Highway Safety Improvement Program
Data Driven Decisions

Maine
Highway Safety Improvement Program
2013 Annual Report

Prepared by: ME
Protection of Data from Discovery & Admission into Evidence

23 U.S.C. 148(h)(4) states “Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for any purpose relating to this section [HSIP], shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location identified or addressed in the reports, surveys, schedules, lists, or other data.”

23 U.S.C. 409 states “Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential accident sites, hazardous roadway conditions, or railway-highway crossings, pursuant to sections 130, 144, and 148 of this title or for the purpose of developing any highway safety construction improvement project which may be implemented utilizing Federal-aid highway funds shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data.”

Table of Contents

Disclaimer.. ii

Executive Summary... 1

Introduction .. 2

Program Structure .. 2
 Program Administration ... 2
 Program Methodology .. 4

Progress in Implementing Projects ... 40
 Funds Programmed... 40
 General Listing of Projects .. 44

Progress in Achieving Safety Performance Targets .. Error! Bookmark not defined.
 Overview of General Safety Trends .. Error! Bookmark not defined.
 Application of Special Rules ... Error! Bookmark not defined.

Assessment of the Effectiveness of the Improvements (Program Evaluation) 67
 SHSP Emphasis Areas .. Error! Bookmark not defined.
 Groups of similar project types .. Error! Bookmark not defined.
 Systemic Treatments ... Error! Bookmark not defined.

Glossary.. 91
Executive Summary

Maine has a data driven approach for HSIP project selection, assessing various aspects of crash performance. Before and After crash results comparison have consistently shown performance improvement over the years. HSIP selection process is re-evaluated each year to see if there opportunities for enhancement and for improved alignment for the state’s SHSP.
Introduction

The Highway Safety Improvement Program (HSIP) is a core Federal-aid program with the purpose of achieving a significant reduction in fatalities and serious injuries on all public roads. As per 23 U.S.C. 148(h) and 23 CFR 924.15, States are required to report annually on the progress being made to advance HSIP implementation and evaluation efforts. The format of this report is consistent with the HSIP MAP-21 Reporting Guidance dated February 13, 2013 and consists of four sections: program structure, progress in implementing HSIP projects, progress in achieving safety performance targets, and assessment of the effectiveness of the improvements.

Program Structure

Program Administration

How are Highway Safety Improvement Program funds allocated in a State?

- Central
- District
- Other

Describe how local roads are addressed as part of Highway Safety Improvement Program.

Local roads are included with the state-wide project candidates. Maine does capture crash and roadway data for Local roads and so is able to evaluate all locations within the state. Local requests are also received based on crash concerns and are reviewed as part of the candidate screening process.

Identify which internal partners are involved with Highway Safety Improvement Program planning.

- Design
Briefly describe coordination with internal partners.

Executive, Planning, Traffic Engineering, Project Development all play a part in safety planning. MaineDOT is currently enhancing its Work Plan approach to integrate safety into the planning process, looking to get safety in the planning thought process early on to consider not just stand-alone safety needs, but also opportunities that would complement upcoming paving and construction projects.

Identify which external partners are involved with Highway Safety Improvement Program planning.

- Metropolitan Planning Organizations
- Governors Highway Safety Office
- Local Government Association
- Other:

Identify any program administration practices used to implement the HSIP that have changed since the last reporting period.
Multi-disciplinary HSIP steering committee

Other: Other - Ongoing tweaks made to enhance HSIP approach

Describe any other aspects of Highway Safety Improvement Program Administration on which you would like to elaborate.

None

Program Methodology

Select the programs that are administered under the HSIP.

- Median Barrier
- Horizontal Curve
- Skid Hazard
- Roadway Departure
- Local Safety
- Left Turn Crash
- Other: Other - Median Barriers addressed through capital program

☐ Median Barrier ☒ Intersection ☐ Safe Corridor
☒ Horizontal Curve ☐ Bicycle Safety ☒ Rural State Highways
☒ Skid Hazard ☐ Crash Data ☒ Red Light Running Prevention
☒ Roadway Departure ☐ Low-Cost Spot Improvements ☐ Sign Replacement And Improvement
☒ Local Safety ☒ Pedestrian Safety ☒ Right Angle Crash
☒ Left Turn Crash ☐ Shoulder Improvement ☒ Segments

Program: Intersection
Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ All crashes</td>
<td>☑ Traffic</td>
<td>☑ Median width</td>
</tr>
<tr>
<td>☐ Fatal crashes only</td>
<td>☑ Volume</td>
<td>☑ Horizontal curvature</td>
</tr>
<tr>
<td>☑ Fatal and serious injury crashes only</td>
<td>☐ Population</td>
<td>☑ Functional classification</td>
</tr>
<tr>
<td>☐ Other</td>
<td>☑ Lane miles</td>
<td>☑ Roadside features</td>
</tr>
<tr>
<td>☑ Other</td>
<td>☐ Other</td>
<td>☑ Other-Maine Highway Corridor Priorities</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

☑ Crash frequency
☑ Expected crash frequency with EB adjustment
☐ Equivalent property damage only (EPDO Crash frequency)
☐ EPDO crash frequency with EB adjustment
☐ Relative severity index
☑ Crash rate
☑ Critical rate
☑ Level of service of safety (LOSS)
☐ Excess expected crash frequency using SPFs
☐ Excess expected crash frequency with the EB adjustment
☐ Excess expected crash frequency using method of moments
☐ Probability of specific crash types
☐ Excess proportions of specific crash types
Other-HSM to be implemented, Maine working on calibration factors (this applies to all program areas)

Are local roads (non-state owned and operated) included or addressed in this program?

☑ Yes
☐ No

If yes, are local road projects identified using the same methodology as state roads?

☑ Yes
☐ No

How are highway safety improvement projects advanced for implementation?

☐ Competitive application process
☐ selection committee
☑ Other-BC

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
☑ Rank of Priority Consideration

☐ Ranking based on B/C 1
☐ Available funding 2
☐ Incremental B/C
☐ Ranking based on net benefit
☐ Cost Effectiveness
Program: Horizontal Curve

Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

Crashes
- ☑ All crashes
- ☐ Fatal crashes only
- ☑ Fatal and serious injury crashes only
- ☐ Other

Exposure
- ☑ Traffic
- ☑ Volume
- ☐ Population
- ☐ Lane miles
- ☐ Other

Roadway
- ☐ Median width
- ☑ Horizontal curvature
- ☑ Functional classification
- ☑ Roadside features
- ☑ Other-MaineDOT's Highway Corridor Priorities (same for all program areas)

What project identification methodology was used for this program?

- ☑ Crash frequency
- ☐ Expected crash frequency with EB adjustment
- ☐ Equivalent property damage only (EPDO Crash frequency)
- ☐ EPDO crash frequency with EB adjustment
- ☐ Relative severity index
- ☑ Crash rate
- ☑ Critical rate
- ☑ Level of service of safety (LOSS)
Excess expected crash frequency using SPFs
Excess expected crash frequency with the EB adjustment
Excess expected crash frequency using method of moments
Probability of specific crash types
Excess proportions of specific crash types
Other-Highway Safety Manual to be used, Maine calibration factors being developed (same for other program areas)

Are local roads (non-state owned and operated) included or addressed in this program?
☑ Yes
☐ No

If yes, are local road projects identified using the same methodology as state roads?
☑ Yes
☐ No

How are highway safety improvement projects advanced for implementation?
☐ Competitive application process
☐ selection committee
☑ Benefit to Cost ranking, then submitted to MaineDOT Work Plan, selected projects go out to contract bid (same for other program areas)

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
☑ Rank of Priority Consideration
Program: Bicycle Safety

Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
<tr>
<td>crashes only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Lane miles</td>
<td>Roadside features</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
☐ Relative severity index
☒ Crash rate
☒ Critical rate
☐ Level of service of safety (LOSS)
☐ Excess expected crash frequency using SPFs
☐ Excess expected crash frequency with the EB adjustment
☐ Excess expected crash frequency using method of moments
☒ Probability of specific crash types
☒ Excess proportions of specific crash types
☐ Other

Are local roads (non-state owned and operated) included or addressed in this program?

☒ Yes
☐ No

If yes, are local road projects identified using the same methodology as state roads?

☒ Yes
☐ No

How are highway safety improvement projects advanced for implementation?

☐ Competitive application process
☒ selection committee
☐ Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).
Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C

Available funding

Incremental B/C

Ranking based on net benefit

Cost Effectiveness

Program: Rural State Highways

Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

Crashes

- All crashes
- Fatal crashes only
- Fatal and serious injury crashes only
- Other

Exposure

- Traffic
- Volume
- Population
- Other

Roadway

- Median width
- Horizontal curvature
- Functional classification
- Roadside features
- Other

What project identification methodology was used for this program?

- Crash frequency
Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

selection committee

Other-Benefit to Cost prioritization
Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
☒ Rank of Priority Consideration

☒ Ranking based on B/C 1
☒ Available funding 2
☐ Incremental B/C
☐ Ranking based on net benefit
☐ Cost Effectiveness

Program: Skid Hazard
Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

Crashes
☒ All crashes
☐ Fatal crashes only
☒ Fatal and serious injury crashes only
☐ Other

Exposure
☐ Traffic
☒ Volume
☐ Population
☐ Lane miles

Roadway
☐ Median width
☒ Horizontal curvature
☐ Functional classification
☒ Roadside features
What project identification methodology was used for this program?

- [x] Crash frequency
- [] Expected crash frequency with EB adjustment
- [] Equivalent property damage only (EPDO Crash frequency)
- [] EPDO crash frequency with EB adjustment
- [] Relative severity index
- [x] Crash rate
- [x] Critical rate
- [] Level of service of safety (LOSS)
- [] Excess expected crash frequency using SPF
- [] Excess expected crash frequency with the EB adjustment
- [] Excess expected crash frequency using method of moments
- [] Probability of specific crash types
- [] Excess proportions of specific crash types
- [] Other

Are local roads (non-state owned and operated) included or addressed in this program?

- [x] Yes
- [] No

If yes, are local road projects identified using the same methodology as state roads?

- [x] Yes
- [] No
How are highway safety improvement projects advanced for implementation?

☐ Competitive application process
☐ Selection committee
☒ Other-Benefit to Cost prioritization

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
☒ Rank of Priority Consideration

<table>
<thead>
<tr>
<th>Process</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranking based on B/C</td>
<td>1</td>
</tr>
<tr>
<td>Available funding</td>
<td>2</td>
</tr>
<tr>
<td>Incremental B/C</td>
<td></td>
</tr>
<tr>
<td>Ranking based on net benefit</td>
<td></td>
</tr>
<tr>
<td>Cost Effectiveness</td>
<td></td>
</tr>
</tbody>
</table>

Program: Crash Data

Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ All crashes</td>
<td>☐ Traffic</td>
<td>☐ Median width</td>
</tr>
</tbody>
</table>
What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPF
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other-Quality & Completeness of data, reporting and data management features

Are local roads (non-state owned and operated) included or addressed in this program?

- Yes
- No
If yes, are local road projects identified using the same methodology as state roads?

☑ Yes
☐ No

How are highway safety improvement projects advanced for implementation?

☐ Competitive application process
☑ selection committee
☐ Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
☑ Rank of Priority Consideration

☐ Ranking based on B/C
☑ Available funding 2
☐ Incremental B/C
☑ Ranking based on net benefit 1
☐ Cost Effectiveness

Program: Red Light Running Prevention

Date of Program Methodology: 7/1/2013
What data types were used in the program methodology?

Crashes
- □ All crashes
- □ Fatal crashes only
- □ Fatal and serious injury crashes only
- □ Other

Exposure
- □ Traffic
- □ Volume
- □ Population
- □ Lane miles
- □ Other

Roadway
- □ Median width
- □ Horizontal curvature
- □ Functional classification
- □ Roadside features
- □ Other

What project identification methodology was used for this program?

- □ Crash frequency
- □ Expected crash frequency with EB adjustment
- □ Equivalent property damage only (EPDO Crash frequency)
- □ EPDO crash frequency with EB adjustment
- □ Relative severity index
- □ Crash rate
- □ Critical rate
- □ Level of service of safety (LOSS)
- □ Excess expected crash frequency using SPFs
- □ Excess expected crash frequency with the EB adjustment
- □ Excess expected crash frequency using method of moments
- □ Probability of specific crash types
- □ Excess proportions of specific crash types
- □ Other

Are local roads (non-state owned and operated) included or addressed in this program?
Maine

Highway Safety Improvement Program

- Yes
- No

If yes, are local road projects identified using the same methodology as state roads?
- Yes
- No

How are highway safety improvement projects advanced for implementation?
- Competitive application process
- Selection committee
- Other-Benefit to Cost prioritization

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

- Ranking based on B/C 1
- Available funding 2
- Incremental B/C
- Ranking based on net benefit
- Cost Effectiveness
Program: Roadway Departure

Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ All crashes</td>
<td>☑ Traffic</td>
<td>☑ Median width</td>
</tr>
<tr>
<td>☐ Fatal crashes only</td>
<td>☑ Volume</td>
<td>☑ Horizontal curvature</td>
</tr>
<tr>
<td>☑ Fatal and serious injury crashes only</td>
<td>☐ Population</td>
<td>☑ Functional classification</td>
</tr>
<tr>
<td>☐ Other</td>
<td>☑ Lane miles</td>
<td>☑ Roadside features</td>
</tr>
<tr>
<td>☐ Other</td>
<td>☐ Other</td>
<td>☐ Other</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

☑ Crash frequency
☐ Expected crash frequency with EB adjustment
☐ Equivalent property damage only (EPDO Crash frequency)
☐ EPDO crash frequency with EB adjustment
☐ Relative severity index
☑ Crash rate
☑ Critical rate
☐ Level of service of safety (LOSS)
☐ Excess expected crash frequency using SPF
☐ Excess expected crash frequency with the EB adjustment
☐ Excess expected crash frequency using method of moments
☐ Probability of specific crash types
Excess proportions of specific crash types

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other-Benefit to Cost selection & systemic improvements

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C 1
Available funding 2
Incremental B/C
Ranking based on net benefit 3
Program: Sign Replacement And Improvement

Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
<tr>
<td>crashes only</td>
<td>Lane miles</td>
<td>Roadside features</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
Excess expected crash frequency using SPF's
Excess expected crash frequency with the EB adjustment
Excess expected crash frequency using method of moments
Probability of specific crash types
Excess proportions of specific crash types
Other

Are local roads (non-state owned and operated) included or addressed in this program?
- Yes
- No

If yes, are local road projects identified using the same methodology as state roads?
- Yes
- No

How are highway safety improvement projects advanced for implementation?
- Competitive application process
- Selection committee
- Other-Both Benefit to Cost and Systemic improvements

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration
Ranking based on B/C
Available funding 2
Incremental B/C
Ranking based on net benefit 1
Cost Effectiveness

Program: Local Safety
Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

- **Crashes**
 - [x] All crashes
 - [] Fatal crashes only
 - [x] Fatal and serious injury crashes only
 - [] Other

- **Exposure**
 - [x] Traffic
 - [] Volume
 - [] Population
 - [] Lane miles
 - [] Other

- **Roadway**
 - [] Median width
 - [x] Horizontal curvature
 - [] Functional classification
 - [x] Roadside features
 - [] Other

What project identification methodology was used for this program?

- [x] Crash frequency
- [] Expected crash frequency with EB adjustment
- [] Equivalent property damage only (EPDO Crash frequency)
- [] EPDO crash frequency with EB adjustment
relative severity index

- Crash rate

- Critical rate

- Level of service of safety (LOSS)

- Excess expected crash frequency using SPF

- Excess expected crash frequency with the EB adjustment

- Excess expected crash frequency using method of moments

- Probability of specific crash types

- Excess proportions of specific crash types

- Other

Are local roads (non-state owned and operated) included or addressed in this program?

- Yes

- No

If yes, are local road projects identified using the same methodology as state roads?

- Yes

- No

How are highway safety improvement projects advanced for implementation?

- Competitive application process

- Selection committee

- Other—Often work with MaineDOT's Local Road unit

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).
Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C

Available funding 2

Incremental B/C

Ranking based on net benefit 1

Cost Effectiveness

Program: Pedestrian Safety

Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

Crashes

- All crashes
- Fatal crashes only
- Fatal and serious injury crashes only
- Other

Exposure

- Traffic
- Volume
- Population

Roadway

- Median width
- Horizontal curvature
- Functional classification
- Roadside features
- Other
- Other

What project identification methodology was used for this program?

Crash frequency
☐ Expected crash frequency with EB adjustment

☐ Equivalent property damage only (EPDO Crash frequency)

☐ EPDO crash frequency with EB adjustment

☐ Relative severity index

☒ Crash rate

☒ Critical rate

☐ Level of service of safety (LOSS)

☐ Excess expected crash frequency using SPFs

☐ Excess expected crash frequency with the EB adjustment

☐ Excess expected crash frequency using method of moments

☐ Probability of specific crash types

☒ Excess proportions of specific crash types

☐ Other

Are local roads (non-state owned and operated) included or addressed in this program?

☒ Yes

☐ No

If yes, are local road projects identified using the same methodology as state roads?

☒ Yes

☐ No

How are highway safety improvement projects advanced for implementation?

☐ Competitive application process

☒ selection committee

☒ Other-These projects are normally coordinated though MaineDOT's Bike/Ped coordinator
Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
☒ Rank of Priority Consideration

☐ Ranking based on B/C
☒ Available funding 2
☐ Incremental B/C
☒ Ranking based on net benefit 1
☐ Cost Effectiveness

Program: Right Angle Crash

Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

Crashes
☐ All crashes
☐ Fatal crashes only
☒ Fatal and serious injury crashes only
☐ Other

Exposure
☒ Traffic
☐ Volume
☐ Population
☐ Lane miles

Roadway
☐ Median width
☐ Horizontal curvature
☒ Functional classification
☒ Roadside features
What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other

Are local roads (non-state owned and operated) included or addressed in this program?

- Yes
- No

If yes, are local road projects identified using the same methodology as state roads?

- Yes
- No
How are highway safety improvement projects advanced for implementation?

☐ Competitive application process
☐ selection committee
☒ Other-Benefit to Cost Prioritization

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
☒ Rank of Priority Consideration

☒ Ranking based on B/C 1
☒ Available funding 2
☐ Incremental B/C
☐ Ranking based on net benefit
☐ Cost Effectiveness

Program: Left Turn Crash

Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

Crashes Exposure Roadway
☒ All crashes ☒ Traffic ☐ Median width
What project identification methodology was used for this program?

- Crash frequency (X)
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate (X)
- Critical rate (X)
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPF
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types (X)
- Other (X)

Are local roads (non-state owned and operated) included or addressed in this program?

- Yes (X)
- No
If yes, are local road projects identified using the same methodology as state roads?

☑ Yes

☐ No

How are highway safety improvement projects advanced for implementation?

☐ Competitive application process

☐ Selection committee

☑ Other - Benefit to Cost prioritization

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring

☑ Rank of Priority Consideration

☐ Ranking based on B/C 1

☑ Available funding 2

☐ Incremental B/C

☐ Ranking based on net benefit

☐ Cost Effectiveness

Program: Shoulder Improvement

Date of Program Methodology: 7/1/2013
What data types were used in the program methodology?

Crashes
- All crashes
- Fatal crashes only
- Fatal and serious injury crashes only
- Other

Exposure
- Traffic
- Volume
- Population
- Lane miles
- Other

Roadway
- Median width
- Horizontal curvature
- Functional classification
- Roadside features
- Other

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other

Are local roads (non-state owned and operated) included or addressed in this program?
Yes

If yes, are local road projects identified using the same methodology as state roads?

Yes

How are highway safety improvement projects advanced for implementation?

- Competitive application process
- Selection committee
- Other-Benefit to Cost prioritization

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

- Ranking based on B/C 1
- Available funding 2
- Incremental B/C
- Ranking based on net benefit
- Cost Effectiveness
Program: Segments

Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ All crashes</td>
<td>☑ Traffic</td>
<td>☑ Median width</td>
</tr>
<tr>
<td>☐ Fatal crashes only</td>
<td>☑ Volume</td>
<td>☑ Horizontal curvature</td>
</tr>
<tr>
<td>☑ Fatal and serious injury crashes only</td>
<td>☐ Population</td>
<td>☑ Functional classification</td>
</tr>
<tr>
<td>☐ Other</td>
<td>☑ Lane miles</td>
<td>☐ Roadside features</td>
</tr>
<tr>
<td>☐ Other</td>
<td>☐ Other</td>
<td>☐ Other</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

☑ Crash frequency

☐ Expected crash frequency with EB adjustment

☐ Equivalent property damage only (EPDO Crash frequency)

☐ EPDO crash frequency with EB adjustment

☐ Relative severity index

☑ Crash rate

☑ Critical rate

☐ Level of service of safety (LOSS)

☐ Excess expected crash frequency using SPFs

☐ Excess expected crash frequency with the EB adjustment

☐ Excess expected crash frequency using method of moments

☐ Probability of specific crash types
- Excess proportions of specific crash types
- Other

Are local roads (non-state owned and operated) included or addressed in this program?
- Yes
- No

If yes, are local road projects identified using the same methodology as state roads?
- Yes
- No

How are highway safety improvement projects advanced for implementation?
- Competitive application process
- Selection committee
- Other - Benefit to Cost or systemic handling

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

<table>
<thead>
<tr>
<th>Process</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranking based on B/C</td>
<td>1</td>
</tr>
<tr>
<td>Available funding</td>
<td>2</td>
</tr>
<tr>
<td>Incremental B/C</td>
<td></td>
</tr>
<tr>
<td>Ranking based on net benefit</td>
<td></td>
</tr>
</tbody>
</table>
Program: Other-Median Barriers addressed through capital program

Date of Program Methodology: 2/1/2010

What data types were used in the program methodology?

- **Crashes**
 - All crashes
 - Fatal crashes only
 - Fatal and serious injury crashes only
 - Other

- **Exposure**
 - Traffic
 - Volume
 - Population

- **Roadway**
 - Median width
 - Horizontal curvature
 - Functional classification
 - Lane miles
 - Other-Divided limited access Highways - mostly interstate
 - Roadside features
 - Other

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

selection committee

Other-Systemic, phased over several years, medians <50’ wide

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C

Available funding 2
What proportion of highway safety improvement program funds address systemic improvements?

10

Highway safety improvement program funds are used to address which of the following systemic improvements?

- Cable Median Barriers
- Rumble Strips
- Traffic Control Device Rehabilitation
- Pavement/Shoulder Widening
- Install/Improve Signing
- Install/Improve Pavement Marking and/or Delineation
- Upgrade Guard Rails
- Clear Zone Improvements
- Safety Edge
- Install/Improve Lighting
- Add/Upgrade/Modify/Remove Traffic Signal
- Other Other-Possibly Wrong Way Driver alerts on interstate, Rapid Flashing Beacons(pedestrian) - systemic is probably less than 10% currently

What process is used to identify potential countermeasures?
Identify any program methodology practices used to implement the HSIP that have changed since the last reporting period.

☐ Highway Safety Manual
☐ Road Safety audits
☐ Systemic Approach
☒ Other: Other-HSM is planned for future use - currently developing calibration factors.

Describe any other aspects of the Highway Safety Improvement Program methodology on which you would like to elaborate.

Discussions with MaineDOT front office on targeted funding allocation and improved integration of safety into regular Work Plan paving and construction projects.

Progress in Implementing Projects

Funds Programmed
Reporting period for Highway Safety Improvement Program funding.

☒ Calendar Year
☐ State Fiscal Year
Enter the programmed and obligated funding for each applicable funding category.

<table>
<thead>
<tr>
<th>Funding Category</th>
<th>Programmed*</th>
<th>Obligated</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSIP (Section 148)</td>
<td>10087339</td>
<td>18728175</td>
</tr>
<tr>
<td>HRRRP (SAFETEA-LU)</td>
<td>49585</td>
<td>0</td>
</tr>
<tr>
<td>HRRR Special Rule</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Penalty Transfer - Section 154</td>
<td>45260</td>
<td>0</td>
</tr>
<tr>
<td>Penalty Transfer – Section 164</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Incentive Grants - Section 163</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Incentive Grants (Section 406)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Other Federal-aid Funds (i.e. STP, NHPP)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>State and Local Funds</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Totals</td>
<td>10182184</td>
<td>18728175</td>
</tr>
</tbody>
</table>

How much funding is programmed to local (non-state owned and maintained) safety projects?

0 %
How much funding is obligated to local safety projects?
0 %

How much funding is programmed to non-infrastructure safety projects?
5 %

How much funding is obligated to non-infrastructure safety projects?
5 %

How much funding was transferred in to the HSIP from other core program areas during the reporting period?
0 %

How much funding was transferred out of the HSIP to other core program areas during the reporting period?
0 %
Discuss impediments to obligating Highway Safety Improvement Program funds and plans to overcome this in the future.

No impediments seen. Safety Office is working with Exec and Planning to improve safety planning coordination/integration.

Describe any other aspects of the general Highway Safety Improvement Program implementation progress on which you would like to elaborate.

Looking to get more oriented to Lane Departure needs (Maine experiences 70% of fatalities) in this category. Looking to achieve a better funding balance that is reflective of SHSP priorities.
General Listing of Projects
List each highway safety improvement project obligated during the reporting period.

<table>
<thead>
<tr>
<th>Project</th>
<th>Improvement Category</th>
<th>Output</th>
<th>HSIP Cost</th>
<th>Total Cost</th>
<th>Funding Category</th>
<th>Functional Classification</th>
<th>AADT</th>
<th>Speed</th>
<th>Roadway Ownership</th>
<th>Relationship to SHSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>59043</td>
<td>Intersection geometry</td>
<td>0</td>
<td>510000</td>
<td>510000</td>
<td>HSIP</td>
<td>Rural Minor Arterial</td>
<td>1328</td>
<td>35</td>
<td>State Highway Agency</td>
<td>Improving the design and operation of highway intersections</td>
</tr>
<tr>
<td>59062</td>
<td>Intersection geometry</td>
<td>0</td>
<td>70000</td>
<td>70000</td>
<td>HSIP</td>
<td>Rural Minor Collector</td>
<td>6574</td>
<td>40</td>
<td>State Highway Agency</td>
<td>Improving the design and operation of highway intersections</td>
</tr>
<tr>
<td>59070</td>
<td>Intersection geometry</td>
<td>0</td>
<td>35000</td>
<td>35000</td>
<td>HSIP</td>
<td>Rural Minor Arterial</td>
<td>1198</td>
<td>25</td>
<td>State Highway Agency</td>
<td>Improving the design and operation of highway intersections</td>
</tr>
<tr>
<td>Project Code</td>
<td>Description</td>
<td>Quantity</td>
<td>Total Cost</td>
<td>HSIP</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>----------</td>
<td>------------</td>
<td>------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59066</td>
<td>Intersection traffic control</td>
<td>0</td>
<td>195000</td>
<td>195000</td>
<td>HSIP Urban Major Collector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modify traffic signal - modernization/replacement</td>
<td></td>
<td></td>
<td></td>
<td>State Highway Agency Improving the design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and operation of highway intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59067</td>
<td>Intersection geometry</td>
<td>0</td>
<td>139500</td>
<td>139500</td>
<td>HSIP Rural Minor Arterial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intersection geometry - other</td>
<td></td>
<td></td>
<td></td>
<td>State Highway Agency Improving the design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and operation of highway intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59065</td>
<td>Roadway Roadway - other</td>
<td>0</td>
<td>145000</td>
<td>145000</td>
<td>HSIP Urban Principal Arterial - Other Freeways and Expressways</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>State Highway Agency Improving the design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and operation of highway intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59071</td>
<td>Intersection geometry</td>
<td>0</td>
<td>123500</td>
<td>123500</td>
<td>HSIP Rural Minor Arterial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intersection geometry - other</td>
<td></td>
<td></td>
<td></td>
<td>State Highway Agency Improving the design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td>Description</td>
<td>HSN</td>
<td>HSF</td>
<td>HSIP</td>
<td>Category</td>
<td>Design/Operation of Highways</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>----------------------------------</td>
<td>------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59072</td>
<td>Intersection geometry - modify skew angle</td>
<td>0</td>
<td>366000</td>
<td>366000</td>
<td>Rural Minor Arterial</td>
<td>State Highway Agency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Improving the design and operation of highway intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59073</td>
<td>Intersection traffic control - miscellaneous/other/ unspecified</td>
<td>0</td>
<td>735000</td>
<td>735000</td>
<td>Rural Principal Arterial - Other</td>
<td>State Highway Agency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Improving the design and operation of highway intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59075</td>
<td>Intersection geometry - other</td>
<td>0</td>
<td>595000</td>
<td>595000</td>
<td>Rural Minor Arterial</td>
<td>State Highway Agency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Improving the design and operation of highway intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59097</td>
<td>Intersection geometry - geometrics</td>
<td>0</td>
<td>195000</td>
<td>195000</td>
<td>Rural Principal Arterial</td>
<td>State Highway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Improving the design and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HSIP: Highway Safety Improvement Program
<table>
<thead>
<tr>
<th>Project ID</th>
<th>Description</th>
<th>Budget</th>
<th>Total</th>
<th>Category</th>
<th>Agency</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>59098</td>
<td>Intersection geometry</td>
<td>0</td>
<td>575000</td>
<td>Rural</td>
<td>State Highway Agency</td>
<td>Improving the design and operation of highway intersections</td>
</tr>
<tr>
<td></td>
<td>Intersection geometrics -</td>
<td></td>
<td></td>
<td>Minor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>modify skew angle</td>
<td></td>
<td></td>
<td>Arterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58567</td>
<td>Intersection traffic control</td>
<td>0</td>
<td>560000</td>
<td>Rural</td>
<td>State Highway Agency</td>
<td>Improving the design and operation of highway intersections</td>
</tr>
<tr>
<td></td>
<td>Modify traffic signal -</td>
<td></td>
<td></td>
<td>Collector</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>miscellaneous/other/unspecified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59100</td>
<td>Intersection geometry</td>
<td>0</td>
<td>232500</td>
<td>Rural</td>
<td>State Highway Agency</td>
<td>Improving the design and operation of highway intersections</td>
</tr>
<tr>
<td></td>
<td>Intersection geometry -</td>
<td></td>
<td></td>
<td>Principal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>other</td>
<td></td>
<td></td>
<td>Arterial - Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59101</td>
<td>Intersection geometry</td>
<td>0</td>
<td>775000</td>
<td>Urban</td>
<td>State Highway Agency</td>
<td>Improving the design</td>
</tr>
<tr>
<td></td>
<td>Intersection geometry -</td>
<td></td>
<td></td>
<td>Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Number</td>
<td>Description</td>
<td>Cost</td>
<td>Revenue</td>
<td>Funding Program</td>
<td>Agency</td>
<td>Improving the design and operation of highway intersections</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>------</td>
<td>---------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>59096</td>
<td>Intersection traffic control</td>
<td>0</td>
<td>195000</td>
<td>HSIP</td>
<td>Rural Minor Arterial</td>
<td>State Highway Agency</td>
</tr>
<tr>
<td>29202</td>
<td>Intersection geometry</td>
<td>0</td>
<td>335000</td>
<td>HSIP</td>
<td>Rural Minor Arterial</td>
<td>State Highway Agency</td>
</tr>
<tr>
<td>59092</td>
<td>Intersection geometry - other</td>
<td>0</td>
<td>240000</td>
<td>HSIP</td>
<td>Rural Minor Arterial</td>
<td>State Highway Agency</td>
</tr>
</tbody>
</table>
Progress in Achieving Safety Performance Targets

Overview of General Safety Trends
Present data showing the general highway safety trends in the state for the past five years.

<table>
<thead>
<tr>
<th>Performance Measures*</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of fatalities</td>
<td>178</td>
<td>171</td>
<td>169</td>
<td>159</td>
<td>155</td>
</tr>
<tr>
<td>Number of serious injuries</td>
<td>1009</td>
<td>931</td>
<td>875</td>
<td>852</td>
<td>852</td>
</tr>
<tr>
<td>Fatality rate (per HMVMT)</td>
<td>1.2</td>
<td>1.15</td>
<td>1.15</td>
<td>1.09</td>
<td>1.07</td>
</tr>
<tr>
<td>Serious injury rate (per HMVMT)</td>
<td>6.79</td>
<td>6.29</td>
<td>5.95</td>
<td>5.84</td>
<td>5.89</td>
</tr>
</tbody>
</table>

*Performance measure data is presented using a five-year rolling average.
Number of Fatalities and Serious injuries for the Last Five Years

![Bar chart showing the number of fatalities and serious injuries from 2008 to 2012.](image-url)

- **Fatalities:** 178, 171, 169, 159, 155
- **Serious Injuries:** Bar chart showing corresponding numbers for each year.
Rate of Fatalities and Serious injuries for the Last Five Years

![Graph showing the rate of fatalities and serious injuries over the last five years. The graph includes bars for serious injuries rate (per HMVMT) and a line for fatality rate (per HMVMT). The years 2006 to 2012 are shown, with the fatality rate decreasing from 1.2 to 1.07.](image-url)
To the maximum extent possible, present performance measure* data by functional classification and ownership.

Year - 2012

<table>
<thead>
<tr>
<th>Function Classification</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - INTERSTATE</td>
<td>6</td>
<td>49</td>
<td>0.29</td>
<td>2.26</td>
</tr>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - OTHER</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FREEWAYS AND EXPRESSWAYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - OTHER</td>
<td>23</td>
<td>103</td>
<td>1.33</td>
<td>5.87</td>
</tr>
<tr>
<td>RURAL MINOR ARTERIAL</td>
<td>22</td>
<td>104</td>
<td>1.33</td>
<td>6.24</td>
</tr>
<tr>
<td>RURAL MINOR COLLECTOR</td>
<td>13</td>
<td>57</td>
<td>1.73</td>
<td>7.42</td>
</tr>
<tr>
<td>RURAL MAJOR COLLECTOR</td>
<td>30.8</td>
<td>140</td>
<td>1.47</td>
<td>6.68</td>
</tr>
<tr>
<td>RURAL LOCAL ROAD OR STREET</td>
<td>25.8</td>
<td>124.2</td>
<td>1.81</td>
<td>8.71</td>
</tr>
<tr>
<td>URBAN PRINCIPAL</td>
<td>2</td>
<td>18</td>
<td>0.19</td>
<td>2.13</td>
</tr>
<tr>
<td>Type</td>
<td>Number</td>
<td>Total Traffic</td>
<td>Crash Rate</td>
<td>Cost Effective Rate</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------</td>
<td>---------------</td>
<td>------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>ARTIFICIAL - INTERSTATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URBAN PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXPRESSWAYS</td>
<td>1</td>
<td>7</td>
<td>0.39</td>
<td>4.34</td>
</tr>
<tr>
<td>URBAN PRINCIPAL ARTERIAL - OTHER</td>
<td>6</td>
<td>65</td>
<td>0.82</td>
<td>9.18</td>
</tr>
<tr>
<td>URBAN MINOR ARTERIAL</td>
<td>7</td>
<td>70</td>
<td>0.74</td>
<td>7.76</td>
</tr>
<tr>
<td>URBAN MINOR COLLECTOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>URBAN MAJOR COLLECTOR</td>
<td>5</td>
<td>48.6</td>
<td>0.56</td>
<td>5.42</td>
</tr>
<tr>
<td>URBAN LOCAL ROAD OR STREET</td>
<td>3.4</td>
<td>28.4</td>
<td>0.8</td>
<td>6.66</td>
</tr>
<tr>
<td>OTHER</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Fatalities by Roadway Functional Classification

Roadway Functional Classification

- Major Arterial (U)
- Minor Arterial - Other (U)
- Non-Interstate Freeway and Expressway (U)
- Principal Arterial - Interstate (U)
- Principal Arterial (R)
- Principal Collector (R)
- Local Road or Street (U)
- Minor Collector (R)
- Other (U)
Serious Injuries by Roadway Functional Classification

![Bar chart showing the number of serious injuries by roadway functional classification for 2008, 2009, 2010, 2011, and 2012. The x-axis represents the different roadway functional classifications, and the y-axis represents the number of serious injuries.](image-url)
Serious Injury Rate by Roadway Functional Classification

Roadway Functional Classification

- 2008
- 2009
- 2010
- 2011
- 2012
Year - 2012

<table>
<thead>
<tr>
<th>Roadway Ownership</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE HIGHWAY AGENCY</td>
<td>81.2</td>
<td>475.6</td>
<td>1.01</td>
<td>5.89</td>
</tr>
<tr>
<td>COUNTY HIGHWAY AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOWN OR TOWNSHIP HIGHWAY AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CITY OF MUNICIPAL HIGHWAY AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STATE PARK, FOREST, OR RESERVATION AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LOCAL PARK, FOREST OR RESERVATION AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER STATE AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER LOCAL AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRIVATE (OTHER THAN RAILROAD)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>RAILROAD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STATE TOLL AUTHORITY</td>
<td>2.4</td>
<td>18.4</td>
<td>0.19</td>
<td>1.47</td>
</tr>
<tr>
<td>LOCAL TOLL AUTHORITY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER PUBLIC INSTRUMENTALITY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(E.G. AIRPORT, SCHOOL, UNIVERSITY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDIAN TRIBE NATION</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STATE AID</td>
<td>31.8</td>
<td>166</td>
<td>1.22</td>
<td>6.34</td>
</tr>
<tr>
<td>TOWNWAY</td>
<td>29</td>
<td>150.6</td>
<td>1.62</td>
<td>8.42</td>
</tr>
<tr>
<td>TOWNWAY</td>
<td>29</td>
<td>150.6</td>
<td>1.62</td>
<td>8.42</td>
</tr>
</tbody>
</table>
Number of Fatalities by Roadway Ownership

Roadway Functional Classification

- State
- County
- Town
- City
- State Park
- Other State
- Other Local
- Railroad
- State Toll
- Local Toll
- Other Public

of Fatalities

- 2008
- 2009
- 2010
- 2011
- 2012
Number of Serious Injuries by Roadway Ownership

Roadway Functional Classification

- State
- County
- Town
- City
- State Park
- Other State
- Private
- Railroad
- State Toll
- Local Toll
- Other Public
- Tribe
- Other

of Serious Injuries

- 2008
- 2009
- 2010
- 2011
- 2012
Describe any other aspects of the general highway safety trends on which you would like to elaborate.

On a long term trend analysis, Maine Crash and Fatality rates have been improving. The state's #1 fatality exposure is lane departure which also relates to driver behaviors of alcohol, speed and driver distraction.

Application of Special Rules

Present the rate of traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65.

<table>
<thead>
<tr>
<th>Older Driver Performance Measures</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatality rate (per capita)</td>
<td>0</td>
<td>0.25</td>
<td>0</td>
<td>0.23</td>
<td>0</td>
</tr>
<tr>
<td>Serious injury rate (per capita)</td>
<td>0</td>
<td>1.06</td>
<td>0</td>
<td>1.05</td>
<td>0</td>
</tr>
<tr>
<td>Fatality and serious injury rate (per capita)</td>
<td>0</td>
<td>1.31</td>
<td>0</td>
<td>1.27</td>
<td>0</td>
</tr>
</tbody>
</table>

*Performance measure data is presented using a five-year rolling average.

Per captia is based on provided mature population from FHWA. Fatalities or Serious are those that occur to any driver, occupant, pedestrian or bicyclist when a mature driver is involved in a crash event.
Does the older driver special rule apply to your state?

No
Assessment of the Effectiveness of the Improvements (Program Evaluation)

What indicators of success can you use to demonstrate effectiveness and success in the Highway Safety Improvement Program?

[] None
[] Benefit/cost
[] Policy change
[] Other:
What significant programmatic changes have occurred since the last reporting period?

- [x] Shift Focus to Fatalities and Serious Injuries
- [] Include Local Roads in Highway Safety Improvement Program
- [] Organizational Changes
- [] None
- [] Other:
Briefly describe significant program changes that have occurred since the last reporting period.

None

Median cable barrier installations on interstate highways is nearly complete.

Looking to step up centerline rumble strip installations on selected roads. 3 to 4 locations scheduled during the next year.
SHSP Emphasis Areas
For each SHSP emphasis area that relates to the HSIP, present trends in emphasis area performance measures.

Year - 2012

<table>
<thead>
<tr>
<th>HSIP-related SHSP Emphasis Areas</th>
<th>Target Crash Type</th>
<th>Number of Fatalities</th>
<th>Number of Serious Injuries</th>
<th>Fatality Rate (per HMVMT)</th>
<th>Serious Injury Rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustaining proficiency in older drivers</td>
<td>All</td>
<td>35</td>
<td>163</td>
<td>18.6</td>
<td>87.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Curbing aggressive driving</td>
<td>Speed-related</td>
<td>63</td>
<td>238</td>
<td>0.44</td>
<td>1.65</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reducing impaired driving</td>
<td>All</td>
<td>40</td>
<td>145</td>
<td>0.28</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Increasing seat belt use and improving airbag effectiveness</td>
<td>All</td>
<td>53</td>
<td>0</td>
<td>0.37</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Improving motorcycle safety and increasing motorcycle awareness</td>
<td>All</td>
<td>20</td>
<td>131</td>
<td>0.14</td>
<td>0.91</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Making truck travel safer</td>
<td>All</td>
<td>9</td>
<td>19</td>
<td>0.06</td>
<td>0.13</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Keeping vehicles in the roadway</td>
<td>All</td>
<td>107</td>
<td>428</td>
<td>0.74</td>
<td>2.97</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Improving the design and operation of</td>
<td>All</td>
<td>19</td>
<td>209</td>
<td>0.13</td>
<td>1.44</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
2013 Maine Highway Safety Improvement Program

Number of Fatalities by SHSP Emphasis Area

Year 2008 to Year 2012

SHSP Emphasis Area
Number of Serious Injuries by SHSP Emphasis Area

Year 2008 to Year 2012

SHSP Emphasis Area

of Serious Injuries

- Older drivers
- Aggressive driving
- Impaired driving
- Seat Belt
- Motorcycle
- Truck
- Run off road
- Intersections

2008
2009
2010
2011
2012

2013 Maine Highway Safety Improvement Program
Fatality Rate by SHSP Emphasis Area

Year 2008 to Year 2012

SHSP Emphasis Area

- Older drivers
- Aggressive driving
- Impaired driving
- Seat Belt
- Motorcycle
- Truck
- Run off road
- Intersections

Rate of Fatalities

2008 | 2009 | 2010 | 2011 | 2012
Serious Injury Rate by SHSP Emphasis Area

Year 2008 to Year 2012

Rate of Serious Injury

SHSP Emphasis Area

2008 2009 2010 2011 2012
Groups of similar project types
Present the overall effectiveness of groups of similar types of projects.

Year - 2012

<table>
<thead>
<tr>
<th>HSIP Sub-program Types</th>
<th>Target Crash Type</th>
<th>Number of Fatalities</th>
<th>Number of Serious Injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core areas identified above are already reported on in Question 32.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Fatalities by Target Crash Type for Groups of Similar Projects

Year 2008 to Year 2012

Target Crash Type

of Fatalities

2008
2009
2010
2011
2012
#Serious Injuries by Target Crash Type for Groups of Similar Projects

Year 2008 to Year 2012

Target Crash Type

of Serious Injuries

- 2008
- 2009
- 2010
- 2011
- 2012
Fatality Rate by Target Crash Type for Groups of Similar Projects

Year 2008 to Year 2012

Rate of Fatalities

Target Crash Type

2008 2009 2010 2011 2012
Serious Injury Rate by Target Crash Type for Groups of Similar Projects

Year 2008 to Year 2012

Target Crash Type

Rate of Serious Injuries
Systemic Treatments
Present the overall effectiveness of systemic treatments.

Year - 2012

<table>
<thead>
<tr>
<th>Systemic improvement</th>
<th>Target Crash Type</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rumble Strips</td>
<td>Head On & Went Off Road (select corridors)</td>
<td>1</td>
<td>3</td>
<td>1.19</td>
<td>4.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Fatalities by Target Crash Type for Systemic Safety Improvements

Year 2008 to Year 2012

Target Crash Type

<table>
<thead>
<tr>
<th>Crash Type</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed object</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sideswipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head-on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left-turn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Night-time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-intersection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear-end</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right-turn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run-off-road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed-related</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck-related</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle/animal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle/bicycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet-road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Serious Injuries by Target Crash Type for Systemic Safety Improvements

Year 2008 to Year 2012

Target Crash Type
Fatality Rate by Target Crash Type for Systemic Safety Improvements

Year 2008 to Year 2012

Target Crash Type
Describe any other aspects of the overall Highway Safety Improvement Program effectiveness on which you would like to elaborate.

Maine has provided median cable barrier installations on almost all narrow (<50-60' wide) interstate medians. We anticipate automating that inventory to be enable easier monitoring of performance in the future. Hopefully that will be reported on next year.

Centerline Rumble strips are planned for three or four more selected corridors in the next 12 months. Performance is summarized in prior question for all affected corridors, and routes where installed are identified in the next question.
Provide project evaluation data for completed projects (optional).

<table>
<thead>
<tr>
<th>Location</th>
<th>Functional Class</th>
<th>Improvement Category</th>
<th>Improvement Type</th>
<th>Bef-Fatal</th>
<th>Bef-Serious Injury</th>
<th>Bef-Other Injury</th>
<th>Bef-PDO</th>
<th>Bef-Total</th>
<th>Aft-Fatal</th>
<th>Aft-Serious Injury</th>
<th>Aft-Other Injury</th>
<th>Aft-PDO</th>
<th>Aft-Total</th>
<th>Evaluation Results (Benefit/Cost Ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Various - Route 1, Woolwich; Route 4, Turner; Route 1A, Dedham; Route 9 (several towns); Route 3, Trenton</td>
<td>Urban Minor Arterial</td>
<td>Miscellaneous</td>
<td>Rumble Strips</td>
<td></td>
</tr>
</tbody>
</table>
Optional Attachments

<table>
<thead>
<tr>
<th>Sections</th>
<th>Files Attached</th>
</tr>
</thead>
</table>
5 year rolling average means the average of five individual, consecutive annual points of data (e.g. annual fatality rate).

Emphasis area means a highway safety priority in a State’s SHSP, identified through a data-driven, collaborative process.

Highway safety improvement project means strategies, activities and projects on a public road that are consistent with a State strategic highway safety plan and corrects or improves a hazardous road location or feature or addresses a highway safety problem.

HMVMT means hundred million vehicle miles traveled.

Non-infrastructure projects are projects that do not result in construction. Examples of non-infrastructure projects include road safety audits, transportation safety planning activities, improvements in the collection and analysis of data, education and outreach, and enforcement activities.

Older driver special rule applies if traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65 in a State increases during the most recent 2-year period for which data are available, as defined in the Older Driver and Pedestrian Special Rule Interim Guidance dated February 13, 2013.

Performance measure means indicators that enable decision-makers and other stakeholders to monitor changes in system condition and performance against established visions, goals, and objectives.

Programmed funds mean those funds that have been programmed in the Statewide Transportation Improvement Program (STIP) to be expended on highway safety improvement projects.

Roadway Functional Classification means the process by which streets and highways are grouped into classes, or systems, according to the character of service they are intended to provide.

Strategic Highway Safety Plan (SHSP) means a comprehensive, multi-disciplinary plan, based on safety data developed by a State Department of Transportation in accordance with 23 U.S.C. 148.

Systemic safety improvement means an improvement that is widely implemented based on high risk roadway features that are correlated with specific severe crash types.

Transfer means, in accordance with provisions of 23 U.S.C. 126, a State may transfer from an apportionment under section 104(b) not to exceed 50 percent of the amount apportioned for the fiscal year to any other apportionment of the State under that section.