).  

The coefficient associated with the b3 term in the exponential model suggests that the 
average maneuver speed for rural highways and freeways is 70.9 mph.  The sum of the b3 and b4 
coefficients is 19.7.  This value indicates that the average maneuver speed for urban streets is 
19.7 mph.  These two speeds are empirically derived from the regression analysis and are not 
equal to the design speeds of the respective facility types.  Nevertheless, the fact that they are 
likely to be near to these design speeds is evidence that the theoretical constructs that underlie 
the exponential model have some validity. 

 
Alternative AMF Models 

 
Variations of the power and exponential models were examined to determine if additional 

correlations existed in the AMF data.  For this analysis, the data were subset to include only 
AMFs for which regression-to-the-mean (RTM) bias was determined by Elvik not to exist in the 
AMF.  Also, an additional term was added to the regression model to determine if there is a 
difference between AMFs derived from data collected in the U.S.A. versus other countries.  The 
alternative model, that coincides with the investigation of country effects is: 
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Alternative Power Model Regression Equation: 
 

usaowwfi IbvvLNIbIbbAMFLN 5/210 )/()()( +++=  ... 19 
 
Alternative Exponential Model Regression Equation: 

 
usaowwuowwfi IbvvIbbvvLNIbIbAMFLN 5/43/21 )/1/1()()/()()( +−+−+=  ... 20 

 
 where: 
   Iusa = indicator variable for country (= 1.0 if country is U.S.A., 0.0 otherwise. 
 

The results of the regression analysis are listed in Table F-5.   A comparison of the AMFs 
yielded by the base and “no RTM bias” coefficients for the power model indicates that the AMF 
for injury crashes may be overestimated by about one percent.  In contrast, the AMF for fatal 
crashes may be underestimated by one percent.  A similar trend is noted for the exponential 
model.  These differences were determined to be too small to suggest that only the data without 
RTM bias should be used for model calibration. 

The examination of "Country" indicated that the coefficient for the U.S.A. indicator 
variable was very small and highly varied.  This finding suggests that the trends in the data from 
other countries cannot be determined to be different from U.S.A. data with any degree of 
certainty.  Thus, the corresponding U.S.A. term is excluded from the two models. 

Table F-5.  Examination of Alternative Models. 
 

Model 
 

Variable 1 
 

Base Model 
Statistics 2 

 
No RTM Bias 

 
U.S.A vs.  Other 

Countries 
 
Observations 

 
323

 
131 

 
323

 
Rw

2 
 

0.54
 

0.53 
 

0.54
 
b0 

 
0.949

 
0.755 

 
1.104

 
b1 

 
1.564

 
1.893 

 
1.438

 
b2 

 
2.935

 
2.995 

 
3.029

 
Power 

 
b5 

 
--

 
-- 

 
-0.016

 
Observations 

 
323

 
131 

 
323

 
Rw

2 
 

0.55
 

0.57 
 

0.56
 
b1 

 
1.368

 
1.774 

 
1.255

 
b2 

 
2.742

 
2.768 

 
2.888

 
b3 

 
70.9

 
61.7 

 
80.0

 
b4 

 
-51.2

 
-60.0 

 
-57.6

 
Exponential 

 
b5 

 
--

 
-- 

 
-0.019

Notes: 
1 - Variable b5 was added to the regression equations (i.e., Equations 15 and 18) to explore U.S.A crash trends. 
2 - Underlined coefficients are statistically significant at a 95 percent level of confidence. 
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Sensitivity Analysis 

The AMFs predicted by the calibrated models were compared to determine if the trends 
were reasonable.  For this analysis, a 10 percent reduction in speed was assumed.  The results are 
shown in Figures F-9, F-10, and F-11 for PDO, injury, and fatal crashes, respectively. 

Figure F-9.  AMF for PDO crashes given 10 percent reduction in speed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 

Figure F-10.  AMF for injury crashes given 10 percent reduction in speed. 
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Figure F-11.  AMF for fatal crashes given 10 percent reduction in speed. 
 

The trends in Figures F-9, F-10, and F-11 show the two models' sensitivity to speed and 
environment (i.e., urban versus freeway or rural highway).  In fact, the AMF value predicted by 
the power model is not sensitive to speed or environment.  It predicts a constant AMF value for 
each crash severity, regardless of speed or environment.  The AMF value predicted by the 
exponential model tends to increase with increasing speed.  This difference between the two 
models can be illustrated using the example calculation provided in Table F-6. 

 

Table F-6.  Example Calculation Using the Power and Exponential Models. 
 

Model 
 
Mean Speed in 

the Before 
Period,  mph 

 
AMF for PDO 

Crashes 1 

 
Before PDO 

Crash 
Frequency 2 

 
After PDO 

Crash 
Frequency 

 
PDO Crash 
Reduction 

 
50 

 
0.90

 
264

 
238 

 
26

 
55 

 
0.90

 
289

 
260 

 
29

 
60 

 
0.90

 
314

 
283 

 
31

 
65 

 
0.90

 
338

 
304 

 
34

 
Power 

 
70 

 
0.90

 
363

 
327 

 
36

 
50 

 
0.85

 
242

 
206 

 
36

 
55 

 
0.87

 
276

 
240 

 
36

 
60 

 
0.88

 
307

 
270 

 
37

 
65 

 
0.89

 
336

 
299 

 
37

 
Exponential 

 
70 

 
0.89

 
363

 
323 

 
40

Notes: 
1 - AMFs obtained from the calibrated power and exponential models for a specified 10 percent speed reduction and 

freeway or rural highway environment. 
2 - Equations 1 and 7 were calibrated to yield 363 crashes for a 70 mph mean speed in the before period. 
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The AMFs in column 3 of Table F-6 are based on the trends shown in Figure F-9 for the 
freeway or rural highway environment.  Equations 1 and 7 were calibrated to yield 363 crashes 
in the before period for a 70 mph speed using the power and exponential models, respectively.  
The trends in column 4 of the table indicate that the exponential model indicates a more rapid 
rate of decrease in crash frequency with decreasing speed in the before period.   This, at 50 mph, 
the exponential model estimates an expected before crash frequency of 242 crashes and the 
power model estimates an expected 264 crashes.    

As indicated in column 3 of Table F-6, the exponential model and power models have 
about the same AMF for 70 mph (i.e., 0.89 vs. 0.90) and a similar reduction in crash frequency 
(i.e, 40 vs. 36).  However, at 50 mph, the exponential model predicts an AMF value of 0.85 
while the power model predicts an AMF of 0.90.  These AMFs translate into a reduction of 36 
crashes based on the exponential model and a reduction of 26 crashes for the power model.  The 
estimated reduction in crashes based on the exponential model is more nearly constant over the 
range of speeds (i.e., 36 to 40 crashes) evaluated than the power model (i.e., 26 to 36 crashes). 

The information in Figures F-9, F-10, and F-11 also indicate that speed change has less 
influence on urban street crash frequency that it has on freeway or rural highway crash 
frequency.  This trend is likely due to the busier, more complicated environment of the urban 
street, relative to the freeway or rural highway.  There are likely many factors that influence 
crash frequency on urban streets (e.g., significant driveway density, frequent turn movements, 
etc.) such that the isolated effect of a change in speed limit is moderated by these other 
influences. 

Summary 

Two models are examined.  The trends in Figures F-5 and F-6 suggest that the percent 
change ratio (i.e., percent change in crashes to percent change in speed) is a function of speed.   
This finding supports the exponential model formulation.  An analysis of the AMFs predicted by 
each model provides evidence that the exponential model is slightly more accurate than the 
power model.  There does not appear to be any difference in AMF values based on data collected 
in the U.S.A. versus data collected outside the U.S.A.  

MODELING APPROACH 2 

This section consists of four parts. The first part provides some theoretical consideration 
which may shape the direction of the analysis. This is followed by examining what can be 
gleaned from two-dimensional exploratory representations of the data. The central section will 
be devoted to modeling, and is followed by a summary. 

Some Theoretical Considerations 

The main task is to suggest a model that makes the number of accidents (N) a function of 
the mean speed (v). Elvik et al. suggested the relationship in equation 21. I begin (section 4.1.1) 
by asking what function N of v does this imply. The next subsection exploits the results of 4.1.1 
to suggest directions for more general approached to the modeling of N(v). The last section is an 
attempt to use some logical conditions to identify the kind of function that may be chosen. 
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What function is implied by the ‘power model’ 

 One of the concerns about the power model was that it appears to be too simple 
and that the percent change in crashes does not depend on the speed (i.e., that the percent change 
in crashes is the same irrespective of whether speed changes from 30 to 31 mph or from 60 to 62 
mph). The purpose here is to establish what functional relationship between the number of 
crashes and speed is implied by the power model. 

 Let ‘N’ be the number of accidents of a given severity for a set of facilities, ‘v’ the mean 
speed on this set and ‘α’ a parameter. The power model is then 

α

v
Δvv

N(v)
Δv)N(v
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⎛ +

=
+

    ... 21 

       

When ∆v is small compared to v, 
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 ... 22 

            

The solution of this differential equation is  
αvN(v)∝     ... 23 

           

Obviously, for a specific set of facilities (e.g., rural interstates in Colorado), N(v) is a 
function of  the length of the system, of the traffic it serves and of many other variables. The 
influence of all these variables would have to be represented in equation 23 within the coefficient 
of proportionality that links N(v) and vα. This coefficient of proportionality can be a function of 
any variable but it must not be a function of v. Thus, if for the set of facilities for which equation 
23 holds N(v*) is the count of accidents when v=v*, the coefficient of proportionality in equation 
23 must be N(v*)/(v*)α. Using this coefficient of proportionality, equation 23 can be written as 

α
α v

(v*)
N(v*)N(v) =   ... 24 
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It follows that the power model featuring only the ratios of accident counts and speeds 
implies the specific functional relationship in equation 24. (Conversely, the function given by 
equation 24 implies the power model in equation 21). 

 
Some Conclusions 
 
 Equation 24 is not much different from the starting point in equation 21. It might seem 
that the entire argument led, predictably, back to its origin, achieving no new insight. It is 
therefore useful to state what insight was gained and what guidance for modeling can be stated. 
 

 The first conclusion is that while the power model in equation 21 is written in terms of 
increments, it logically implies the function in equation 24 that links N and v. That is, the 
absence of functional dependence on v originally thought to be disturbing is a matter of 
representation, not of substance; when the power model is written as in equation 24, N and the 
change in N depend functionally on v and the change in v. How N depends v when the power 
model holds is shown in Figure F-12 (different coefficients of proportionality are used for 
exponents α=2, 3 and 4).  

 

 
Figure F-12. How N depends on v in the ‘power model’. 

The second insight comes from the fact that the data are in the form Ni, ∆Ni, vi , ∆vi, 
where i=1, 2, 3 ... refers to different sets of facilities. Because of the presence of the ∆N and ∆v 
terms it might be natural for modeling to proceed in two steps. The first step is to estimate the 
parameters of a differential equation based on the data and the seconds step is to integrate it 
thereby establishing the sought functional relationship between N and v. Thus, e.g., if data are 
arranged in pairs {∆Ni/Ni, ∆vi/vi} one can plot ∆Ni/Ni as the ordinate and ∆vi/vi on the abscissa 
for i=1, 2, 3,...and check whether the straight-line-through-origin relationship (with a slope α) is 
reasonable choice for this data. If it is, then there is empirical support for the differential equation 
22, one can estimate α by an appropriate statistical method and, integrating equation 22, one 
obtains equation 24. 
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The third conclusion is that the differential equation embodied in equation 22 (which 
implies the power model and is being implied by it) is a very specific choice of representation for 
the available data. Thus, e.g., if instead of using separately the variables v and ∆v the modeller 
elected to represent their influence using one combined variable that is a function of ∆v and v. 
Furthermore of all possible functions of v and ∆v [e.g., as vα∆vβ, lnvα arctan(∆v)] the modeller 
chose the specific abridgment ∆v/ v. Had different choices been made, a different model would 
have been obtained. Thus, e.g., one could start generally thinking that ∆N=f(N, v, ∆v) and 
searching the data for patterns to hint at the proper form of the three-dimensional function f. 
Alternatively, one could reduce generality and assume that ∆N=Nβ×g(v, ∆v) and thereby 
narrowing exploration to two-dimensional functions g(v, ∆v)  and so on. An added advantage of 
modeling ∆N as a function of N, v and ∆v is that the result is easily written in AMF form since 
AMF=(N+∆N)/N=1+∆N/N=1+f(N,v,∆v)/N.    

 
The question is whether the power model (written either as equation 21 or equation 24) is 

the most sensible choice in view of the data.  Of course, the data points ∆Ni/Ni , ∆vi/vi may not 
indicate straight line fit. Perhaps a different relationship fit the data better. To illustrate, suppose, 
e.g., that dN/N=(β0+β1v)dv is a reasonable representation of the {Ni, ∆Ni, vi , ∆vi,  i=1, 2, 3 ...} 
data. Then, we would estimate (presumably by weighed least squares) the parameters β0, β1 and 
use these in the solution of the differential equation which is:  

21
0 v

2
v

Ce)v(N
β

+β
=   ... 25 

Alternatively, if dN/N=dv/(β0+β1v) represents the data then 
)vln(

1
10

1Ce)v(N
β+β

β=  and so on. 

 
Possible forms for f(v) 

Both equations 23 and 25 imply that the number of accidents of given severity increases 
exponentially with v. This is perhaps a good approximation for the range of v for which we have 
data. Nevertheless, one can speculate that such an increase might not continue indefinitely; that 
at very high speeds the increase will begin to taper off just as the probability to die in a crash 
tapers off at very high speeds. To take this into consideration, rather than choosing a function by 
only examining the ∆N/∆v versus v data plot, one might begin by restricting the choice of 
function (and its derivative) to the family of S-shaped functions of v.  Thus, e.g., one might 
assume that N(v) is similar to a Gamma probability distribution function for which the derivative 
is: 

v
10

12 e)v(
dv
dN β−βββ=   ... 26 

In fact, any function of v the derivative of which is initialing increasing reaches a peak and then 
decreases, such one of those shown in Figure F-13, could be chosen. 
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Figure F-13. Probability Distribution Functions. 

 
These considerations will guide our analysis of the data. 
 
EXPLORATORY ANALYSIS 

 
It was previously concluded that considering the form of the data (as Ni, ∆Ni, vi , ∆vi), it 

is natural to examine differential relationships such as  dN/dv=Nβ×f(v).  

 
The Relationship between dN/dv and N 

 
In Figure F-14 (0<Before Accidents<2000) and Figure F-15 (0<Before 

Accidents<15,000) I show estimates of dN/dv and against the count N of fatal accidents and 
fatalities. The question is whether dN/dv seems proportional to Nβ and what β might be. The 
figures are in two dimensions and f(v) is not represented. It is therefore possible that, if there is 
some systematic relationship between N and f(v), the visual impression are misleading.  

 It appears that for fatal accidents and fatalities the relationship is one of proportionality 
(i.e., that β=1). There are a few data points for which the dN/dv is below 0. This occurs only for 
studies in which N and dN are small and can be ascribed to randomness inherent in small dN 
counts. 
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Figure F-14.  dN/dv against the count of ‘before’ fatal accidents or fatalities if<2000. 

 
Figure F-15. dN/dv against the count of fatal accidents or fatalities. 

  

There is a difference between the count of fatal accidents and the count of fatalities. To 
keep analysis free of such ambiguities and to retain the ability to compare results with those by 
Elvik et al., modeling will be based only on data about the count of fatal accidents; studies the 
results of which are given in fatalities (number of victims) will not be used here. In addition, in 
Figure F-14 and Figure F-15 the abscissa is in terms of the number of fatal accidents during the 
‘before’ period. Modeling will be based on the estimated number of accidents that would be 
expected in the after period had there been no change in mean speed (denoted either as π or as 
N). The representation of dN/dv against N for fatal accidents is in Figure F-16. Here too one can 
imagine a rising straight line through the origin as fitting the data. Was one to include only data 
points from USA studies, the figure would be a bit sparser but very similar. 
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Figure F-16. How dN/dv depends on N, Fatal Accidents 

 

For Injury & Serious accidents and victims the relationship between estimates of dN/dv 
and the count before is in Figure F-17 (0 to 10,000) and Figure F-18 (0 to 400,000). As for fatal 
accidents, the relationship seems to be one of proportionality.  

 
Figure F-17. How dN/dv depends on Before Injury & Serious Accidents and Victims when 

<10,000. 
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Figure F-18. How dN/dv depends on all Injury & Serious Accidents and Victims. 

In addition to a few data points for which the dN/dv<0 due to randomness, there are in 
Figure F-17 a few apparent outliers noted by question marks. The results of outlier investigation 
are in TableF-7. 

TableF-7. Outliers (Injury & Serious). 

Study Result Reasoning and action 

13 69 Probably error in data. Fatal and PDO results of the same study are reasonable. 
Delete Injury data 

15 88 Small ∆v (0.12 mph) makes ∆N/∆v large. Retain. 
38 196 Small ∆v (0.12 mph) makes ∆N/∆v large. Retain. 

 
As noted before, modeling here will be based on the count of fatal accidents. Studies the 

results of which are given in fatalities (i.e., number of victims) will not be used. Second, 
modeling will be based on the estimated number of accidents that would be expected in the after 
period had there been no change in mean speed (denoted either as π or as N), not on the count of 
before accidents used in Figure F-17 and Figure F-18. Third, to ensure that our results can be 
compared to those by Elvik et al., analysis will be confined to the category of injury accidents, 
not the joint category of injury & serious accidents. The result is in Figure F-19. 



NCHRP 17-25 Final Report Appendixes  F-29 

 
Figure F-19. How dN/dv depends on N for Injury Accidents in USA & OTHER Countries. 

 

In Figure F-20 are shown USA data only. The relationship, although more tenuous, is still 
consistent with proportionality. 

 
Figure F-20. How dN/dv depends on N for Injury Accidents for USA data. 

 
For Slight & PDO accidents the relationship between estimates of dN/dv and before 

accidents is shown in Figure F-21 and Figure F-22. Unlike fatal accidents and injury & serious 
accidents, here the relationship is ambiguous. Without the rightmost point in Figure F-22 the 
increasing tendency would be very weak. (This data point, if retained, would an ‘influential 
observation’.)  
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Figure F-21. How dN/dv depends on Before Accidents for Slight & PDO Accidents when 
N<3,000. 

 

 
Figure F-22. How dN/dv depends on Before Accidents for Slight & PDO Accidents, all N 
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In addition, there are in there are a few apparent outliers noted in Figure F-21 by question 
marks. 

Table F-8. Outliers (Slight  & PDO). 

Study Result Reasoning and action 
15 89 Small ∆v (0.12 mph) makes ∆N/∆v large. Retain. 
38 197 Small ∆v (0.12 mph) makes ∆N/∆v large. Retain. 
39 201 Small ∆v (0.12 mph) makes ∆N/∆v large. Retain. 

 
With the realization that the noted outliers can be visually disregarded, there may be a 

small upward drift in the remaining data. Thus, even for the ‘Slight & PDO’ accidents when data 
from all countries are used, the assumption that dN/dv is proportional to N is perhaps tenable. 

When only PDO accidents are used (without the Slight category), when N is used instead 
of the count of before accidents, and when only USA data are considered the relationship in 
Figure F-23 was obtained. Without the one point in the top right corner, no relationship with N 
would be indicated. Since that single point is very uncertain, it would be a stretch to assume that 
for PDO accidents a relationship of proportionality exists. 

 

 
Figure F-23. How dN/dv depends on N, PDO Accidents 

In summary, there is an indication in the data that dN/dv is proportional to N. The 
indication is strong for fatal accidents and gets progressively weaker as accident severity 
diminishes.  

The Relationship between (dN/dv)/N and ‘v’ 

As noted earlier, dN/dv is likely to be proportional to N. Therefore, using dN/dv=N×f(v), 
one can examine how dN/dv depends on v (the functional form f(v)) by plotting (dN/dv)/N 
against v. These plots are in Figure F-24, F-25 and F-26. Many of these estimates are rather 
inaccurate. Even so, neither individually nor collectively can one discern evidence of a 
systematic dependence on v. In particular, I can see no evidence that (dN/dv)/N diminishes as v 
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increases as is implied by the functional form of the power model (see equation 22). Perhaps 
when, in modeling, the relative accuracy of the data points will be accounted for, some trend 
might emerge. In any case, at this point, nothing more elaborate than f(v)=β1+β2v is indicated. 
Whether β2 will end up being used will depend on its magnitude (practical significance) and on 
the consistency of its sign.   

 
 
 

 
Figure F-24. Relationship between (dN/dv)/N and Mean Speed Before (v) for FATAL 

accidents 

 

 
Figure F-25. Relationship between (dN/dv)/N and Mean Speed Before (v) for INJURY & 

SERIOUS accidents 



NCHRP 17-25 Final Report Appendixes  F-33 

 
Figure F-26. Relationship between (dN/dv)/N and Mean Speed Before (v) for SLIGHT & 

PDO accidents 
 

The Relationship between dN and dv 

In this section, we examine only USA data. The relationship between dN and dv for Fatal 
accidents is shown in Figure F-27.  

 

 
Figure F-27. dN versus dv, USA Fatal Accidents 

 
The relationship between dN and dv for injury accidents is shown in Figure F-28. In spite of the 
non-specific cluster near the origin, the correlation is quite strong (0.85). 
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Figure F-28. dN versus dv, Injury Accidents  

 
The relationship between dN and dv for PDO accidents is shown in Figure F-29. There is a non-
specific cluster near the origin and two outlying points which create a semblance of correlation 
(0.6).  
 
Taken together these three figures show that most of the time an increase in speed is associated 
with an increase in N and vice versa. However, in many cases, usually when dv is small, dN is 
very small.  

 
Figure F-29. dN versus dv, PDO Accidents 
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Modeling 

  
This is the main section of the report. In the first section I discuss matters of approach to 
modeling and the remaining three section deal with the modeling of fatal, Injury and PDO 
accidents. 
 
Approach and Assumptions 

Two issues are discussed in this section. The first describes the weight given to data of 
differing precision; the second specifies the way the scale parameter is computed. 

Weight given to observed values differing in accuracy 
 

Parameters will be estimated by minimizing the weighted sum of squared residuals. 
When the estimates of the dependent variable [be it dN, dN/dv or (dN/dv)/N] have different 
variances, a weighted least squared (WLS) criterion needs to be minimized. The weight of each 
residual follows from the argument below. 

 

Let y1 and y2 be observed values of two dependent variables with variances V1 and V2. 
The subscripts 1 and 2 are so chosen that V1<V2. Think of y1 as the average of n imagined 
independent observed values each of which has a variance V2. That is,  

 

n
V of  varianceaeach with   valuesobservedt independenn  of Sum

y 2
1 =   ... 27 

 
 
If so, 
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=

==
  ... 28 

 
It follows that one observed value of y1 can be regarded as the mean of V2/V1 

independent observed values each with a variance of V2. Thus, if the observed value y2 is one 
data point with variance V2, the observed value y1 equivalent to V2/V1 data points with variance 
V2. When it comes to summing squared residuals, if the residual of y2 enters the sum once, the 
residual of y1 must enter the sum V2/V1 times. This can be generalized to many observations of 
the dependent variable as: 

 

i  valueobserved of Variance
 valuesobserved allamongst  VarianceLargest  in  observatio ofWeight =   ... 29 
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Since the weighed sum of squares is the maximand when it comes to parameter estimation, and 
the maximum does not depend on the common factor of ‘Largest Variance amongst all observed 
Values’, the same parameter estimates will be obtained using: 
 

i  valueobserved of Variance
1 in  observatio ofWeight =  ... 30 

Sum Constraint 
 
In general the sum of dependent variable values predicted by a regression model differs 

from the sum of the observed values. This makes the comparison of different models awkward 
since they will differ not only in the weighted sum of squares but also in the sum of predicted 
values. To eliminate this complication I will always minimize the weighed sum of squares 
subject to the constraint that the sum of predicted values be equal to the sum of observed values.  

Modeling Fatal Accidents 

The sequence of models and their evolution is described below. All estimated parameters 
are in Table F-12. 

Model Estimation 
Models 1. dvαNdN Nβ=  

In model 1a βN is set to 1. Therefore, α is estimated not by WLS but by equating the sum 
of estimated and predicted values of dN. The corresponding sum of weighted squared residuals is 
133.5. In model 1b βN is estimated to be1.14 and the sum of weighted squared residuals is 8.0. 

Models 2.   dvf(v)NαdN Nβ ×××=  

In model 2a I use f(v)=1+βvv and βN=1. The estimate of βv is -0.0098and the sum of 
weighted squared residuals 12.7. This is a small improvement from model 1a indicating that the 
inclusion of the mean speed adds little to prediction. If it was true that βv<0 it would mean that 
the larger the speed the smaller the dN due to a fixed change dv.  When βN is not set to 1 but is 
estimated (1.14 in model 2b) βv is estimated to be -0.0137. The sum of weighed square residuals 
in this case is 6.7. 

I tried f(v)=1/(1+βv×v) is used instead of f(v)=(1+βv×v) and vβvef(v) ×=  but these 
functional forms had a larger sum of squared residuals than models 2a and 2b. Thus, the simple 
linear form f(v)=1+βvv is to be preferred. (Note that the functions f(v) in models 3 are all very 

similar when βv×v is small compared to 1 because ...
!2
)(

!1
1

2

+++=
vv

e vvvv
βββ  and 

...v)(βvβ1v)β(1 2
vv

1
v −+−=+ −  .).  

Model Examination and Modification 
A. The relationship between the values of dN estimated directly from the data and the values 

predicted by model 2b is in Figure F-30. 
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Figure F-30. Comparison of all dN in the data with those predicted by model 2b. 

 
The correspondence between the dN estimated from the data and that predicted by the model is 
quite strong.  There is no indication that the model prediction quality depends on whether dv was 
positive (to the right of 0) or negative, or on whether dN was large or small.  
 
B. One of the questions to be answered was whether a model based on experience in all 

countries applies to USA. How model 2b predicts in the USA and in Other Countries is 
shown in Table F-9. 

Table F-9. Comparison of predicted and estimated dN (Fatal) for USA and Other 
Countries using model 2b 

Sum of Estimated dN -296.4 Other 
Countries Sum of Predicted dN -433.0 

Sum of Estimated dN 1008.6 USA 
 Sum of Predicted dN 1145.2 

Total Sum of Estimated 712.2 
Total Sum of Predicted 712.2 

 
Because much of the evidence about dN comes from the USA, the sum of predictions for the 
USA is close to the sum of estimated dN.  
 
C. The Cumulative Residuals plot against the Mean Speed Before for model 2b is in Figure 

F-31. It shows that the model fits well in all ranges of v. 
 

D. The next question examined is whether the use of all data, including those studies in 
which the possibility of RTM bias was noted as present (YES) does not introduce bias 
into the results. 
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Figure F-31. Cumulative Residuals Plot for v for model 2b 

 

Table F-10. Comparison of predicted and estimated dN for RTM using model 2b 
Sum of Estimated dN 661.1 RTM not 

present  Sum of Predicted dN 705.4 
Sum of Estimated dN 51.1 RTM may be 

present  Sum of Predicted dN 6.8 
Total Sum of Predicted dN 712.2 

 
Were RTM present (in those cases when the before accidents were unusually large) one 

might expect that the estimated dN would be smaller than the predicted (the biased reductions 
are larger than they should be). Since the opposite is the case it is unlikely that the results are 
biased by using data for which the possibility of the presence of RTM is shown as ‘YES’. In any 
case, the influence of data where RTM is possible is very small. 

 
E. The last question examined is whether model 2b performs well in all ‘environments’. The 

comparison is in Table F-11. 

Table F-11. Comparison of predicted and estimated dN for Environment using model 2b 
Sum of Estimated dN -8.4 ALL 

 Sum of Predicted dN -1.6 
Sum of Estimated dN 68.1 FREEWAY 

 Sum of Predicted dN 28.1 
Sum of Estimated dN -22.0 RESIDENTIAL 

 Sum of Predicted dN -22.8 
Sum of Estimated dN 673.9 RURAL 

 Sum of Predicted dN 708.6 
Sum of Estimated dN 0.5 URBAN 

 Sum of Predicted dN -0.2 
Sum of Predicted dN 712.2 
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It appears that the model predicts well without adding a variable for Environment. 

Table F-12. Summary of Model Evolution and Parameters 
  α βN βdv βv Weighted ssq 

1a dN=α×N×dv 0.1046 Set to 1 Set to 1  13.50 
1b dN=α×NβN×dv 0.0247 1.14 Set to 1  8 
2a dN=α×N×(1+βv*v)×dv 0.2666 Set to 1 Set to 1 -0.0098 12.7 
2b dN=α×NβN*(1+βv*v)*dv 0.1582 1.14 Set to 1 -0.0137 6.70 

Results for Fatal Accidents 
I will discuss results for models 2a and 2b: 

 

0.0137v)dv(10.1582NdN
and

0.0098v)dv0.2666N(1dN

1.14 −=

−=
  ... 31 

        
Thus, e.g., if the mean speed ‘before’ is 68 mph, N ‘before’ is 500, and a measure is expected to 
reduce it by 1.2 mph then model 2a predicts 0.2666×500×(1-0.0098×68)×(-1.2)=-53.4 and model 
2b predicts  0.1582×5001.14×(1-0.0137×68)×(-1.2)=-15.5.  
 

Models 2a and 2b are compared with Elvik’s model for fatal accidents in Figure F-32. 

 
Figure F-32. Comparison of Models for Fatal Accidents 

 
The numerical values Predicted by models 2a and 2b and Elvik (power=3.6) are dissimilar. 
Model 2a predicts larger dN than Elvik and is somewhat more sensitive to mean speed. Model 2b 
is very sensitive to mean speed and predicts very large dN at low speeds.. The model would 
predict non-sense for v>73 mph. The sensitivity of 2b to mean speed and the simplicity of model 
2a, commend model 2a for use. 
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The AMFs for 2a is approximately 

0.0098v)dv0.2666(11
N

dN1
N

dNN
−+=+=

+  ... 32 

 
Thus, e.g., if the mean speed ‘before’ is 68 mph and a measure is expected to reduce it by 1.2 
mph then the AMF is 1+0.2666(1-0.0098×68)×(-1.2)=1-0.107=0.893. Alternatively, using the 
dN computed earlier 1-53.4/500=0.893. 
 

The functional relationship between N and v is obtained by solving the separable 

differential equation βv)dvα(1
N

dN
+= . The solution for model 2a is  
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2
βα(v

2
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  ... 33 

 
If for some system N=N* when v=v* then  
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The AMF  for v and v* is then )βvαΔv(1)]v(v
2
β

)vα[(v *
2*2*

ee +=+−
≅ . Thus, e.g., if v*=68 mph and v=68-

1.2=66.8 mph then exp{0.2666×[-1.2+(-0.0098/2)(66.82-682)]=0.893 
 
Modeling Injury Accident 

 
The sequence of models and their evolution is described below. All estimated parameters are in 
Table F-13. 

Model Estimation 
Models 1. dvαNdN Nβ=  

In model 1a βN is set to 1. Therefore, α is estimated not by WLS but by equating the sum 
of estimated and predicted values of dN. The corresponding sum of weighted squared residuals is 
70.8. In model 1b  βN is estimated to be 1.17 and the sum of weighted squared residuals is 63.2. 
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Models 2.   dvf(v)NαdN Nβ ×××=  

In model 2a I use f(v)=1+βvv and βN=1. The estimate of βv is -0.0051 and the sum of 
weighted squared residuals is 69.8. This is a very small improvement from model 1a indicating 
that the inclusion of the mean speed added little to prediction. If it was true that βv<0 it would 
mean that the larger the speed the smaller the dN due to a fixed change dv.  When βN is not set to 
1 but is estimated (1.19 in model 2b) βv is estimated to be +0.0032. That the sign is reversed is 
another indication of the uncertain dependence on v. The sum of weighed square residuals in this 
case is reduced to 63.2. 

I tried f(v)=1/(1+βv×v) is used instead of f(v)=(1+βv×v) and vβvef(v) ×=  but these 
functional forms had a larger sum of squared residuals than models 2a and 2b. Thus, the simple 
linear form f(v)=1+βvv is to be preferred. (Note that the functions f(v) in models 3 are all very 

similar when βv×v is small compared to 1 because ...
!2
)(

!1
1

2

+++=
vv

e vvvv
βββ  and 
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vv

1
v −+−=+ −  .).  

 

Table F-13. Summary of Model Evolution and Parameters for Injury Accidents 
  α βN βdv βv Weighted ssq 

1a dN=α×N×dv 0.0670 Set to 1 Set to 1  70.8 

1b dN=α×NβN×dv 0.0138 1.17 Set to 1  63.2 

2a dN=α×N*(1+βv×v)×dv 0.0838 Set to 1 Set to 1 -0.0051 69.8 

2b dN=α×NβN×(1+βv*v)*dv 0.0103 1.19 Set to 1 0.0032 63.2 

 

Model Examination and Modification 
A. The relationship between the values of dN estimated directly from the data and the values 
predicted by model 2a is in Figure F-33. 

 
Figure F-33. Comparison of all dN in the data with those predicted by model 2b. 
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A. The correspondence between the dN from the data and that predicted by the model is 
reasonable but less pronounced than for fatal accidents.  There is no indication that the model 
prediction quality depends on whether dv was positive (above 0,0) or negative (below 0,0)or on 
whether dN was large or small.  

 
B. One question was whether a model based on experience in all countries applies to the 
USA. How model 2a predicts in the USA and in Other Countries is shown in Table F-14. 
 

Table F-14 Comparison of predicted and estimated dN for USA and Other Countries using 
model 2b 

Sum of Estimated dN -13904.7 Other 
Countries Sum of Predicted dN -14453.0 

Sum of Estimated dN -1126.1 USA 
 Sum of Predicted dN -577.9 

Total Sum of Estimated -15030.8 
Total Sum of Predicted -15030.8 

 
The sum of predictions for the USA is less than the sum of estimated dN. I attempted to add a 
multiplicative parameter to account for the difference between USA and Other Countries but it 
failed to reduce the discrepancy. Considering the large variance of the sum of dN the model is 
acceptable. An attempt to estimate a separate model using only USA Injury Accident data might 
be warranted.   
 
C. The Cumulative Residuals plot against the Mean Speed Before for model 2a is in Figure 
F-34. It shows that the model fits well in all ranges of v. However, the vertical drops and rises 
indicate the presence of several outliers. Without reading the original reports it is difficult to 
make decisions about whether they should be excluded from analysis.  

 
Figure F-34. Cumulative Residuals Plot for v for model 2a 
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D. The next question examined is whether the use of all data, including those studies in 

which the possibility of RTM bias was noted as present (YES) does not introduce bias 
into the results. How the sum of estimated dN compares to the sum of predicted dN is 
shown in Table F-15. 

 

Table F-15. Comparison of predicted and estimated dN for RTM using model 2a 
Sum of Estimated dN -8475.0 RTM not 

present  Sum of Predicted dN -8206.0 
Sum of Estimated dN -6555.8 RTM may be 

present  Sum of Predicted dN -6824.8 
Total Sum of Predicted dN -15030.8 

 
The possibility of RTM bias is in this case not evident and the data indicating the possibility of 
RTM can be used for modeling. 
 

E. The last question examined is whether model 2a performs well in all ‘environments’. The 
comparison is in Table F-16. 

 

Table F-16. Comparison of predicted and estimated dN for Environment using model 2a. 
Sum of Estimated dN -318.0 ALL 

 Sum of Predicted dN -251.9 
Sum of Estimated dN -4978.7 FREEWAY 

 Sum of Predicted dN -4923.6 
Sum of Estimated dN -55.0 RESIDENTIAL 

 Sum of Predicted dN -42.4 
Sum of Estimated dN -7342.8 RURAL 

 Sum of Predicted dN -7625.2 
Sum of Estimated dN -2336.3 URBAN 

 Sum of Predicted dN -2187.7 
Sum of Predicted dN -15030.8 

 

It appears that the model predicts well without adding an additional variable for Environment. 

Results for Injury Accidents 
I will discuss results for model 2a: 

 
0.0051v)dv0.0838N(1dN −=   ... 35 

        
Thus, e.g., if the mean speed ‘before’ is 68 mph, N ‘before’ is 500, and a measure is expected to 
reduce v by 1.2 mph then model 2a predicts dN=0.0838×500×(1-0.0051×68)×(-1.2)=-32.8.  
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Model 2a is compared with Elvik’s model for Injury accidents in Figure F-35. 

 
Figure F-35. Comparison of Models for Injury Accidents 

 
The numerical values predicted by model 2a and 2b and those predicted by Elvik (power=1.5) 
are not similar. The simplicity of model 2a, commends it for use. 
 
 
The AMFs for 2a is approximately 

0.0051v)dv0.0838(11
N

dN1
N

dNN
−+=+=

+  ... 36 

 
Thus, e.g., if the mean speed ‘before’ is 68 mph and a measure is expected to reduce it by 1.2 
mph then the AMF is 1+0.0838(1-0.0051×68)×(-1.2)=1-0.066=0.934. Alternatively, using the 
dN computed earlier 1-32.8/500=1-0.066=0.934. 
 
The functional relationship between N and v is obtained by solving the separable differential 

equation βv)dvα(1
N

dN
+= . The solution for model 2a is  
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If for some system N=N* when v=v* then  
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The AMF  for v and v* is then )βvαΔv(1)]v(v
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Modeling PDO Accidents 

As for fatal and for injury accidents in sections 4.3.2 and 4.3.3, I attempted to develop 
and estimate models to predict dN as a function of N, f(v) and dv. However, modeling ran into 
the difficulty described below. 

The simplest model used was always dN=α×N×dv. In this model α is estimated not by 
WLS but by equating the sum of estimated and predicted values of dN. It turned out that α=  

 -0.0077. That is that, which the sum of dN is positive (398) the sum of N×dv is negative 
(-51804) and the only way the make the two equal is to multiply by a negative number. But this 
would mean that when mean speed is decreased one predicts an increase in PDO accidents. 

Instead of estimating α by ensuring that the sum of estimated dN equals the sum of 
predicted dN (see section 4.3.1.2) I tried to estimate it by minimizing the weighted sum of 
squares. Now the estimate of α was 0.0230. However, while the sum of estimated dN (398) is 
positive, the sum of predicted dN is now very different and negative (-1193). I am led to 
conclude that the data for PDO accidents does not lend itself to modeling.  

This conclusion is not entirely unexpected. As noted earlier in Figure F-21, Figure F-22 
and Figure F-23 the is no evident relationship between dN/dv and N. Logical reasoning leads one 
to expect that if on X miles of road a change of dv=Y yields a change in accidents dN=Z then on 
2X of identical road the same dv=Y will change accidents by dN=2Z.  That is, larger road 
systems are expected to be associated with larger accident changes per unit change in mean 
speed. This basic relationship is not observed in the data. The possible explanations are many. 
First, PDO accidents are not well reported and the change in what is reported may reflect the 
availability of police manpower before and after a speed change. Second, since a reduction in 
mean speed may reduce the chance of injury, some accidents reported before the change as 
injury or fatal may now fall into the PDO category. Third, perhaps Simpson’s paradox is at work 
and aggregation over various variables (urban vs, rural, freeway vs. all etc.) may be obscuring 
some important regularities. 

Summary of Modeling Results 

Modeling was done by weighted least squares (WLS) estimation. The weight of an 
estimated value of dN was the reciprocal value of its variance. To facilitate model comparisons 
and to limit the WLS to predictions that closely mimic the data, the estimates were constrained 
by the relation: Sum of predicted values of dN = Sum of estimated value of dN. 
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For Fatal Accidents I found in model 2a: 

 v)dv0.00980.2666N(1dN −=   ... 39 
         

Thus, e.g., if the mean speed ‘before’ (v) is 68 mph, N=500, and a measure is expected to 
reduce v by 1.2 mph then model 2a predicts dN=0.2666×500×(1-0.0098×68)×(-1.2)=-53.4 fatal 
accidents.  

The numerical values of dN predicted by model 2a and by Elvik et al. are dissimilar. 
 
The AMFs for model 2a is approximately 

0.0098v)dv0.2666(11
N

dN1
N
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Thus, e.g., if the mean speed ‘before’ is 68 mph and a measure is expected to reduce it by 1.2 
mph then the AMF is 1+0.2666(1-0.0098×68)×(-1.2)=1-0.107=0.893. Alternatively, using the 
dN computed earlier 1-53.4/500=0.893. 
 

The functional relationship between N and v is obtained by solving the separable 

differential equation βv)dvα(1
N

dN
+= . If for some system N=N* when v=v* then  

)]v(v
2
βvα[v *22*

e*NN
−+−

=  ... 41 
In this α=0.2666 and β=-0.0098. 
The AMF  for v and v* is then  

 
)]v(v

2
β

vα[v *22*

e
*N

NAMF
−+−

==   ... 42 

For the numerical values above AMF=0897. 
 

For Injury Accidents I found in model 2a: 

 
0.0051v)dv0.0838N(1dN −=   ... 43 

         
Thus, e.g., if the mean speed ‘before’ is 68 mph, N ‘before’ is 500, and a measure is 

expected to reduce v by 1.2 mph then model 2a predicts dN=0.0838×500×(1-0.0051×68)×(-
1.2)=-32.8.  

The numerical values predicted by model 2a and Elvik (power=1.5) are similar.  

The AMFs for model 2a the AMF is approximately 

0.0051v)dv0.0838(11
N

dN1
N

dNN
−+=+=

+

 
... 44 

Thus, e.g., if the mean speed ‘before’ is 68 mph and a measure is expected to reduce it by 1.2 
mph then the AMF is 1+0.0838(1-0.0051×68)×(-1.2)=1-0.066=0.934. Alternatively, using the 
dN computed earlier 1-32.8/500=1-0.066=0.934. 
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The functional relationship between N and v is in equations 41 and 42 with α=0.0838 and β=-
0.0051. For the numerical values above the AMF=0.934. 
 
For PDO accidents I found that the data contain no indication that dN/dv is proportional to N. 
The possibility that the change in accidents due a change in mean speed is not related to the size 
of the system makes modeling of PDO accidents with this data questionable. 
 

COMPARING THE RESULTS OF MODELING BY APPROACHES 1 AND 2 

Two different modeling approaches were applied to the very same data. The prediction 
models of both approaches for injury and for fatal accidents are summarized below. 

Approach 1: 
)1/v(1/vurban)if51.2(70.9)

v
v

ln(1.368 withoutwith
without

with

eAMFAccident Injury 
−×−−×

=              ... 45 
 

)1/v(1/vurban)if51.2(70.9)
v
v

ln(2.742 withoutwith
without

with

eAMFAccident  Fatal
−×−−×

=               ... 46 
 

Approach 2: 
 

Δv)v0.0051(10.08381AMFAccident Injury without ××−×+=   ... 47 
 

Δv)v0.0098(10.26661AMFAccident  Fatal without ××−×+=   ... 48 
 
The AMFs computed by approaches 1 and 2 for selected values of vwithout and ∆v are in 

Table F-17.  The AMFs for approach 1 are based on rural freeway and highways. 
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Table F-17. AMFs by Both Approaches and their Ratios. 
Injury  

Approach 1 vwithout [mph] 
Fatal  

Approach 1 vwithout [mph] 

∆v [mph] 30 40 50 60 70 80 ∆v [mph] 30 40 50 60 70 80 
-5 0.49 0.65 0.74 0.80 0.84 0.86 -5 0.38 0.54 0.64 0.71 0.75 0.79
-4 0.57 0.71 0.79 0.84 0.87 0.89 -4 0.47 0.62 0.70 0.76 0.80 0.83
-3 0.67 0.78 0.84 0.88 0.90 0.92 -3 0.58 0.70 0.77 0.82 0.85 0.87
-2 0.77 0.85 0.89 0.92 0.93 0.94 -2 0.70 0.79 0.84 0.87 0.90 0.91
-1 0.88 0.92 0.94 0.96 0.97 0.97 -1 0.84 0.89 0.92 0.94 0.95 0.96
0 1.00 1.00 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 1.00 1.00
1 1.13 1.08 1.06 1.04 1.03 1.03 1 1.18 1.12 1.09 1.07 1.05 1.05
2 1.27 1.16 1.11 1.09 1.07 1.06 2 1.38 1.24 1.18 1.14 1.11 1.09
3 1.41 1.25 1.17 1.13 1.10 1.09 3 1.61 1.38 1.27 1.21 1.17 1.14
4 1.57 1.34 1.23 1.18 1.14 1.12 4 1.86 1.53 1.37 1.29 1.23 1.19
5 1.73 1.43 1.30 1.22 1.18 1.14 5 2.14 1.68 1.48 1.36 1.29 1.24

 
Injury  

Approach 2 vwithout [mph] 
Fatal 

Approach 2 vwithout [mph] 

∆v [mph] 30 40 50 60 70 80 ∆v [mph] 30 40 50 60 70 80 
-5 0.65 0.67 0.69 0.71 0.73 0.75 -5 0.06 0.19 0.32 0.45 0.58 0.71
-4 0.72 0.73 0.75 0.77 0.78 0.80 -4 0.25 0.35 0.46 0.56 0.67 0.77
-3 0.79 0.80 0.81 0.83 0.84 0.85 -3 0.44 0.51 0.59 0.67 0.75 0.83
-2 0.86 0.87 0.88 0.88 0.89 0.90 -2 0.62 0.68 0.73 0.78 0.83 0.88
-1 0.93 0.93 0.94 0.94 0.95 0.95 -1 0.81 0.84 0.86 0.89 0.92 0.94
0 1.00 1.00 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 1.00 1.00
1 1.07 1.07 1.06 1.06 1.05 1.05 1 1.19 1.16 1.14 1.11 1.08 1.06
2 1.14 1.13 1.12 1.12 1.11 1.10 2 1.38 1.32 1.27 1.22 1.17 1.12
3 1.21 1.20 1.19 1.17 1.16 1.15 3 1.56 1.49 1.41 1.33 1.25 1.17
4 1.28 1.27 1.25 1.23 1.22 1.20 4 1.75 1.65 1.54 1.44 1.33 1.23
5 1.35 1.33 1.31 1.29 1.27 1.25 5 1.94 1.81 1.68 1.55 1.42 1.29

 
AMF Ratio  

App.1/App.2 vwithout [mph] 
AMF Ratio 

App.1/App.2 vwithout [mph] 

∆v [mph] 30 40 50 60 70 80 ∆v [mph] 30 40 50 60 70 80 
-5 0.75 0.97 1.08 1.12 1.14 1.15 -5 6.42 2.84 2.00 1.57 1.30 1.11
-4 0.80 0.97 1.05 1.09 1.11 1.11 -4 1.90 1.75 1.54 1.36 1.20 1.08
-3 0.85 0.97 1.03 1.06 1.07 1.08 -3 1.32 1.36 1.30 1.22 1.13 1.05
-2 0.90 0.98 1.02 1.04 1.05 1.05 -2 1.12 1.17 1.16 1.12 1.08 1.03
-1 0.95 0.99 1.01 1.02 1.02 1.02 -1 1.03 1.06 1.06 1.05 1.03 1.01
0 1.00 1.00 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 1.00 1.00
1 1.05 1.01 0.99 0.99 0.98 0.98 1 0.99 0.96 0.96 0.96 0.97 0.99
2 1.11 1.03 0.99 0.97 0.96 0.96 2 1.01 0.94 0.92 0.93 0.95 0.98
3 1.16 1.04 0.99 0.96 0.95 0.95 3 1.03 0.93 0.90 0.91 0.93 0.97
4 1.22 1.06 0.99 0.95 0.94 0.93 4 1.06 0.93 0.89 0.89 0.92 0.97
5 1.28 1.07 0.99 0.95 0.93 0.92 5 1.10 0.93 0.88 0.88 0.91 0.97

 
 

In the figures below we compare the magnitude of dNs predicted by the models produced 
by the two approaches to the estimates of the dNs that served as data.  For injury accidents the 
comparison for approach 1 is in Figure F-36 and for approach 2 in Figure F-37. 
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Figure F-36. Injury Accidents, Modeling Approach 1 

 

 
Figure F-37. Injury Accidents, Modeling Approach 2 

 
 
 
 
 
 
 
 
 

For fatal accidents the comparison is in Figure F-38 and Figure F-39.  
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Figure F-38. Fatal Accidents, Modeling Approach 1 

 

 
Figure F-39. Fatal Accidents, Modeling Approach 2 

The results are very similar. For injury accidents the dNs predicted by modeling approach 
1 (Figure F-36) are slightly biased (the equality line does not go through the centre of the points 
but is a bit too low). For fatal accidents the predictions by approach 2 seem somewhat better 
clustered around the equality line than those by approach 1. A direct comparison of the 
prediction quality by the two alternative approaches is not possible because approach 1 uses 
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three estimated parameters while approach 2 uses two. The ratio of AMFs produced by the two 
approaches is usually1 quite close to 1 and therefore both may be used.  

SUMMARY AND CONCLUSIONS 

Nilsson (1984, 2005)2 used the ‘Power’ model N1/N0=( 1v / 0v )α to represent the 
relationship between accidents and mean speed. Elvik et al. (2004)3 assembled a large dataset 
from 97 published studies containing 460 results about 0v , 1v , N0 and N1. To illustrate, the data 
about fatal accidents is shown in Figure F-40. In the large majority of cases when the mean speed 
increased, so did the number of fatal accidents and vice versa. 

 
Figure F-40 . Change in mean speed vs. relative change in fatal accidents 

Elvik et al. used Nilsson’s power model. Their estimates of α are in Table F-18.  

                                                 
1 The exception is the top left corner for fatal accidents in 
Table F-17. 
 
2 Nilsson, G., Hastigheter, olycksrisker och personskadekonsekvenser I olika vägmiljöer. VTI Report 277, Swedish 
Road and Traffic Research Institute.. 1984. 
Nilsson, G., Traffic safety dimensions and the power model to describe the effect of speed in safety. Bulleting 221, 
Lund Institute of Technology, Department of Technology and Society, Traffic Engineering, Jund, Sweden. 2004 
 
3 Elvik R., P. Christensen and A. Amundsen, Speed and road accidents. TØI Report 740. Institute of Transport 
Economics, Oslo, 2004  
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Table F-18. Estimates of α by Elvik et al. 
Severity Estimate of α 95% Confidence Interval 

Fatalities 4.5 4.1-4.9 
Seriously Injured Road Users 2.4 1.6-3.2 

Slightly Injured Road Users 1.5 1.0-2.0 

All Injured Road Users (Including Fatally) 1.9 1.0-2.8 

Fatal Accidents 3.6 2.4-4.8 

Serious Injury Accidents 2.0 0.7-3.3 

Slight Injury Accidents 1.1 0.0-2.4 

All Injury Accidents (Including Fatal) 1.5 0.8-2.2 

PDO Accidents 1.0 0.0-2.0 

  

In this report we used the data prepared by Elvik et al. (2004) to fit alternative model 
forms.  Two different approaches to model fitting were used yielding very similar results. The 
average of results obtained by the two approaches is in Table F-19. 

Table F-19. Accident Modification Factors 
Injury  

Accidents 0v  [mph] Fatal  
Accidents 0v  [mph] 

1v - 0v  
[mph] 

30 40 50 60 70 80 1v - 0v  
[mph] 

30 40 50 60 70 80 

-5 0.57 0.66 0.71 0.75 0.78 0.81 -5 0.22 0.36 0.48 0.58 0.67 0.75
-4 0.64 0.72 0.77 0.80 0.83 0.85 -4 0.36 0.48 0.58 0.66 0.73 0.80
-3 0.73 0.79 0.83 0.85 0.87 0.88 -3 0.51 0.61 0.68 0.74 0.80 0.85
-2 0.81 0.86 0.88 0.90 0.91 0.92 -2 0.66 0.73 0.79 0.83 0.86 0.90
-1 0.90 0.93 0.94 0.95 0.96 0.96 -1 0.83 0.86 0.89 0.91 0.93 0.95
0 1.00 1.00 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 1.00 1.00
1 1.10 1.07 1.06 1.05 1.04 1.04 1 1.18 1.14 1.11 1.09 1.07 1.05
2 1.20 1.15 1.12 1.10 1.09 1.08 2 1.38 1.28 1.22 1.18 1.14 1.10
3 1.31 1.22 1.18 1.15 1.13 1.12 3 1.59 1.43 1.34 1.27 1.21 1.16
4 1.43 1.30 1.24 1.20 1.18 1.16 4 1.81 1.59 1.46 1.36 1.28 1.21
5 1.54 1.38 1.30 1.26 1.22 1.20 5 2.04 1.75 1.58 1.46 1.36 1.27

 

To illustrate the use of these AMFs consider a road on which the mean speed is 60.0 
mph. If the some measure is expected to increase the mean speed by 2.0 mph, injury accidents 
are expected to increase by a factor of 1.10 and fatal accidents by a factor of 1.18. Thus, what 
may appear to be a small change mean speed has a large impact on accidents. 

Even though the data are international, the results were found to apply also to North 
American data.  As is obvious from Figure F-40, there is considerable noise in the data. This 
noise reflects, in part, the randomness of accident counts, in part the variety of circumstances 
under which the data were obtained, and in part the variety of causes of change in mean speed. 
The question of whether these results would apply irrespective of the cause of the change in 
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mean speed cannot be well answered at this time. If the change in accident frequency reflects 
mainly the associated change in severity then the AMFs in Table F-19 apply generally.   
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