Disclaimer

Protection of Data from Discovery & Admission into Evidence

23 U.S.C. 148(h)(4) states “Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for any purpose relating to this section [HSIP], shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location identified or addressed in the reports, surveys, schedules, lists, or other data.”

23 U.S.C. 409 states “Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential accident sites, hazardous roadway conditions, or railway-highway crossings, pursuant to sections 130, 144, and 148 of this title or for the purpose of developing any highway safety construction improvement project which may be implemented utilizing Federal-aid highway funds shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data.”
Table of Contents

Disclaimer.. ii
Executive Summary... 1
Introduction .. 5
Program Structure .. 5
 Program Administration ... 5
 Program Methodology .. 7
Progress in Implementing Projects .. 29
 Funds Programmed.. 29
 General Listing of Projects ... 32
 Overview of General Safety Trends .. Error! Bookmark not defined.
 Application of Special Rules .. Error! Bookmark not defined.
Assessment of the Effectiveness of the Improvements (Program Evaluation) ... 55
 SHSP Emphasis Areas ... Error! Bookmark not defined.
 Groups of similar project types.. Error! Bookmark not defined.
 Systemic Treatments ... Error! Bookmark not defined.
Glossary... 81
Executive Summary

The Moving Ahead for Progress in the 21st Century Act (MAP-21) went into effect on October 1, 2012. It continued the Highway Safety Improvement Program (HSIP) as a core Federal-aid program. The goal of the program is to achieve a significant reduction in traffic fatalities and serious injuries on all public roads, including non-State-owned public roads. HSIP originated in 2005 as a component of the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU), which expired in 2009. Congress renewed the Federal transportation funding formula established by SAFETEA-LU 10 times after its expiration date, until replacing the bill with MAP-21 last year.

MAP-21 also continues provisions of SAFETEA-LU that the development of a Strategic Highway Safety Plan (SHSP), a High Risk Rural Roads Program (HRRRP) and the Railway-Highway Crossings Program (RHXP). In order to obligate HSIP funds, states are required to (1) develop and implement a SHSP; (2) produce a program of projects and strategies; (3) evaluate the plan on a regular basis, and (4) submit an annual transparency report.

HSIP requires a data-driven, strategic approach to improving highway safety on all public roads that focuses on performance.

According to crash record data for the 2012 calendar year that has been collected by the NJDOT's Bureau of Transportation Data and Safety, New Jersey strategic approach continues to make progress in achieving the safety aims set by SAFETEA-LU and, now, MAP-21.

Over a five-year period, 2008 through 2012, there has been a steady drop in the number of crashes. In 2008, there were 303,013 crashes; in 2012, 284,062 – a reduction of 18,951. There were 9,533 fewer crashes in 2012 than the 2011 total.

There has also been a steady decline in the number of crash-related injuries during the five-year period – from a high of 68,502 in 2008 to a low of 63,333 in 2012.

The number of crashes resulting in fatalities has fluctuated. The lowest number of annual fatalities during this five-year period was 542, in 2012 and 2010. Fatalities dropped from 2011 to 2012 by 49.

The progress made by the NJDOT is a result of a broad spectrum of safety programs designed to reduce the frequency and severity of crashes and promote the 4Es of highway safety – Engineering (design changes that make roads safer); Education (encouraging better driving habits); Enforcement (stopping unsafe and illegal driving), and Emergency Medical Services (timely response to and from incidents). These initiatives include the:

- Intersection Safety Improvement Program;
- Right Angle Crash Frequency Reduction / Signalization Program;
- Left Turn Crash Reduction Program;
- Roadway Departure / Fixed Object Safety Treatment Program;
- Utility Pole Crash Mitigation Program;
2013 New Jersey Highway Safety Improvement Program

- Safe Corridors Program;
- Cross Median Crash Prevention Program;
- Pedestrian Crash Reduction Program;
- Pedestrian Corridor Program;
- Rail Highway Grade Crossing Program (State);
- Rail Highway Grade Crossing Program (Federal);
- High Risk Rural Routes Program;
- Same Direction Crash Reduction Program, and the
- Local Federal Aid Safety Program.

The ultimate goal of the State of New Jersey is to ensure the safe passage of all roadway users. Moving forward, the NJDOT intends to employ a data-driven systemic safety improvement approach that will concentrate our resources and focus our energies on high risk roadway features that correlate with specific severe crash types.

An analysis conducted for the State’s new Intersection Safety Implementation Plan, now being finalized, determined that during the five-year period from 2007 to 2011, 1,504,232 crashes were reported including 398,705 crashes (or 27 percent) at intersections. Out of the total 14,271 intersections reviewed, 593, or approximately the top four percent, had three or more severe crashes over the five-year analysis period and comprised 12 percent of the severe intersection crashes. The most problematic intersection type was determined to be urban signalized intersections.

The NJDOT’s vision is shared by safety stakeholders, involved State agencies, each of the three regional Metropolitan Planning Organizations (MPOs) covering New Jersey, and localities through their respective safety advisory committees.

New Jersey is preparing to revise its Strategic Highway Safety Plan (SHSP), which has not been updated since 2007. The updated SHSP will renew and strengthen the State’s vision to protect the safety of roadway users and strive for zero fatalities. The resulting emphasis areas will guide future modifications and refocus New Jersey’s HSIP program and sub-programs. In addition, the update to the SHSP will contribute a safety perspective and element to the Regional Transportation Plan (RTP) developed by each of the MPOs.

NJTPA

The North Jersey Transportation Planning Authority (NJTPA) is the MPO that serves the 13-county northern New Jersey region.

To strengthen its traffic safety efforts, the NJTPA is working to develop targeted network screening methodologies aligned with the Highway Safety Manual (HSM) for use in future years. The NJTPA also encourages the use of road safety audits (RSAs) and considers them a factor in weighing funding applications.

In an effort to reduce pedestrian and bicycle fatalities in the City of Newark (designated as a pedestrian focus City), the NJTPA and Newark are preparing to develop a pedestrian and bicycle safety action plan. Successful approaches to improving safety often involve a combination of engineering, enforcement and education, as well as strategies to improve emergency response time. This study will result in the creation
of an action plan to improve safety and reduce pedestrian and bicycle fatalities and injuries throughout the City.

DVRPC

The Delaware Valley Regional Planning Commission (DVRPC) is the MPO that serves four counties in central New Jersey.

The DVRPC will consider targeted network screening methodologies for its region once the NJTPA’s methodologies are finalized. As mentioned earlier, the NJTPA is working to develop targeted network screening methodologies aligned with the Highway Safety Manual (HSM) for use in future years.

The DVRPC has incorporated an expanded focus on the outcomes of their RSAs and intersection safety projects, including use of HSM methodologies where possible, to move safety projects ideas into problems statements and eventually to implementation.

A collaboration is underway between the DVRPC and the South Jersey Transportation Organization to use HSM methodologies to analyze the benefit/cost implications of a safety project in Burlington County that is slated for a funding obligation during the 2013 federal fiscal year. There have been 15 accidents at the project site (intersection of Route 528 and Old York Road in Chesterfield) between 2007 and 2011. In February 2012, a crash involving a truck and a school bus resulted in the death of an 11-year-old girl and injuries, some critical, to 15 other students.

The fourth edition of the DVRPC’s Transportation Safety Action Plan, scheduled to be published in 2014, will be aligned with the SHSP. The Transportation Safety Action Plan analyzes crash data to identify key emphasis areas for the region, following the American Association of State Highway and Transportation Officials (AASHTO) guidelines.

The DVRPC, with the assistance of the South Jersey Transportation Planning Organization, has also employed HSM methodologies to analyze the benefit/cost implications of a safety project in Burlington County that is slated for a funding obligation during the 2013 federal fiscal year. Also in support of pedestrian safety, the DVRPC has provided pedestrian crash network screenings and interactive web-maps to the New Jersey Division of Highway Traffic Safety (NJDHTS) to advance the pedestrian decoy training program in Burlington and Camden counties, and a targeted pedestrian safety enforcement campaign on US Rt. 130.

Building upon the success of this initial effort, the DVRPC plans to continue this practice to assist member counties in both developing data-driven safety projects, and in assisting them in moving those projects to implementation. These technical efforts are one of the many safety initiatives in the DVRPC region, including the continuing RSA program, annual crash data bulletins (regional), new county-specific bulletins, and a local roads safety newsletter.

The DVRPC is also expanding its data and analysis resources by providing more interactive crash data mapping products, a new crash Data-Finder web-resource, and an update of the Congestion Management Process in 2014, which will include an enhanced safety analysis component.

SJTPO

The South Jersey Transportation Planning Organization (SJTPO) is the MPO serving four counties in southern New Jersey.
In FY11, the SJTPO began using the methodologies introduced within the HSM to assist justifying potential safety projects in the region, utilizing benefit-cost analysis as an evaluation tool. This effort continues with the hope of utilizing more HSM methodologies in additional stages of the project selection process. The crash history and important features of the intersection or roadway are carefully evaluated to determine the projected change in crash frequency expected with the employment of selected safety countermeasures.

The SJTPO has taken steps to incorporate the HSM into its RSA reports. This effort is expected to expand in the upcoming years.

In the SJTPO region, a Safety Action Plan is under development that analyzes crash data and will additionally utilize the methodologies within the AASHTO Highway Safety Manual as it progresses. The action plan, along with the national and state emphasis areas, help focus SJTPO strategies for improving safety performance, whether through driver education and outreach or physical improvements.
Introduction

The Highway Safety Improvement Program (HSIP) is a core Federal-aid program with the purpose of achieving a significant reduction in fatalities and serious injuries on all public roads. As per 23 U.S.C. 148(h) and 23 CFR 924.15, States are required to report annually on the progress being made to advance HSIP implementation and evaluation efforts. The format of this report is consistent with the HSIP MAP-21 Reporting Guidance dated February 13, 2013 and consists of four sections: program structure, progress in implementing HSIP projects, progress in achieving safety performance targets, and assessment of the effectiveness of the improvements.

Program Structure

Program Administration

How are Highway Safety Improvement Program funds allocated in a State?

- Central
- District
- Other

Describe how local roads are addressed as part of Highway Safety Improvement Program.

Local Roadways are eligible for HSIP improvements through application with the respective MPO. All Local Roadways in NJ are covered by one of three MPOs – NJTPA, SJTPO, or DVRPC.

Identify which internal partners are involved with Highway Safety Improvement Program planning.

- Design
- Planning
Briefly describe coordination with internal partners.

NJDOT's Bureau of Transportation Data and Safety, under the Assistant Commissioner of Capital Investment Planning and Grant Administration is responsible for crash data compilation, analysis and program development. This office has also been responsible for the design of improvements on the state highway system. We are working to move to a new delivery process whereby the Bureau of Transportation Data and Safety will focus on the planning and program development, but move final design and implementation of improvements to the Division of Project Management under the Assistant Commissioner of Capital Program Management. This will bring safety improvements in line with the delivery of other projects.

NJDOT's Operation and Maintenance Division has been responsible up till now with the construction of improvements. While some work will continue, we expect that a larger portion will be carried out under the purview of the Capital Program Management Division.

NJDOT's Division of Local Aid, under the Assistant Commissioner of Capital Investment, Planning and Grant Administration is responsible for coordinating with the MPOs in the selection, authorization and oversight of projects implemented on the local road network.

Identify which external partners are involved with Highway Safety Improvement Program planning.

- Metropolitan Planning Organizations
- Governors Highway Safety Office
- Local Government Association
- Other:
Identify any program administration practices used to implement the HSIP that have changed since the last reporting period.

☐ Multi-disciplinary HSIP steering committee
☒ Other: Other-Working on new program delivery process. We are beginning to implement.

Describe any other aspects of Highway Safety Improvement Program Administration on which you would like to elaborate.

Program Methodology
Select the programs that are administered under the HSIP.

☐ Median Barrier ☒ Intersection ☒ Safe Corridor
☐ Horizontal Curve ☐ Bicycle Safety ☐ Rural State Highways
☐ Skid Hazard ☐ Crash Data ☐ Red Light Running Prevention
☒ Roadway Departure ☐ Low-Cost Spot Improvements ☒ Sign Replacement And Improvement
☒ Local Safety ☒ Pedestrian Safety ☒ Right Angle Crash
☒ Left Turn Crash ☐ Shoulder Improvement ☒ Segments
☒ Other: Other-High Risk Rural Roads
Program: Intersection

Date of Program Methodology: 9/16/2009

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
<tr>
<td>crashes only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Lane miles</td>
<td>Roadside features</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
Excess expected crash frequency using SPF

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

selection committee

Other

Other—Using ranking to identify priorities, NJDOT selects projects.

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C

Available funding
☐ Incremental B/C
☐ Ranking based on net benefit
☒ Cost Effectiveness
☒ Quick Fix - i.e., minimal environmental, ROW and other constraints.

Program: Safe Corridor
Date of Program Methodology: 9/18/2005

What data types were used in the program methodology?

Crashes
☒ All crashes
☒ Fatal crashes only
☐ Fatal and serious injury crashes only
☐ Other

Exposure
☐ Traffic
☐ Volume
☐ Population
☐ Lane miles
☐ Other

Roadway
☐ Median width
☐ Horizontal curvature
☐ Functional classification
☐ Roadside features
☐ Other

What project identification methodology was used for this program?

☒ Crash frequency
☐ Expected crash frequency with EB adjustment
☐ Equivalent property damage only (EPDO Crash frequency)
☐ EPDO crash frequency with EB adjustment
Relative severity index

- Crash rate

- Critical rate

- Level of service of safety (LOSS)

- Excess expected crash frequency using SPFs

- Excess expected crash frequency with the EB adjustment

- Excess expected crash frequency using method of moments

- Probability of specific crash types

- Excess proportions of specific crash types

- Other

Are local roads (non-state owned and operated) included or addressed in this program?

- Yes

- No

How are highway safety improvement projects advanced for implementation?

- Competitive application process

- Selection committee

- Other-Road Safety audits were performed for each Safe Corridor to identify safety improvements

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring

- Rank of Priority Consideration
Ranking based on B/C
Available funding
Incremental B/C
Ranking based on net benefit
Cost Effectiveness 2
Quick Fix - minimal environmental, ROW and other constraints.

Program: Roadway Departure
Date of Program Methodology: 9/16/2008

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>only</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
<tr>
<td>Fatal and serious injury crashes only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Lane miles</td>
<td>Roadside features</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
<td>Other-Utility poles</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?
Crash frequency
Expected crash frequency with EB adjustment
Equivalent property damage only (EPDO Crash frequency)
EPDO crash frequency with EB adjustment
Relative severity index
Crash rate
Critical rate
Level of service of safety (LOSS)
Excess expected crash frequency using SPFs
Excess expected crash frequency with the EB adjustment
Excess expected crash frequency using method of moments
Probability of specific crash types
Excess proportions of specific crash types
Other

Are local roads (non-state owned and operated) included or addressed in this program?
☒ Yes
☐ No

If yes, are local road projects identified using the same methodology as state roads?
☒ Yes
☐ No

How are highway safety improvement projects advanced for implementation?
☐ Competitive application process
☐ selection committee
☐ Other
☒ Other-Locations identified through data driven list and priority locations coordinated with utility
Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- □ Relative Weight in Scoring
- ✔ Rank of Priority Consideration

- □ Ranking based on B/C
- □ Available funding
- □ Incremental B/C
- □ Ranking based on net benefit 1
- □ Cost Effectiveness

Program: Local Safety

Date of Program Methodology: 9/16/2005

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ All crashes</td>
<td>□ Traffic</td>
<td>□ Median width</td>
</tr>
<tr>
<td>□ Fatal crashes only</td>
<td>□ Volume</td>
<td>□ Horizontal curvature</td>
</tr>
<tr>
<td>□ Fatal and serious injury</td>
<td>□ Population</td>
<td>□ Functional classification</td>
</tr>
</tbody>
</table>
What project identification methodology was used for this program?

- [x] Crash frequency
- [] Expected crash frequency with EB adjustment
- [x] Equivalent property damage only (EPDO Crash frequency)
- [] EPDO crash frequency with EB adjustment
- [] Relative severity index
- [] Crash rate
- [] Critical rate
- [] Level of service of safety (LOSS)
- [] Excess expected crash frequency using SPFs
- [] Excess expected crash frequency with the EB adjustment
- [] Excess expected crash frequency using method of moments
- [] Probability of specific crash types
- [] Excess proportions of specific crash types
- [] Other

Are local roads (non-state owned and operated) included or addressed in this program?

- [x] Yes
- [] No

If yes, are local road projects identified using the same methodology as state roads?

- [x] Yes
- [] No
How are highway safety improvement projects advanced for implementation?

- Competitive application process
- Selection committee
- Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

- Ranking based on B/C
- Available funding 1
- Incremental B/C
- Ranking based on net benefit 1
- Cost Effectiveness
- Problem to address established safety problem as shown through crash history, risk-based (systemic) analysis and/or local roadway knowledge 1

Program: Pedestrian Safety
Date of Program Methodology: 9/16/2011
What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ All crashes</td>
<td>☐ Traffic</td>
<td>☐ Median width</td>
</tr>
<tr>
<td>☑ Fatal crashes only</td>
<td>☐ Volume</td>
<td>☐ Horizontal curvature</td>
</tr>
<tr>
<td>☐ Fatal and serious injury</td>
<td>☐ Population</td>
<td>☐ Functional classification</td>
</tr>
<tr>
<td>crashes only</td>
<td>☐ Lane miles</td>
<td>☐ Roadside features</td>
</tr>
<tr>
<td>☐ Other</td>
<td>☐ Other</td>
<td>☐ Other</td>
</tr>
<tr>
<td>☑ Other-NJ is a pedestrian focus state</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

☑ Crash frequency		
☐ Expected crash frequency with EB adjustment		
☐ Equivalent property damage only (EPDO Crash frequency)		
☐ EPDO crash frequency with EB adjustment		
☐ Relative severity index		
☐ Crash rate		
☐ Critical rate		
☐ Level of service of safety (LOSS)		
☐ Excess expected crash frequency using SPFs		
☐ Excess expected crash frequency with the EB adjustment		
☐ Excess expected crash frequency using method of moments		
☐ Probability of specific crash types		
☐ Excess proportions of specific crash types		
☐ Other		
Are local roads (non-state owned and operated) included or addressed in this program?

☑ Yes
☐ No

If yes, are local road projects identified using the same methodology as state roads?

☑ Yes
☐ No

How are highway safety improvement projects advanced for implementation?

☐ Competitive application process
☐ selection committee
☑ Other-Single statewide educational pedestrian and driver safety awareness campaign.

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
☑ Rank of Priority Consideration

☐ Ranking based on B/C
☐ Available funding
☐ Incremental B/C
☐ Ranking based on net benefit
☐ Cost Effectiveness
☑ FHWA Ped Focus State 1
Program: Right Angle Crash

Date of Program Methodology: 9/16/2010

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury crashes only</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
<tr>
<td>Other</td>
<td>Lane miles</td>
<td>Roadside features</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
☐ Excess expected crash frequency using method of moments
☐ Probability of specific crash types
☐ Excess proportions of specific crash types
☐ Other

Are local roads (non-state owned and operated) included or addressed in this program?
☐ Yes
☒ No

How are highway safety improvement projects advanced for implementation?
☐ Competitive application process
☐ selection committee
☒ Other-Using the ranking to identify priorities, NJDOT selects projects

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
☒ Rank of Priority Consideration

☐ Ranking based on B/C
☐ Available funding
☐ Incremental B/C
☐ Ranking based on net benefit
☒ Cost Effectiveness 2
Quick fix, minimal environmental, ROW and other constraints

Program: Left Turn Crash
Date of Program Methodology: 9/16/2010

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
<tr>
<td>crashes only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Lane miles</td>
<td>Roadside features</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>Other-Consideration of pairs of opposing approaches.</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
Are local roads (non-state owned and operated) included or addressed in this program?

☐ Yes
☒ No

How are highway safety improvement projects advanced for implementation?

☐ Competitive application process
☐ selection committee
☒ Other-Using the ranking to identify priorities, NJDOT selects projects.

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
☒ Rank of Priority Consideration

☐ Ranking based on B/C
Available funding

Incremental B/C

Ranking based on net benefit

Cost Effectiveness 2

Quick fix, minimal environmental, ROW and other constraints. 1

Program: Segments

Date of Program Methodology: 9/16/2007

What data types were used in the program methodology?

Crashes Exposure Roadway

All crashes Traffic Median width

Fatal crashes only Volume Horizontal curvature

Fatal and serious injury crashes only Population Functional classification

Other Lane miles Roadside features

Other Other-Centerline miles Other

What project identification methodology was used for this program?

Crash frequency

Expected crash frequency with EB adjustment

Equivalent property damage only (EPDO Crash frequency)
EPDO crash frequency with EB adjustment
☒ Relative severity index
☐ Crash rate
☐ Critical rate
☐ Level of service of safety (LOSS)
☐ Excess expected crash frequency using SPF
☐ Excess expected crash frequency with the EB adjustment
☐ Excess expected crash frequency using method of moments
☐ Probability of specific crash types
☐ Excess proportions of specific crash types
☐ Other

Are local roads (non-state owned and operated) included or addressed in this program?
☐ Yes
☒ No

How are highway safety improvement projects advanced for implementation?
☐ Competitive application process
☐ selection committee
☒ Other-Using the ranking to identify priorities, NJDOT selects projects.

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
Rank of Priority Consideration

- Ranking based on B/C
- Available funding
- Incremental B/C
- Ranking based on net benefit
- Cost Effectiveness

Program: Other-High Risk Rural Roads

Date of Program Methodology: 9/16/2005

What data types were used in the program methodology?

Crashes
- All crashes
- Fatal crashes only
- Fatal and serious injury crashes only
- Other

Exposure
- Traffic
- Volume
- Population
- Lane miles
- Other

Roadway
- Median width
- Horizontal curvature
- Functional classification
- Roadside features
- Other

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
× Equivalent property damage only (EPDO Crash frequency)

☐ EPDO crash frequency with EB adjustment

☐ Relative severity index

× Crash rate

☐ Critical rate

☐ Level of service of safety (LOSS)

☐ Excess expected crash frequency using SPF

☐ Excess expected crash frequency with the EB adjustment

☐ Excess expected crash frequency using method of moments

× Probability of specific crash types

☐ Excess proportions of specific crash types

☐ Other

Are local roads (non-state owned and operated) included or addressed in this program?

× Yes

☐ No

If yes, are local road projects identified using the same methodology as state roads?

× Yes

☐ No

How are highway safety improvement projects advanced for implementation?

× Competitive application process

× selection committee

☐ Other
Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- **Relative Weight in Scoring**

- **Rank of Priority Consideration**

 - □ Ranking based on B/C
 - ☑ Available funding 1
 - □ Incremental B/C
 - □ Ranking based on net benefit 1
 - □ Cost Effectiveness
 - ☑ Project to address established safety problem as shown through crash history, risk-based (systemic) analysis and/or local roadway knowledge.

What proportion of highway safety improvement program funds address systemic improvements?

0

Highway safety improvement program funds are used to address which of the following systemic improvements?

- □ Cable Median Barriers ☑ Rumble Strips
- □ Traffic Control Device Rehabilitation ☑ Pavement/Shoulder Widening
- □ Install/Improve Signing ☑ Install/Improve Pavement Marking and/or
What process is used to identify potential countermeasures?

- Engineering Study
- Road Safety Assessment
- Other:

Identify any program methodology practices used to implement the HSIP that have changed since the last reporting period.

- Highway Safety Manual
- Road Safety audits
- Systemic Approach
- Other:
Describe any other aspects of the Highway Safety Improvement Program methodology on which you would like to elaborate.

No comments.

Progress in Implementing Projects

Funds Programmed
Reporting period for Highway Safety Improvement Program funding.

- [] Calendar Year
- [] State Fiscal Year
- [x] Federal Fiscal Year

Enter the programmed and obligated funding for each applicable funding category.

<table>
<thead>
<tr>
<th>Funding Category</th>
<th>Programmed*</th>
<th>Obligated</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HSIP (Section 148)</td>
<td>22804000</td>
<td>5430000</td>
<td>85 %</td>
</tr>
<tr>
<td>HRRRP (SAFETEA-LU)</td>
<td>1667000</td>
<td>940000</td>
<td>15 %</td>
</tr>
<tr>
<td>HRRR Special Rule</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penalty Transfer - Section 154</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penalty Transfer – Section 164</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incentive Grants - Section 163</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Incentive Grants (Section 406)

<table>
<thead>
<tr>
<th>Other Federal-aid Funds (i.e. STP, NHPP)</th>
<th>State and Local Funds</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>24471000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6370000</td>
</tr>
</tbody>
</table>

How much funding is programmed to local (non-state owned and maintained) safety projects?

$6,000,000.00

How much funding is obligated to local safety projects?

$3,637,000.00

How much funding is programmed to non-infrastructure safety projects?

$500,000.00

How much funding is obligated to non-infrastructure safety projects?

$500,000.00
How much funding was transferred in to the HSIP from other core program areas during the reporting period?

$0.00

How much funding was transferred out of the HSIP to other core program areas during the reporting period?

$0.00

Discuss impediments to obligating Highway Safety Improvement Program funds and plans to overcome this in the future.

To date this program has been spot location focused and focused on improvements that could be completed within the existing right-of-way and with minimal utility impacts. This has resulted in an inability to obligate funds at any significant levels. The authorization process has also been modified over the last year or two and has required Safety Programs staff to change the way business is done. NJDOT is looking at a multipronged approach to increase obligation of safety funds. First, NJDOT is modifying its program and project development process to provide more resources to implement safety projects. Second, NJDOT is looking at other opportunities to maximize the use of HSIP funds including increasing obligations for local projects, the implementation of systemic improvements, and the use of HSIP funds to support crash data compilation and analysis.

Describe any other aspects of the general Highway Safety Improvement Program implementation progress on which you would like to elaborate.

We have recently advanced our first systemic safety project to implement FHWA’s proven countermeasures centerline rumble strips on a 20 mile section of Route 70 in Burlington and Ocean Counties. We expect that this project can move from concept to construction authorization in a matter of a few months.
General Listing of Projects

List each highway safety improvement project obligated during the reporting period.

<table>
<thead>
<tr>
<th>Project</th>
<th>Improvement Category</th>
<th>Output</th>
<th>HSIP Cost</th>
<th>Total Cost</th>
<th>Funding Category</th>
<th>Functional Classification</th>
<th>AADT</th>
<th>Speed</th>
<th>Roadway Ownership</th>
<th>Relationship to SHSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway Safety Improvement Program Planning - Crash Analysis/Research and Safety</td>
<td>Intersection traffic control Intersection traffic control - other Numbers</td>
<td>16</td>
<td>16030 00</td>
<td>16030 00</td>
<td>HSIP (Section 148)</td>
<td>N/A (Planning)</td>
<td>0</td>
<td>0</td>
<td>State Highway Agency</td>
<td>Creating more effective processes and safety management systems</td>
</tr>
<tr>
<td>Park Avenue (CR 658) & 4th Street,</td>
<td>Intersection traffic control Modify traffic signal -</td>
<td>1</td>
<td>47000 0</td>
<td>56400 0</td>
<td>HSIP (Section)</td>
<td>Urban Principal Arterial -</td>
<td>173 51</td>
<td>35</td>
<td>County Highway</td>
<td>Improving the design</td>
</tr>
<tr>
<td>Location</td>
<td>Description</td>
<td>Action Numbers</td>
<td>Countermeasures</td>
<td>Agency</td>
<td>Other Agency</td>
<td>Other Descriptions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------</td>
<td>--------------</td>
<td>--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newark, Essex</td>
<td>modernization/replacement</td>
<td>148</td>
<td>Other</td>
<td>Other Agency</td>
<td>Improving the design and operation of highway intersections</td>
<td>Action 5: Implement engineering countermeasures at problem locations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrewsbury Avenue (CR 13) & W. Bergen Place, Red Bank, Monmouth</td>
<td>Intersection traffic control Modify traffic signal - modernization/replacement</td>
<td>29000 0</td>
<td>HSIP (Section 148)</td>
<td>County Highway Agency</td>
<td>Improving the design and operation of highway intersections</td>
<td>NJ Emphasis Area 2, Strategy 1, Action 5: Implement engineering countermeasures at problem locations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park Avenue (CR 658) at High Street and Glenwood Avenue, Orange & East Orange, Essex</td>
<td>Intersection traffic control Modify traffic signal - modernization/replacement</td>
<td>63000 0</td>
<td>HSIP (Section 148)</td>
<td>City of Municipal Highway Agency</td>
<td>Improving the design and operation of highway intersections</td>
<td>NJ Emphasis Area 2, Strategy 1, Action 5: Implement engineering countermeasures at problem locations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McGinley Square, Jersey City, Hudson</td>
<td>Pedestrians and bicyclists Pedestrian signal - install new at intersection</td>
<td>5 Numbers</td>
<td>39653 8</td>
<td>47584 6</td>
<td>HSIP (Section 148)</td>
<td>Urban Local Road or Street</td>
<td>16</td>
<td>45</td>
<td>County Highway Agency</td>
<td>Improving the design and operation of highway intersections</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>----</td>
<td>----</td>
<td>----------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Little York Road (CR 614), Union & Alexandria, Hunterdon</td>
<td>Advanced technology and ITS Over height vehicle detection</td>
<td>3 Numbers</td>
<td>39502 6</td>
<td>47403 1</td>
<td>HRRRP (SAFETEA-LU)</td>
<td>Rural Major Collector</td>
<td>416 0</td>
<td>40</td>
<td>County Highway Agency</td>
<td>Improving the design and operation of highway intersections</td>
</tr>
<tr>
<td>River Road (CR 625), Hillsborough, Somerset</td>
<td>Roadway Pavement surface - high friction surface</td>
<td>1.3 Miles</td>
<td>30000 0</td>
<td>36300 0</td>
<td>HRRRP (SAFETEA-LU)</td>
<td>Rural Minor Collector</td>
<td>267 2</td>
<td>40</td>
<td>County Highway Agency</td>
<td>Keeping vehicles in the roadway</td>
</tr>
<tr>
<td>Project Description</td>
<td>Work Type</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milford-Mt. Pleasant Road (CR 519), Millford & Holland, Hunterdon</td>
<td>Roadway Pavement surface - high friction surface</td>
<td>0.4 Miles</td>
<td>16323</td>
<td>19588</td>
<td>HRRRP (SAFETY EA-LU)</td>
<td>Rural Major Collector</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NJTPA Pilot Pedestrian Education Program</td>
<td>Non-infrastructure Educational efforts</td>
<td>1 Numbers</td>
<td>50000</td>
<td>50000</td>
<td>HSIP (Section 148)</td>
<td>N/A (Non-Infrastructure)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimize roadway departure crashes.

NJ Emphasis Area 1, Strategy 2: Identify and implement engineering solutions to prevent and minimize roadway departure crashes.

NJ Emphasis Area 7, Strategy 1: Educate and encourage all stakeholders on enforcement to reduce pedestrian, bicycle, rail and vehicular...
<table>
<thead>
<tr>
<th>Location</th>
<th>Traffic Control Change</th>
<th>Distance</th>
<th>Origin</th>
<th>Destination</th>
<th>Agency</th>
<th>Project</th>
<th>Improvement Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burlington County Route 528 Roundabout</td>
<td>Intersection traffic control Modify control - all-way stop to roundabout</td>
<td>0.1 Miles</td>
<td>14510 00</td>
<td>17412 00</td>
<td>HSIP (Section 148)</td>
<td>Urban Major Collector</td>
<td>523 9</td>
</tr>
</tbody>
</table>
Progress in Achieving Safety Performance Targets

Overview of General Safety Trends

Present data showing the general highway safety trends in the state for the past five years.

<table>
<thead>
<tr>
<th>Performance Measures*</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of fatalities</td>
<td>661</td>
<td>633</td>
<td>602</td>
<td>584</td>
<td>560</td>
</tr>
<tr>
<td>Number of serious injuries</td>
<td>1834</td>
<td>1698</td>
<td>1574</td>
<td>1475</td>
<td>1369</td>
</tr>
<tr>
<td>Fatality rate (per HMVMT)</td>
<td>0.91</td>
<td>0.87</td>
<td>0.84</td>
<td>0.8</td>
<td>0.76</td>
</tr>
<tr>
<td>Serious injury rate (per HMVMT)</td>
<td>2.54</td>
<td>2.33</td>
<td>2.18</td>
<td>2.02</td>
<td>1.85</td>
</tr>
</tbody>
</table>

Performance measure data is presented using a five-year rolling average.
Number of Fatalities and Serious injuries for the Last Five Years

![Graph showing the number of fatalities and serious injuries per year from 2008 to 2012. The graph indicates a decrease in both fatalities and serious injuries over the years.]
Rate of Fatalities and Serious Injuries for the Last Five Years

![Graph showing the rate of fatalities and serious injuries from 2008 to 2012.]
To the maximum extent possible, present performance measure* data by functional classification and ownership.

Year - 2012

<table>
<thead>
<tr>
<th>Function Classification</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - INTERSTATE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - OTHER</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FREEWAYS AND EXPRESSWAYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - OTHER</td>
<td>17</td>
<td>16</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>RURAL MINOR ARTERIAL</td>
<td>16</td>
<td>13</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>RURAL MINOR COLLECTOR</td>
<td>5</td>
<td>4</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>RURAL MAJOR COLLECTOR</td>
<td>11</td>
<td>22</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>RURAL LOCAL ROAD OR STREET</td>
<td>8</td>
<td>10</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>URBAN PRINCIPAL</td>
<td>48</td>
<td>38</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>Category</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>ARTERIAL - INTERSTATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URBAN PRINCIPAL ARTERIAL - OTHER FREeways AND EXPRESSWAYS</td>
<td>38</td>
<td>32</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>URBAN PRINCIPAL ARTERIAL - OTHER</td>
<td>129</td>
<td>259</td>
<td>0.17</td>
<td>0.35</td>
</tr>
<tr>
<td>URBAN MINOR ARTERIAL</td>
<td>84</td>
<td>275</td>
<td>0.11</td>
<td>0.37</td>
</tr>
<tr>
<td>URBAN MINOR COLLECTOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>URBAN MAJOR COLLECTOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>URBAN LOCAL ROAD OR STREET</td>
<td>27</td>
<td>132</td>
<td>0.2</td>
<td>0.18</td>
</tr>
<tr>
<td>OTHER</td>
<td>64</td>
<td>252</td>
<td>0.09</td>
<td>0.34</td>
</tr>
<tr>
<td>URBAN COLLECTOR - MAJOR AND MINOR</td>
<td>36</td>
<td>92</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>URBAN COLLECTOR - MAJOR AND MINOR</td>
<td>36</td>
<td>92</td>
<td>0.05</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Fatalities by Roadway Functional Classification

![Bar chart showing the number of fatalities by roadway functional classification for the years 2008, 2009, 2010, 2011, and 2012.](chart.png)

- **# of Fatalities** on the y-axis, ranging from 0 to 200.
- **Roadway Functional Classification** on the x-axis, including categories such as Principal Arterial (R), Major Collection (U), Other Freeways and Expressways (U), Local Road or Street (U), and more.

42
Serious Injuries by Roadway Functional Classification

- **2008**
- **2009**
- **2010**
- **2011**
- **2012**

The chart shows the number of serious injuries by roadway functional classification for the years 2008 to 2012. The x-axis represents different roadway classifications, and the y-axis shows the number of serious injuries. Each color corresponds to a specific year, allowing for a visual comparison of injury trends over time.
Fatality Rate by Roadway Functional Classification

2008 2009 2010 2011 2012

Fatality Rate (per HMMVT)

Roadway Functional Classification
Serious Injury Rate by Roadway Functional Classification

2008 2009 2010 2011 2012

Roadway Functional Classification
Year - 2012

<table>
<thead>
<tr>
<th>Roadway Ownership</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE HIGHWAY AGENCY</td>
<td>190</td>
<td>284</td>
<td>0.64</td>
<td>0.95</td>
</tr>
<tr>
<td>COUNTY HIGHWAY AGENCY</td>
<td>122</td>
<td>363</td>
<td>0.86</td>
<td>2.56</td>
</tr>
<tr>
<td>TOWN OR TOWNSHIP HIGHWAY AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CITY OF MUNICIPAL HIGHWAY AGENCY</td>
<td>60</td>
<td>224</td>
<td>1.13</td>
<td>4.23</td>
</tr>
<tr>
<td>STATE PARK, FOREST, OR RESERVATION AGENCY</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LOCAL PARK, FOREST OR RESERVATION AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER STATE AGENCY</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER LOCAL AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRIVATE (OTHER THAN RAILROAD)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Entity</td>
<td>Capital</td>
<td>Current</td>
<td>Total Capital</td>
<td>Total Current</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Railroad</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>State Toll Authority</td>
<td>48</td>
<td>25</td>
<td>0.35</td>
<td>0.18</td>
</tr>
<tr>
<td>Local Toll Authority</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other Public Instrumentality (e.g. Airport, School, University)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Indian Tribe Nation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>64</td>
<td>252</td>
<td>0.09</td>
<td>0.34</td>
</tr>
<tr>
<td>Other</td>
<td>64</td>
<td>252</td>
<td>0.09</td>
<td>0.34</td>
</tr>
</tbody>
</table>
Number of Serious Injuries by Roadway Ownership

- 2008
- 2009
- 2010
- 2011
- 2012

of Serious Injuries

<table>
<thead>
<tr>
<th>Roadway Functional Classification</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNTY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOWN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCAL PARK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER STATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRIVATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAILROAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATE TOLL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCAL TOLL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIBE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Describe any other aspects of the general highway safety trends on which you would like to elaborate.

Nothing more to report.

Application of Special Rules

Present the rate of traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65.

<table>
<thead>
<tr>
<th>Older Driver Performance Measures</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatality rate (per capita)</td>
<td>0</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>Serious injury rate (per capita)</td>
<td>0</td>
<td>1.4</td>
<td>1.3</td>
<td>1.2</td>
<td>0</td>
</tr>
<tr>
<td>Fatality and serious injury rate (per capita)</td>
<td>0</td>
<td>2.2</td>
<td>2.1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Performance measure data is presented using a five-year rolling average.

To determine whether the Special Rule applies in New Jersey, we considered older drivers and older pedestrians collectively as instructed by the FHWA Guidance. The number of fatalities and serious injuries for drivers and pedestrians 65 and older were retrieved from the NJDOT database. That amount was then divided by the number of people in the State who are 65 years of age and older compared to total state population to determine rate. To maintain consistency with other performance measures, New Jersey compared the three time periods of 5 year rolling average rates of fatalities and serious injuries. (2007-2011, 2006-2010, 2005-2009). The methodology used was as follows:

Example:

Calculation Rate for 2007-2011:

\[
((F+SI\ 2011\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2011\ Population\ Figure*) + (F+SI\ 2010\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older /2010\ Population\ Figure) + (F+SI\ 2009\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2009\ Population\ Figure) + (F+SI\ 2008\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2008\ Population\ Figure) + (F+SI\ 2007\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2007\ Population\ Figure)) / 5
\]

The Population Figures were provided by the FHWA guidance and are as follows for New Jersey:
The rates calculated were compared, and it is shown that there has been a steady decrease based on the 5 year average. Therefore, the Older Drivers and Pedestrians Special Rule does not apply in New Jersey.

<table>
<thead>
<tr>
<th>Year</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>125</td>
</tr>
<tr>
<td>2006</td>
<td>129</td>
</tr>
<tr>
<td>2007</td>
<td>131</td>
</tr>
<tr>
<td>2008</td>
<td>132</td>
</tr>
<tr>
<td>2009</td>
<td>134</td>
</tr>
<tr>
<td>2010</td>
<td>135</td>
</tr>
<tr>
<td>2011</td>
<td>137</td>
</tr>
</tbody>
</table>
Rate of Fatalities and Serious injuries for the Last Five Years

Does the older driver special rule apply to your state?

No
Assessment of the Effectiveness of the Improvements (Program Evaluation)

What indicators of success can you use to demonstrate effectiveness and success in the Highway Safety Improvement Program?

- None
- Benefit/cost
- ☒ Policy change
- Other:
What significant programmatic changes have occurred since the last reporting period?

☒ Shift Focus to Fatalities and Serious Injuries

☐ Include Local Roads in Highway Safety Improvement Program

☒ Organizational Changes

☐ None

☒ Other: Other-Completion of NJDOT HSIP Manual, Increased collaboration with metropolitan planning organizations and other organizations, and change in project advancement process.
Briefly describe significant program changes that have occurred since the last reporting period.

NJDOT has completed its NJDOT HSIP Program manual, which outlines how it will advance the HSIP Program. NJDOT has also made a significant change in how projects will be advanced through NJDOT. NJDOT intends to advance more projects and larger HSIP eligible projects through its Division of Project Management for implementation. These changes are now just taking place.
SHSP Emphasis Areas
For each SHSP emphasis area that relates to the HSIP, present trends in emphasis area performance measures.

Year - 2012

<table>
<thead>
<tr>
<th>HSIP-related SHSP Emphasis Areas</th>
<th>Target Crash Type</th>
<th>Number of Fatalities</th>
<th>Number of Serious Injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instituting graduated licensing for younger drivers</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ensuring drivers are licensed and fully competent</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sustaining proficiency in older drivers</td>
<td>Ages 65+</td>
<td>97</td>
<td>193</td>
<td>0.13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Curbing aggressive driving</td>
<td>Vehicle at fault failures to obey signs/signals, following too closely, improper lane change, improper passing, unsafe speed</td>
<td>141</td>
<td>266</td>
<td>0.19</td>
<td>0.36</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Objective</td>
<td>Benefit Described</td>
<td>All</td>
<td>226</td>
<td>0.1</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Reducing impaired driving</td>
<td>All</td>
<td>73</td>
<td>226</td>
<td>0.1</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Keeping drivers alert</td>
<td>All</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Increasing driver safety awareness</td>
<td>Same as Curbing Aggressive Driving</td>
<td>273</td>
<td>637</td>
<td>0.37</td>
<td>0.86</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Increasing seat belt use and improving airbag effectiveness</td>
<td>All</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Making walking and street crossing easier</td>
<td>Pedestrian, pedacyclist, railcar-vehicle</td>
<td>126</td>
<td>232</td>
<td>0.17</td>
<td>0.31</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ensuring safer bicycle travel</td>
<td>Pedalcyclist or Bicyclist</td>
<td>15</td>
<td>50</td>
<td>0.02</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Improving motorcycle safety and increasing motorcycle awareness</td>
<td>Motors's</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Making truck travel safer</td>
<td>All</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Increasing safety enhancements in</td>
<td>All</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>vehicles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Reducing vehicle-train crashes</td>
<td>Rail-car Vehicle or Railcar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Keeping vehicles in the roadway</td>
<td>Run-off-road</td>
<td>181</td>
<td>320</td>
<td>0.24</td>
<td>0.43</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minimizing the consequences of leaving the road</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Improving the design and operation of highway intersections</td>
<td>All crashes at intersection in the box</td>
<td>133</td>
<td>394</td>
<td>0.18</td>
<td>0.53</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reducing head-on and across-median crashes</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Designing safer work zones</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Enhancing emergency medical capabilities to increase survivability</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Improving information and decision support systems</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reduce Young Driver Crashes

| Focus on ages 16-20 | 46 | 117 | 0.06 | 0.16 | 0 | 0 | 0 |

Number of Fatalities by SHSP Emphasis Area

Year 2008 to Year 2012

The chart shows the number of fatalities by SHSP Emphasis Area from 2008 to 2012, with data for different types of crashes and fatalities grouped by year.
Number of Serious Injuries by SHSP Emphasis Area

Year 2008 to Year 2012

of Serious Injuries

SHSP Emphasis Area

2008 2009 2010 2011 2012
Fatality Rate by SHSP Emphasis Area

Year 2008 to Year 2012

Rate of Fatalities

SHSP Emphasis Area

2008 2009 2010 2011 2012

Young drivers Unlicensed Older drivers Aggressive driving Impaired driving Distracted driving Awareness Seat belt Pedestrian Bicycle Motorcycle Truck Vehicles Train Run off road Fixed object Intersections Median Work Zone ENTS Data
Serious Injury Rate by SHSP Emphasis Area

Year 2008 to Year 2012
Groups of similar project types
Present the overall effectiveness of groups of similar types of projects.

Year - 2012

<table>
<thead>
<tr>
<th>HSIP Sub-program Types</th>
<th>Target Crash Type</th>
<th>Number of Fatalities</th>
<th>Number of Serious Injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other-High Risk Rural Roads</td>
<td>65</td>
<td>68</td>
<td></td>
<td>0.09</td>
<td>0.09</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intersection</td>
<td>133</td>
<td>394</td>
<td></td>
<td>0.18</td>
<td>0.53</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Roadway Departure</td>
<td>46</td>
<td>113</td>
<td></td>
<td>0.06</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Left Turn Crash</td>
<td>20</td>
<td>39</td>
<td></td>
<td>0.03</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Local Safety</td>
<td>229</td>
<td>723</td>
<td></td>
<td>0.03</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Safe Corridor</td>
<td>25</td>
<td>35</td>
<td></td>
<td>0.03</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Segments</td>
<td>4</td>
<td>1</td>
<td></td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pedestrian Safety</td>
<td>126</td>
<td>232</td>
<td></td>
<td>0.17</td>
<td>0.31</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Right Angle Crash</td>
<td>42</td>
<td>164</td>
<td></td>
<td>0.06</td>
<td>0.22</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Serious Injuries by Target Crash Type for Groups of Similar Projects

Year 2008 to Year 2012

Target Crash Type
Fatality Rate by Target Crash Type for Groups of Similar Projects

Year 2008 to Year 2012

Target Crash Type

Rate of Fatalities
-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Serious Injury Rate by Target Crash Type for Groups of Similar Projects

Year 2008 to Year 2012

Rate of Serious Injury

Target Crash Type
Systemic Treatments
Present the overall effectiveness of systemic treatments.

Year - 2012

<table>
<thead>
<tr>
<th>Systemic improvement</th>
<th>Target Crash Type</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Fatalities by Target Crash Type for Systemic Safety Improvements

Year 2008 to Year 2012

Target Crash Type

- Air
- Angle
- Cross-median
- Fixed object
- Sideswipe
- Head-on
- Left-turn
- Night-time
- Non-intersection
- Rear-end
- Right-turn
- Run-off-road
- Speed-related
- Truck-related
- Vehicle/animal
- Vehicle/bicycle
- Wet-road

Number of Fatalities

- 0.6
- 0.4
- 0.2
- 0
- -0.2
- -0.4
- -0.6

2008
2009
2010
2011
2012
Serious Injuries by Target Crash Type for Systemic Safety Improvements

Year 2008 to Year 2012

Target Crash Type
Fatality Rate by Target Crash Type for Systemic Safety Improvements

Year 2008 to Year 2012

Target Crash Type

Rate of Fatalities

-0.6
-0.4
-0.2
0
0.2
0.4
0.6
Serious Injury Rate by Target Crash Type for Systemic Safety Improvements

Year 2008 to Year 2012

Target Crash Type
Describe any other aspects of the overall Highway Safety Improvement Program effectiveness on which you would like to elaborate.

Roadway Departure* - It was instructed by the guidance that “Property Damage = Utility Pole” be used as the criteria, but due to how the NJTR-1 is written, and how crash data is collected in New Jersey, a more accurate way to capture the Utility Pole crashes are using the four sequence of events involving a utility pole for any crash. This accurately pulls the crashes that involved utility poles.
Provide project evaluation data for completed projects (optional).

<table>
<thead>
<tr>
<th>Location</th>
<th>Functional Class</th>
<th>Improvement Category</th>
<th>Improvement Type</th>
<th>Bef-Fatal</th>
<th>Bef-Serious Injury</th>
<th>Bef-Other Injury</th>
<th>Bef-PDO</th>
<th>Bef-Total</th>
<th>Aft-Fatal</th>
<th>Aft-Serious Injury</th>
<th>Aft-Other Injury</th>
<th>Aft-PDO</th>
<th>Aft-Total</th>
<th>Evaluation Results (Benefit/Cost Ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

79
Optional Attachments

<table>
<thead>
<tr>
<th>Sections</th>
<th>Files Attached</th>
</tr>
</thead>
</table>

5 year rolling average means the average of five individual, consecutive annual points of data (e.g. annual fatality rate).

Emphasis area means a highway safety priority in a State’s SHSP, identified through a data-driven, collaborative process.

Highway safety improvement project means strategies, activities and projects on a public road that are consistent with a State strategic highway safety plan and corrects or improves a hazardous road location or feature or addresses a highway safety problem.

HMVMT means hundred million vehicle miles traveled.

Non-infrastructure projects are projects that do not result in construction. Examples of non-infrastructure projects include road safety audits, transportation safety planning activities, improvements in the collection and analysis of data, education and outreach, and enforcement activities.

Older driver special rule applies if traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65 in a State increases during the most recent 2-year period for which data are available, as defined in the Older Driver and Pedestrian Special Rule Interim Guidance dated February 13, 2013.

Performance measure means indicators that enable decision-makers and other stakeholders to monitor changes in system condition and performance against established visions, goals, and objectives.

Programmed funds mean those funds that have been programmed in the Statewide Transportation Improvement Program (STIP) to be expended on highway safety improvement projects.

Roadway Functional Classification means the process by which streets and highways are grouped into classes, or systems, according to the character of service they are intended to provide.

Strategic Highway Safety Plan (SHSP) means a comprehensive, multi-disciplinary plan, based on safety data developed by a State Department of Transportation in accordance with 23 U.S.C. 148.

Systemic safety improvement means an improvement that is widely implemented based on high risk roadway features that are correlated with specific severe crash types.

Transfer means, in accordance with provisions of 23 U.S.C. 126, a State may transfer from an apportionment under section 104(b) not to exceed 50 percent of the amount apportioned for the fiscal year to any other apportionment of the State under that section.