New Jersey
Highway Safety Improvement Program
2014 Annual Report

Prepared by: NJ
Protection of Data from Discovery & Admission into Evidence

23 U.S.C. 148(h)(4) states “Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for any purpose relating to this section [HSIP], shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location identified or addressed in the reports, surveys, schedules, lists, or other data.”

23 U.S.C. 409 states “Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential accident sites, hazardous roadway conditions, or railway-highway crossings, pursuant to sections 130, 144, and 148 of this title or for the purpose of developing any highway safety construction improvement project which may be implemented utilizing Federal-aid highway funds shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data.”
Table of Contents

Disclaimer.. ii
Executive Summary... 1
Introduction .. 6
Program Structure .. 6
 Program Administration ... 6
 Program Methodology .. 8
Progress in Implementing Projects ... 29
 Funds Programmed ... 29
 General Listing of Projects .. 32
Progress in Achieving Safety Performance Targets ... 51
 Overview of General Safety Trends .. 51
 Application of Special Rules .. 66
Assessment of the Effectiveness of the Improvements (Program Evaluation) .. 69
 SHSP Emphasis Areas .. 71
 Groups of similar project types ... 76
 Systemic Treatments ... 81
Glossary... 89
Executive Summary

The Moving Ahead for Progress in the 21st Century Act (MAP-21) went into effect on October 1, 2012. It continued the Highway Safety Improvement Program (HSIP) as a core Federal-aid program. The goal of the program is to achieve a significant reduction in traffic fatalities and serious injuries on all public roads, including non-State-owned public roads.

MAP-21 also continues the development of a Strategic Highway Safety Plan (SHSP), a High Risk Rural Roads Program (HRRRP) and the Railway-Highway Crossings Program (RHXP). In order to obligate HSIP funds, states are required to (1) develop and implement a SHSP; (2) produce a program of projects and strategies; (3) evaluate the plan on a regular basis, and (4) submit an annual transparency report.

HSIP requires a data-driven, strategic approach to improving highway safety on all public roads that focuses on performance.

According to crash record data for the 2013 calendar year that has been collected by the NJDOT’s Bureau of Transportation Data and Safety, New Jersey strategic approach continues to make progress in achieving the safety aims set by SAFETEA-LU and, now, MAP-21.

Over a five-year period, 2009 through 2013, there has been a steady drop in the number of crashes. In 2009 there were 301,233 crashes; in 2013 there were 283,115; a reduction of 18,118. Similar trend goes for serious injuries. The number of crashes resulting in fatalities has fluctuated. The lowest number of annual fatalities during this five-year period was 506, in 2013. Fatalities dropped from 2012 to 2013 by 36. As shown in the table later, under the “Overview of General Safety Trends”, the five-year rolling average for the fatalities as well as fatality rates dropped 13% and 15% respectively. Similarly, for the number of serious injuries and serious injury rates, the five-year rolling average dropped by 27% and 29% respectively.

The progress made by the NJDOT is a result of a broad spectrum of safety programs designed to reduce the frequency and severity of crashes and promote the 4Es of highway safety – Engineering (design changes that make roads safer); Education (encouraging better driving habits); Enforcement (stopping unsafe and illegal driving), and Emergency Medical Services (timely response to and from incidents). These initiatives include the:
• Intersection Safety Improvement Program;
• Roadway Departure Crash Reduction Program;
• Utility Pole Crash Mitigation Program;
• Safe Corridors Program;
• Pedestrian Safety Improvement Program;
• Rail Highway Grade Crossing Program (State);
• Rail Highway Grade Crossing Program (Federal);
• High Risk Rural Roads Program; and the
• Local Safety Program.

The ultimate goal of the State of New Jersey is to ensure the safe passage of all roadway users. Moving forward, the NJDOT intends to employ a data-driven systemic safety improvement approach that will concentrate our resources and focus our energies on high risk roadway features that correlate with specific severe crash types. Using crash data, NJDOT screened NJ roadways for center line cross over, head-on crashes. A systemic Center Line Rumble Strips Program was developed to mitigate these head-on crashes on NJ roadways. This year New Jersey ran a successful pilot program on two of the State roads.

New Jersey is currently revising its Strategic Highway Safety Plan (SHSP), which has not been updated since 2007. The updated SHSP will renew and strengthen the State’s vision to protect the safety of roadway users and strive for zero fatalities. The resulting emphasis areas will guide future modifications and refocus New Jersey’s HSIP program and sub-programs. In addition, the update to the SHSP will contribute a safety perspective and element to the Regional Transportation Plan (RTP) developed by each of the MPOs.

The NJDOT’s vision is shared by safety stakeholders, involved State agencies, each of the three regional Metropolitan Planning Organizations (MPOs) covering New Jersey, and localities through their respective safety advisory committees. Within the last year, NJDOT has supported increased programming to the local roadway agencies, through the MPOs, whose roadway system experience 51% of all fatalities, and 32% of all serious injury crashes in the state. In the current reporting period, NJDOT has supported over $26 Million out of $40 Million obligated funds for projects on the local system, which aligns with the percentage of fatalities and serious injuries on local roadways.

Additionally, NJDOT oversaw the production of network screening list for each of the MPO regions including both County and Municipal owned roadways. As New Jersey is a focus state for both intersection and pedestrian crashes, screening lists include a focus on “At Intersection”, pedestrian corridor, and pedestrian spot crashes utilizing a weighted severity scale. These lists were shared with local roadway owners and government officials in order to help select regional priority locations to
development HSIP funded projects, and better invest the increased local system funding efforts.

NJTPA

The North Jersey Transportation Planning Authority (NJTPA) is the MPO that serves the 13-county northern New Jersey region.

To strengthen its traffic safety efforts, the NJTPA is working to develop targeted network screening methodologies aligned with the Highway Safety Manual (HSM) for use in future years. The NJTPA also encourages the use of road safety audits (RSAs) and considers them a factor in weighing funding applications. NJTPA continues the effort towards working with its federal partners, the New Jersey Department of Transportation (NJDOT), sub regions and other state and local agencies to make travel safer and more reliable for all users in their region’s transportation system. For 2014, the funding for the local safety program has been increased from three millions to twenty million. NJTPA is also engaged in bringing together engineering, enforcement, and educational strategies. For example, NJTPA project managers for the NJTPA Local Safety Program and Street Smart NJ campaign will be working together in FY2015 to apply the Street Smart NJ educational and enforcement campaign to Local Safety Program sites that have pedestrian safety engineering improvements. Combining the three E’s of safety will bring about the greatest gains in safety.

In an effort to reduce pedestrian and bicycle fatalities in the City of Newark (designated as a pedestrian focus City), the NJTPA and the City of Newark are developing a pedestrian and bicycle safety action plan. Successful approaches to improving safety often involve a combination of engineering, enforcement and education, as well as strategies to improve emergency response time. This study will result in the creation of an action plan to improve safety and reduce pedestrian and bicycle fatalities and injuries throughout the City.

The NJTPA kicked off its new “Street Smart NJ” pedestrian safety pilot program on Nov. 1, 2013. The campaign, a collaborative effort between public, private and non-profit organizations, urges motorists and pedestrians to “check your vital signs” to improve motorist and pedestrian safety on New Jersey’s roadways. The campaign is coordinated by the North Jersey Transportation Planning Authority (NJTPA) and supported by federal and state funds, with funding/in-kind contributions from local partners.

Street Smart NJ is a public education, awareness and behavioral change campaign piloted in five New Jersey communities — Hackettstown, Jersey City, Long Beach Island, Newark, and Woodbridge. The campaign used outdoor, transit, and online advertising, along with grassroots public awareness efforts and law enforcement to address pedestrian and bicyclist safety. Street Smart NJ emphasized educating drivers, pedestrians and bicyclists through mass media. It complements, but doesn’t replace, other state and local efforts to build safer streets and sidewalks, enforce laws and train better roadway users. For more information, visit the campaign website www.bstreetsmartnj.org.
In addition, NJTPA is providing project management for the statewide Strategic Highway Safety Plan update. Working closely with the NJ Department of Transportation, FHWA-NJ Division, the Division of Highway Traffic Safety, the other two New Jersey MPOs and other stakeholders, this effort, initiated late in the fall of 2013, will update the SHSP to produce a data driven, collaboratively developed SHSP that meets all MAP-21 requirements.

DVRPC

The Delaware Valley Regional Planning Commission (DVRPC) is the MPO that serves four counties in central New Jersey.

DVRPC conducted a formal project solicitation round in January of 2014 for the Local Federal HSIP and HRRR Programs. New to this year’s solicitation was a design assistance component to allow applicants to have final PS&E packages completed by a consultant and paid for with HSIP. This process yielded three applications and one funded project for the 2015 federal fiscal year. This was the first of an annual program which will begin at the beginning of each calendar year. Separately, DVRPC worked with Burlington County on a successful roundabout project application, and a systemic centerline rumble strip project. Both projects were approved for HSIP funding in the 2014 FFY.

To support the formal solicitation process, a new methodology for network screenings were developed with the assistance of NJDOT and its consultants. The DVRPC is using the rankings list to help their partners identify and develop quality safety projects at funding-eligible locations.

The DVRPC has incorporated an expanded focus on the outcomes of their RSAs and intersection safety projects, including use of HSM methodologies where possible, to move safety projects ideas into problems statements and eventually to implementation.

The fourth edition of the DVRPC’s Transportation Safety Action Plan is being prepared and is scheduled to be published in later 2014. This regional action plan, will be aligned with the revised NJ SHSP. The Transportation Safety Action Plan analyzes crash data to identify key emphasis areas for the region, following the American Association of State Highway and Transportation Officials (AASHTO) guidelines.

These technical efforts are one of the many safety initiatives in the DVRPC region, including the continuing RSA program, annual crash data bulletins (regional), new county-specific bulletins, and a local roads safety newsletter.

SJTPO
The South Jersey Transportation Planning Organization (SJTPO) is the MPO serving four counties in southern New Jersey.

The SJTPO continues to use the methodologies introduced within the HSM to assist justifying potential safety projects in the region, utilizing benefit-cost analysis as an evaluation tool. This effort continues with the hope of utilizing more HSM methodologies in additional stages of the project selection process. The crash history and important features of the intersection or roadway are carefully evaluated to determine the projected change in crash frequency expected with the employment of selected safety countermeasures.

In the SJTPO region, a Safety Action Plan is under development that analyzes crash data and will additionally utilize the methodologies within the AASHTO Highway Safety Manual as it progresses. The action plan, along with the national and state emphasis areas, help focus SJTPO strategies for improving safety performance, whether through driver education and outreach or physical improvements.
Introduction

The Highway Safety Improvement Program (HSIP) is a core Federal-aid program with the purpose of achieving a significant reduction in fatalities and serious injuries on all public roads. As per 23 U.S.C. 148(h) and 23 CFR 924.15, States are required to report annually on the progress being made to advance HSIP implementation and evaluation efforts. The format of this report is consistent with the HSIP MAP-21 Reporting Guidance dated February 13, 2013 and consists of four sections: program structure, progress in implementing HSIP projects, progress in achieving safety performance targets, and assessment of the effectiveness of the improvements.

Program Structure

Program Administration

How are Highway Safety Improvement Program funds allocated in a State?

- Central
- District
- Other

Describe how local roads are addressed as part of Highway Safety Improvement Program.

Local Roadways are eligible for HSIP improvements through application with the respective MPOs. All Local Roadways in New Jersey are covered by one of three MPOs – NJTPA, SJTPO, or DVRPC. Some of the local intersections are identified on the high crash location lists developed including all roads, state as well as locals. The local high crash locations are reported to each of the MPOs to help prioritize their projects. Additionally, NJDOT oversee the production of network screening list for each of the MPO regions including both County and Municipal owned roadways. As New Jersey is a focus state for both intersection and pedestrian crashes, screening lists include a focus on "At Intersection", pedestrian corridor, and pedestrian spot crashes utilizing a weighted severity scale. These lists were shared with
local roadway owners and government officials in order to help select regional priority locations to
development HSIP funded projects, and better invest the increased local system funding efforts.

Identify which internal partners are involved with Highway Safety Improvement Program planning.

- Design
- Planning
- Maintenance
- Operations
- [] Governors Highway Safety Office
- [] Other:

Briefly describe coordination with internal partners.

NJDOT’s Bureau of Transportation Data and Safety, under the Assistant Commissioner of Capital
Investment Planning and Grant Administration is responsible for crash data compilation, analysis and
program development. The Division of Project Management under the Assistant Commissioner of
Capital Program Management is responsible for final design and implementation of improvements.
NJDOT’s Operation and Maintenance Division was previously involved with the construction of
improvements. While some work will continue, we expect that a larger portion will be carried out under
the purview of the Capital Program Management Division. NJDOT recently developed a NJHSIP Manual
which identifies the process for coordination and delivery of HSIP projects for roadways under state
jurisdiction. Attached is the current HSIP manual. NJDOT supports the advancement of projects under
local jurisdiction by participating in the Technical Assistance Team for local safety projects. The Technical
Assistance Team consist of NJDOT’s Safety, Environmental, and Local Aid staff. NJDOT’s Division of Local
Aid, under the Assistant Commissioner of Capital Investment Planning and Grant Administration is
responsible for coordinating with the MPOs in the selection, authorization and oversight of projects
implemented on the local road network.

Identify which external partners are involved with Highway Safety Improvement Program planning.

- Metropolitan Planning Organizations
Identify any program administration practices used to implement the HSIP that have changed since the last reporting period.

☐ Multi-disciplinary HSIP steering committee

☒ Other: Other-NJDOT continues to refine the transition to the revised program delivery process. NJDOT is additionally increasing the portfolio of projects identified using the systemic approach.

Describe any other aspects of Highway Safety Improvement Program Administration on which you would like to elaborate.

Assistant Commissioner of Capital Investment Planning and Grant Administration conducts quarterly meetings with the MPOs to give additional support to the locals. NJDOT’s Division of Local Aid coordinates with the MPOs on regular basis to ensure advancement of Local Safety Projects.

Program Methodology

Select the programs that are administered under the HSIP.

☐ Median Barrier ☒ Intersection ☒ Safe Corridor

☐ Horizontal Curve ☐ Bicycle Safety ☐ Rural State Highways

☐ Skid Hazard ☐ Crash Data ☐ Red Light Running Prevention

☒ Roadway Departure ☐ Low-Cost Spot Improvements ☐ Sign Replacement And
2014 New Jersey Highway Safety Improvement Program

- Local Safety □ Pedestrian Safety □ Right Angle Crash
- Left Turn Crash □ Shoulder Improvement □ Segments
- Other: Other-High Risk Rural Roads

Program: Intersection
Date of Program Methodology: 9/16/2009

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ All crashes</td>
<td>□ Traffic</td>
<td>□ Median width</td>
</tr>
<tr>
<td>□ Fatal crashes only</td>
<td>□ Volume</td>
<td>□ Horizontal curvature</td>
</tr>
<tr>
<td>□ Fatal and serious injury crashes only</td>
<td>□ Population</td>
<td>□ Functional classification</td>
</tr>
<tr>
<td>□ Other</td>
<td>□ Lane miles</td>
<td>□ Roadside features</td>
</tr>
<tr>
<td></td>
<td>□ Other</td>
<td>□ Other</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

- □ Crash frequency
- □ Expected crash frequency with EB adjustment
- □ Equivalent property damage only (EPDO Crash frequency)
☐ EPDO crash frequency with EB adjustment
☐ Relative severity index
☐ Crash rate
☐ Critical rate
☐ Level of service of safety (LOSS)
☐ Excess expected crash frequency using SPFs
☐ Excess expected crash frequency with the EB adjustment
☐ Excess expected crash frequency using method of moments
☐ Probability of specific crash types
☐ Excess proportions of specific crash types
☐ Other

Are local roads (non-state owned and operated) included or addressed in this program?

☐ Yes
☒ No

How are highway safety improvement projects advanced for implementation?

☐ Competitive application process
☐ Selection committee
☐ Other
☒ Other—Using the ranking to identify priorities, NJDOT selects and implements projects.

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).
Relative Weight in Scoring

Rank of Priority Consideration

- Ranking based on B/C
- Available funding
- Incremental B/C
- Ranking based on net benefit
- Cost Effectiveness
- Quick Fix - i.e., minimal environmental and ROW impacts

Program: Safe Corridor

Date of Program Methodology: 9/18/2005

What data types were used in the program methodology?

- Crashes
 - All crashes
 - Fatal crashes only
 - Fatal and serious injury crashes only
 - Other

- Exposure
 - Traffic
 - Volume
 - Population

- Roadway
 - Median width
 - Horizontal curvature
 - Functional classification
 - Roadside features
 - Other
 - Other-Centerline Mile

What project identification methodology was used for this program?
Crash frequency

Expected crash frequency with EB adjustment

Equivalent property damage only (EPDO Crash frequency)

EPDO crash frequency with EB adjustment

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFss

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other-Road Safety audits were performed for each Safe Corridor to identify safety improvements

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical
rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

- Ranking based on B/C
- Available funding
- Incremental B/C
- Ranking based on net benefit
- Cost Effectiveness 2
- Quick Fix - minimal environmental and ROW impacts

Program: Roadway Departure
Date of Program Methodology: 9/16/2008

What data types were used in the program methodology?

- Crashes
 - All crashes
 - Fatal crashes only
 - Fatal and serious injury crashes only
 - Other

- Exposure
 - Traffic
 - Volume
 - Population

- Roadway
 - Median width
 - Horizontal curvature
 - Functional classification
 - Roadside features
 - Other-Utility poles
What project identification methodology was used for this program?

- [x] Crash frequency
- [] Expected crash frequency with EB adjustment
- [x] Equivalent property damage only (EPDO Crash frequency)
- [] EPDO crash frequency with EB adjustment
- [] Relative severity index
- [] Crash rate
- [] Critical rate
- [] Level of service of safety (LOSS)
- [] Excess expected crash frequency using SPF
- [] Excess expected crash frequency with the EB adjustment
- [] Excess expected crash frequency using method of moments
- [] Probability of specific crash types
- [] Excess proportions of specific crash types
- [] Other

Are local roads (non-state owned and operated) included or addressed in this program?

- [] Yes
- [x] No

How are highway safety improvement projects advanced for implementation?

- [] Competitive application process
- [] Selection committee
- [] Other
Other - Top sites investigated for mitigation in conjunction with utility pole owners

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

- Ranking based on B/C
- Available funding
- Incremental B/C
- Ranking based on net benefit 1
- Other

Program: Local Safety

Date of Program Methodology: 9/16/2005

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
</tbody>
</table>
What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other

Are local roads (non-state owned and operated) included or addressed in this program?

- Yes
- No

If yes, are local road projects identified using the same methodology as state roads?

- Yes
- No
How are highway safety improvement projects advanced for implementation?

- Competitive application process
- Selection committee
- Other-Priority given to State's focus areas

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

- Ranking based on B/C
- Available funding 20
- Incremental B/C
- Ranking based on net benefit 60
- Other
- Project to address established safety problem as shown through crash history, risk-based (systemic) analysis and/or local roadway knowledge 20

Program: Pedestrian Safety

Date of Program Methodology: 9/16/2011
What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ All crashes</td>
<td>☐ Traffic</td>
<td>☐ Median width</td>
</tr>
<tr>
<td>☐ Fatal crashes only</td>
<td>☐ Volume</td>
<td>☐ Horizontal curvature</td>
</tr>
<tr>
<td>☐ Fatal and serious injury</td>
<td>☐ Population</td>
<td>☐ Functional classification</td>
</tr>
<tr>
<td>crashes only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☑ Other-Pedestrian Crashes</td>
<td>☐ Lane miles</td>
<td>☐ Roadside features</td>
</tr>
<tr>
<td></td>
<td>☑ Other-NJ is a pedestrian focus state</td>
<td>☐ Other</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

☑ Crash frequency

☐ Expected crash frequency with EB adjustment

☑ Equivalent property damage only (EPDO Crash frequency)

☐ EPDO crash frequency with EB adjustment

☐ Relative severity index

☐ Crash rate

☐ Critical rate

☐ Level of service of safety (LOSS)

☐ Excess expected crash frequency using SPF(s)

☐ Excess expected crash frequency with the EB adjustment

☐ Excess expected crash frequency using method of moments

☐ Probability of specific crash types

☐ Excess proportions of specific crash types

☐ Other
Are local roads (non-state owned and operated) included or addressed in this program?

☐ Yes
☒ No

How are highway safety improvement projects advanced for implementation?

☐ Competitive application process
☐ Selection committee
☐ Other
☒ Other-Using the ranking to identify priorities, NJDOT selects and implements projects.

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
☒ Rank of Priority Consideration

☐ Ranking based on B/C
☐ Available funding
☐ Incremental B/C
☒ Ranking based on net benefit 1
☐ Other
☒ FHWA Ped Focus State 1
Program: Right Angle Crash

Date of Program Methodology: 9/16/2010

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
<tr>
<td>crashes only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other-All Right Angle Crashes</td>
<td>Lane miles</td>
<td>Roadside features</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Other-Using the ranking to identify priorities, NJDOT selects and implements projects

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Rank based on B/C

Available funding

Incremental B/C

Ranking based on net benefit

Cost Effectiveness 2
Quick fix, minimal 1 environmental and ROW impacts

Program: Left Turn Crash
Date of Program Methodology: 9/16/2010

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
<tr>
<td>crashes only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other-All Left Turn Crashes</td>
<td>Lane miles</td>
<td>Roadside features</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
<td>Other-Consideration of pairs of opposing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>approaches.</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
Level of service of safety (LOSS)

Excess expected crash frequency using SPF

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other-4 per year on one or any pair of opposing approaches

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other-Using the ranking to identify priorities, NJDOT selects projects.

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C

Available funding
Incremental B/C

Ranking based on net benefit

Cost Effectiveness 2

Quick fix, minimal 1 environmental and ROW impacts

Program: Other-High Risk Rural Roads

Date of Program Methodology: 9/16/2005

What data types were used in the program methodology?

Crashes

All crashes

Fatal crashes only

Fatal and serious injury crashes only

Other

Exposure

Traffic

Volume

Population

Lane miles

Other

Roadway

Median width

Horizontal curvature

Functional classification

Roadside features

Other-Rural

What project identification methodology was used for this program?

Crash frequency

Expected crash frequency with EB adjustment

Equivalent property damage only (EPDO Crash frequency)

EPDO crash frequency with EB adjustment
Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).
What proportion of highway safety improvement program funds address systemic improvements?

28

Highway safety improvement program funds are used to address which of the following systemic improvements?

- Cable Median Barriers
- Traffic Control Device Rehabilitation
- Install/Improve Signing
- Upgrade Guard Rails
- Safety Edge
- Rumble Strips
- Pavement/Shoulder Widening
- Install/Improve Pavement Marking and/or Delineation
- Clear Zone Improvements
- Install/Improve Lighting
What process is used to identify potential countermeasures?

- Engineering Study
- Road Safety Assessment
- Other:

Identify any program methodology practices used to implement the HSIP that have changed since the last reporting period.

- Highway Safety Manual
- Road Safety audits
- Systemic Approach
- Other:

Describe any other aspects of the Highway Safety Improvement Program methodology on which you would like to elaborate.
No comments.
Progress in Implementing Projects

Funds Programmed
Reporting period for Highway Safety Improvement Program funding.

- [] Calendar Year
- [] State Fiscal Year
- [x] Federal Fiscal Year

Enter the programmed and obligated funding for each applicable funding category.

<table>
<thead>
<tr>
<th>Funding Category</th>
<th>Programmed*</th>
<th>Obligated</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSIP (Section 148)</td>
<td>43304000</td>
<td>33392000</td>
</tr>
<tr>
<td></td>
<td>93 %</td>
<td>82 %</td>
</tr>
<tr>
<td>HRRRP (SAFETEA-LU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRRR Special Rule</td>
<td>3333000</td>
<td>7293000</td>
</tr>
<tr>
<td></td>
<td>7 %</td>
<td>18 %</td>
</tr>
<tr>
<td>Penalty Transfer - Section 154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penalty Transfer – Section 164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incentive Grants - Section 163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incentive Grants (Section 406)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Federal-aid Funds (i.e. STP, NHPP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State and Local Funds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How much funding is programmed to local (non-state owned and maintained) safety projects?

$24,900,000.00

How much funding is obligated to local safety projects?

$26,856,000.00

How much funding is programmed to non-infrastructure safety projects?

$0.00

How much funding is obligated to non-infrastructure safety projects?

$377,000.00

How much funding was transferred in to the HSIP from other core program areas during the reporting period?

$0.00
How much funding was transferred out of the HSIP to other core program areas during the reporting period?

$15,000,000.00

Discuss impediments to obligating Highway Safety Improvement Program funds and plans to overcome this in the future.

To date this program has been spot location focused and focused on improvements that could be completed within the existing right-of-way and with minimal impacts. This has resulted in an inability to obligate funds at any significant levels. The authorization process has also been modified over the last year or two and has required Safety Programs staff to change the way business is done. The new process also requires Highway Safety Manual analysis. NJDOT is looking at a multipronged approach to increase obligation of safety funds. First, NJDOT is modifying its program and project development process to provide more resources, both internal and external, to implement safety projects. Second, NJDOT is looking at continuing to expand on the success of the local safety programs, and the systemic deployment of centerline rumblestrips, simultaneously at the state and local highway systems.

Additional challenges existed for HSIP funds designated for use by local roadway owners. The MPOs had noted that the federal process can be too large a time commitment for local agencies, unless projects are above a certain cost/scope. Additionally, local agency staff resources are limited and devoting time to developing projects and proposals for HSIP can be a challenge. The use of HSIP funds for other phases of the project, such as design, is helping to overcome this impediment. Additionally, more proactive local roadway owners have implemented many of the low-cost, quick fix type solutions through non-HSIP funding sources. NJ’s HSIP program previously focused on low-cost improvements, even if bundled into larger contracts. A need exists for longer-term programing of larger multi-year projects at top high-crash locations as identified through network screenings. These, and other challenges faced by the local safety program are being proactively addressed through a new active dialogue between the MPOs and NJDOT, and the success of that forum will help NJDOT and the MPOs continue to improve the obligation of local projects, which has significantly increased from past years.

Describe any other aspects of the general Highway Safety Improvement Program implementation progress on which you would like to elaborate.

No Comment
General Listing of Projects
List each highway safety improvement project obligated during the reporting period.

<table>
<thead>
<tr>
<th>Project</th>
<th>Improvement Category</th>
<th>Output</th>
<th>HSIP Cost</th>
<th>Total Cost</th>
<th>Funding Category</th>
<th>Functional Classification</th>
<th>AADT</th>
<th>Speed</th>
<th>Roadway Ownership</th>
<th>Relationship to SHSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction of Centerline Rumblestripes Installation - North</td>
<td>Roadway Rumble strips - center</td>
<td>28 Miles</td>
<td>42000</td>
<td>42000</td>
<td>HSIP (Section 148)</td>
<td>various</td>
<td>State Highway Agency</td>
<td>keeping vehicles in the roadway</td>
<td>NJ Emphasis Area 1, Strategy 2: Identify and implement engineering solutions to prevent and minimize roadway departure crashes.</td>
<td></td>
</tr>
<tr>
<td>Construction of Centerline Rumblestripes Installation - Central (NJTPA)</td>
<td>Roadway Rumble strips - center</td>
<td>22 Miles</td>
<td>32600</td>
<td>32600</td>
<td>HSIP (Section 148)</td>
<td>various</td>
<td>State Highway Agency</td>
<td>keeping vehicles in the roadway</td>
<td>NJ Emphasis Area 1, Strategy 2: Identify and implement engineering solutions to prevent and minimize roadway departure crashes.</td>
<td></td>
</tr>
<tr>
<td>Construction of NJ 70 & NJ 34 Centerline Rumblestripes</td>
<td>Roadway Rumble strips - center</td>
<td>50 Miles</td>
<td>75000</td>
<td>75000</td>
<td>HRRR Special Rule</td>
<td>various</td>
<td>State Highway Agency</td>
<td>keeping vehicles in the roadway</td>
<td>NJ Emphasis Area 1, Strategy 2: Identify and implement engineering solutions to prevent and minimize roadway departure crashes</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>------------------</td>
<td>--------</td>
<td>-----------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Construction of CLRS 2 - (NJDOT Region North)</td>
<td>Roadway Rumble strips - center</td>
<td>259 Miles</td>
<td>38300</td>
<td>38300</td>
<td>HSIP (Section 148)</td>
<td>various</td>
<td>State Highway Agency</td>
<td>keeping vehicles in the roadway</td>
<td>NJ Emphasis Area 1, Strategy 2: Identify and implement engineering solutions to prevent and minimize roadway departure crashes</td>
<td></td>
</tr>
<tr>
<td>Project Description</td>
<td>Location</td>
<td>Miles</td>
<td>2014 Crashes</td>
<td>2015 Crashes</td>
<td>2016 Crashes</td>
<td>Agency</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>-------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction of Utility Pole Relocation/Replacement (NJTPA)</td>
<td>Roadside - other</td>
<td>10600</td>
<td>10600</td>
<td>HSIP</td>
<td>various</td>
<td>State Highway Agency</td>
<td>Minimize the consequences of leaving the road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction of Ocean County CLRS Local Pilot</td>
<td>Roadway Rumble strips - center</td>
<td>7</td>
<td>10720</td>
<td>10720</td>
<td>various</td>
<td>County Highway Agency</td>
<td>Keeping vehicles in the roadway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction of Centerline</td>
<td>Roadway Rumble strips - center</td>
<td>3</td>
<td>40000</td>
<td>40000</td>
<td>various</td>
<td>State Highway Agency</td>
<td>Keeping vehicles in the roadway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Description</td>
<td>Location</td>
<td>Length (Miles)</td>
<td>Length (Feet)</td>
<td>Agency</td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rumblestripes Installation - Central (DVRPC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>strategy 2: Identify and implement engineering solutions to prevent and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>minimize roadway departure crashes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design of NJ 70 - Rumble Stripe Design</td>
<td>Roadway Rumble strips - center</td>
<td>27700</td>
<td>27700</td>
<td>HRRR Special Rule</td>
<td>State Highway Agency, keeping vehicles in the roadway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td>NJ Emphasis Area 1, Strategy 2: Identify and implement engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>solutions to prevent and minimize roadway departure crashes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction of Centerline Rumblestripes Installation -</td>
<td>Roadway Rumble strips - center</td>
<td>13</td>
<td>19000</td>
<td>HSIP (Section 148)</td>
<td>State Highway Agency, keeping vehicles in the roadway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South (DVRPC)</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td>NJ Emphasis Area 1, Strategy 2: Identify and implement engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>solutions to prevent and minimize roadway departure crashes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Description</td>
<td>Location</td>
<td>Length</td>
<td>Funding</td>
<td>Agency</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction of CLRS 2 - DVRPC (NJDOT Region Central)</td>
<td>Roadway Rumble strips - center</td>
<td>5 Miles</td>
<td>79000</td>
<td>HSIP (Section 148)</td>
<td>various State Highway Agency Keeping vehicles in the roadway NJ Emphasis Area 1, Strategy 2: Identify and implement engineering solutions to prevent and minimize roadway departure crashes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction of Utility Pole Relocation/Replacement (DVRPC)</td>
<td>Roadside Roadside - other</td>
<td>49000</td>
<td>49000</td>
<td>HSIP (Section 148)</td>
<td>various State Highway Agency Minimizing the consequences of leaving the road NJ Emphasis Area 1, Strategy 2: Identify and implement engineering solutions to prevent and minimize roadway departure crashes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Description</td>
<td>Type</td>
<td>Miles</td>
<td>Cost 1</td>
<td>Cost 2</td>
<td>Program</td>
<td>Certified</td>
<td>Implementor</td>
<td>Emphasis Area</td>
<td>Strategy</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------</td>
<td>-------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Construction of Centerline Rumblestripes Installation - South (SJTPO)</td>
<td>Roadway Rumble strips - center</td>
<td>31</td>
<td>46600 0</td>
<td>46600 0</td>
<td>HSIP (Section 148)</td>
<td>various</td>
<td>State Highway Agency</td>
<td>Keeping vehicles in the roadway</td>
<td>NJ Emphasis Area 1, Strategy 2: Identify and implement engineering solutions to prevent and minimize roadway departure crashes</td>
<td></td>
</tr>
<tr>
<td>Construction of CLRS 2 - (NJDOT Region South) SJTPO</td>
<td>Roadway Rumble strips - center</td>
<td>63</td>
<td>93000 0</td>
<td>93000 0</td>
<td>HSIP (Section 148)</td>
<td>various</td>
<td>State Highway Agency</td>
<td>keeping vehicles in the roadway</td>
<td>NJ Emphasis Area 1, Strategy 2: Identify and implement engineering solutions to prevent and minimize roadway departure crashes</td>
<td></td>
</tr>
<tr>
<td>Construction of Roadside</td>
<td>Roadside Roadside -</td>
<td>78000</td>
<td>78000</td>
<td>HSIP</td>
<td>various</td>
<td>State</td>
<td>Minimize</td>
<td>NJ Emphasis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Description</td>
<td>Agency</td>
<td>Cost</td>
<td>Location</td>
<td>Implementation Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>------</td>
<td>----------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility Pole Relocation/Replacement (SJTPO)</td>
<td>Other</td>
<td></td>
<td></td>
<td>(Section 148)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 206 Whitehorse Circle Design</td>
<td>Other</td>
<td>65500</td>
<td></td>
<td>Improving the design and operation of highway intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design of Local Safety/HRRR - Final Design</td>
<td>Non-infrastructure</td>
<td>12220</td>
<td></td>
<td>Creating more effective processes and safety management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assistance</td>
<td>other</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Area 1, Strategy 2: Identify and implement engineering solutions to prevent and minimize roadway departure crashes.
<table>
<thead>
<tr>
<th>Project Description</th>
<th>Roadway</th>
<th>Length</th>
<th>Year</th>
<th>HSIP Section</th>
<th>Roadway Agency</th>
<th>Emphasis Area and Strategy 2:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction of Promenade Boulevard (CR 685)</td>
<td>Roadway Roadway narrowing (road diet, roadway reconfiguration)</td>
<td>1 Miles</td>
<td>2014</td>
<td>HSIP (Section 148)</td>
<td>County Highway Agency</td>
<td>Urban Minor Arterial</td>
<td>Making walking and street crossing easier</td>
</tr>
<tr>
<td>Construction of JFK Boulevard east (CR 693)</td>
<td>Roadway Pavement surface - high friction surface</td>
<td>0 Miles</td>
<td>2014</td>
<td>HSIP (Section 148)</td>
<td>County Highway Agency</td>
<td>Urban Minor Arterial</td>
<td>Keeping vehicles in the roadway</td>
</tr>
</tbody>
</table>

Notes: System and establish standardization for problem identification, prioritization and evaluation.
<p>| Construction of East Broad Street (CR 509) & Elm Street | Intersection traffic control Modify traffic signal - modernization/replacement | 1 | 445000 | 445000 | HSIP (Section 148) | Urban Minor Arterial | 24900 | 25 | County Highway Agency | Improving the design and operation of highway intersections | NJ Emphasis Area 2, Strategy 1, Action 5: Implement engineering countermeasures at problem locations |
| Construction of Fairlawn Avenue Corridor Safety Improvements - 5+ intersection improvements along Fairlawn Avenue (CR 76) from River Road (CR 507) to Saddle River Road (CR 79) | Pedestrians and bicyclists Crosswalk | 5 | 512000 | 512000 | HSIP (Section 148) | Urban Minor Arterial | 35 | County Highway Agency | Making walking and street crossing easier | NJ Emphasis Area 8, Strategy 2: Design, develop and implement a transportation system that accommodates all users |</p>
<table>
<thead>
<tr>
<th>Project Description</th>
<th>Roadway Feature/Types</th>
<th>Units</th>
<th>HSIP Section</th>
<th>Roadway Agency</th>
<th>Improvement Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction of Washington Avenue (CR 503) Phase I & II</td>
<td>Roadway delineation</td>
<td>1</td>
<td></td>
<td>County Highway Agency</td>
<td>Improving the design and operation of highway intersections</td>
</tr>
<tr>
<td></td>
<td>Roadway delineation - other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction of Eight Essex County intersections (4-Irvington, 4-Newark)</td>
<td>Intersection traffic control Modify traffic signal - modernization/replacement</td>
<td>8</td>
<td></td>
<td>County Highway Agency</td>
<td>Improving the design and operation of highway intersections</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction of JFK Boulevard (CR 501)</td>
<td>Systemic</td>
<td>87</td>
<td></td>
<td>County Highway Agency</td>
<td>Improving the design and operation of highway intersections</td>
</tr>
<tr>
<td>Construction of McGinley Square Area - Phase 2</td>
<td>Pedestrians and bicyclists Crosswalk</td>
<td>45000</td>
<td>45000</td>
<td>HSIP (Section 148)</td>
<td>various</td>
</tr>
<tr>
<td>Construction of Memorial Drive (CR 40A) between SH 33 and Munroe Avenue</td>
<td>Roadway Roadway narrowing (road diet, roadway reconfiguration)</td>
<td>1 Miles</td>
<td>93100</td>
<td>93100</td>
<td>HSIP (Section 148)</td>
</tr>
<tr>
<td>Construction of Broad Street & Tichenor</td>
<td>Intersection traffic control Modify traffic signal -</td>
<td>2</td>
<td>15950</td>
<td>15950</td>
<td>HSIP (Section 148)</td>
</tr>
<tr>
<td>Project Description</td>
<td>Improvement Type</td>
<td>Cost</td>
<td>HSIP Section</td>
<td>Agency</td>
<td>Action 5:</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>------</td>
<td>--------------</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Street/Lincoln park; Broad Street & South Street</td>
<td>modernization/replacement</td>
<td>148</td>
<td></td>
<td>Other</td>
<td>Implement engineering countermeasures at problem locations</td>
</tr>
<tr>
<td>Construction of Dr. MLK Blvd. & 7th Avenue/Crane Street</td>
<td>Intersection traffic control Modify traffic signal - modernization/replacement</td>
<td>2</td>
<td>11500000</td>
<td>HSIP (Section 148)</td>
<td>Improving the design and operation of highway intersections</td>
</tr>
<tr>
<td>Construction of Chimney Rock Road (CR 525)</td>
<td>Roadway Pavement surface - high friction surface</td>
<td>1</td>
<td>500000</td>
<td>HSIP (Section 148)</td>
<td>Keeping vehicles in the roadway</td>
</tr>
<tr>
<td>Construction of Mountain Ave. (CR 642)</td>
<td>Pedestrians and bicyclists Crosswalk</td>
<td>22</td>
<td>83300</td>
<td>83300</td>
<td>HSIP (Section 148)</td>
</tr>
<tr>
<td>Construction of Vauxhall Road (CR 630)</td>
<td>Intersection traffic control Modify traffic signal - modernization/replacement</td>
<td>2</td>
<td>39600</td>
<td>39600</td>
<td>HSIP (Section 148)</td>
</tr>
<tr>
<td>Construction of Main Avenue (CR 601)</td>
<td>Pedestrians and bicyclists Crosswalk</td>
<td>8</td>
<td>12480</td>
<td>12480</td>
<td>HSIP (Section 148)</td>
</tr>
</tbody>
</table>
Construction of HRRR - Squankum Yellowbrood Rd (CR 524A) & West Farm Road

| Intersection traffic control Intersection flashers - add overhead (continuous) | 1 | 32600 | 0 | 32600 | 0 | HRRR Specia l Rule | Rural Major Collector | 733 | 0 | 45 | County Highway Agency | Improving the design and operation of highway intersections |

Construction of HRRR - Burnt mills Road (CR 620); Lamington Road (CR 523); Potterville Road (CR 512)

| Roadway Pavement surface - high friction surface | 10 Miles | 40660 | 00 | 40660 | 00 | HRRR Specia l Rule | Rural Major Collector | 449 | 0 | 45 | County Highway Agency | Keeping vehicles in the roadway |

Improve a transportation system that accommodates all users

NJ Emphasis Area 2, Strategy 1, Action 5: Implement engineering countermeasures at problem locations

NJ Emphasis Area 1, Strategy 2: Identify and implement engineering solutions to prevent and minimize roadway departure
<table>
<thead>
<tr>
<th>Project Description</th>
<th>Task Description</th>
<th>County Highway Agency</th>
<th>NJ Emphasis Area 1, Strategy 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction of HRRR - Tuttle’s Corner - Dingman’s Road (CR 560); Newton-McDonalds Corner Road (CR 519)</td>
<td>Roadway Pavement surface - high friction surface</td>
<td>9 Miles 18740 00 18740 00 HRRR Special Rule Rural Major Collector 45</td>
<td>Keeping vehicles in the roadway</td>
</tr>
<tr>
<td>Construction of West Blackwell Street (CR 513) - Additional Funds</td>
<td>Pedestrians and bicyclists Crosswalk 6 22200 00 22200 00 HSIP (Section 148) Urban Minor Arterial 174 40 25</td>
<td>County Highway Agency</td>
<td>Making walking and street crossing easier</td>
</tr>
<tr>
<td>Construction of Burlington County CLRS Local Pilot</td>
<td>Roadway Rumble strips - center 150 Miles 17000 00 17000 00 HSIP (Section various)</td>
<td>County Highway Agency</td>
<td>Keeping vehicles in the roadway</td>
</tr>
</tbody>
</table>

NJ Emphasis Area 1, Strategy 2: identify and implement engineering solutions to prevent and minimize roadway departure crashes

NJ Emphasis Area 8, Strategy 2: Design, develop and implement a transportation system that accommodates all users
Construction of CR 545 Roundabout
Intersection traffic control Modify control - two-way stop to roundabout

<table>
<thead>
<tr>
<th>Agency</th>
<th>roadway</th>
<th>Identify and implement engineering solutions to prevent and minimize roadway departure crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>County Highway Agency</td>
<td>CR 545</td>
<td>Improving the design and operation of highway intersection</td>
</tr>
<tr>
<td></td>
<td>Rural Major Collector</td>
<td>NJ Emphasis Area 2, Strategy 1, Action 5: Implement engineering countermeasures at problem locations</td>
</tr>
</tbody>
</table>

Strategic Highway Safety Plan update
Non-infrastructure Transportation safety planning

<table>
<thead>
<tr>
<th>Agency</th>
<th>roadway</th>
<th>Creating more effective processes and safety management system</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>HSIP (Section 148)</td>
<td>NJ Emphasis Area 2, Strategy 1: Develop and/or enhance methodolo-</td>
</tr>
<tr>
<td>Project Description</td>
<td>Classification</td>
<td>Route 100</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Safety Planning</td>
<td>Non-infrastructure</td>
<td>1692000</td>
</tr>
<tr>
<td>Newark Bike/Ped Safety Action Plan</td>
<td>Non-infrastructure</td>
<td>127000</td>
</tr>
</tbody>
</table>

New Jersey Emphasis Area 2, Strategy 1: Develop and/or enhance methodologies and establish standardization for problem identification, prioritization and evaluation.

New Jersey Emphasis Area 8, Strategy 2:
<table>
<thead>
<tr>
<th>Project Description</th>
<th>Coordinating Agency</th>
<th>Action</th>
<th>HSIP Section</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning - Rail</td>
<td>Highway Agency</td>
<td>crossing easier</td>
<td>148)</td>
<td>Design, develop and implement a transportation system that accommodates all users</td>
</tr>
<tr>
<td>Construction of CLRS 2 - (NJDOT Region Central)</td>
<td>State Highway</td>
<td>keeping vehicles in the</td>
<td>various</td>
<td>NJ Emphasis Area 1, Strategy 2:</td>
</tr>
<tr>
<td>Roadway Rumble strips - center</td>
<td></td>
<td></td>
<td>712000</td>
<td></td>
</tr>
<tr>
<td>48 Miles</td>
<td></td>
<td></td>
<td>712000</td>
<td></td>
</tr>
<tr>
<td>HSIP (Section 148)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Safety Planning
<table>
<thead>
<tr>
<th>Agency</th>
<th>Roadway</th>
<th>HSIP (Section 148)</th>
<th>Identify and implement engineering solutions to prevent and minimize roadway departure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway Rumble strips - center</td>
<td>31 Miles</td>
<td>46000</td>
<td>46000</td>
</tr>
<tr>
<td>State Highway Agency</td>
<td>keeping vehicles in the roadway</td>
<td>NJ Emphasis Area 1, Strategy 2: Identify and implement engineering solutions to prevent and minimize roadway departure</td>
<td></td>
</tr>
</tbody>
</table>
Progress in Achieving Safety Performance Targets

Overview of General Safety Trends

Present data showing the general highway safety trends in the state for the past five years.

<table>
<thead>
<tr>
<th>Performance Measures*</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of fatalities</td>
<td>633</td>
<td>602</td>
<td>584</td>
<td>560</td>
<td>553</td>
</tr>
<tr>
<td>Number of serious injuries</td>
<td>1698</td>
<td>1574</td>
<td>1475</td>
<td>1369</td>
<td>1239</td>
</tr>
<tr>
<td>Fatality rate (per HMVMT)</td>
<td>0.87</td>
<td>0.84</td>
<td>0.8</td>
<td>0.76</td>
<td>0.74</td>
</tr>
<tr>
<td>Serious injury rate (per HMVMT)</td>
<td>2.33</td>
<td>2.18</td>
<td>2.02</td>
<td>1.85</td>
<td>1.66</td>
</tr>
</tbody>
</table>

*Performance measure data is presented using a five-year rolling average.
Number of Fatalities and Serious injuries for the Last Five Years
Rate of Fatalities and Serious Injuries for the Last Five Years

- Fatality Rate (per HMVMT)
- Serious Injuries Rate (per HMVMT)
To the maximum extent possible, present performance measure* data by functional classification and ownership.

Year - 2013

<table>
<thead>
<tr>
<th>Function Classification</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - INTERSTATE</td>
<td>7</td>
<td>3</td>
<td>0.61</td>
<td>0.25</td>
</tr>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXPRESSWAYS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - OTHER</td>
<td>15</td>
<td>19</td>
<td>1.27</td>
<td>1.53</td>
</tr>
<tr>
<td>RURAL MINOR ARTERIAL</td>
<td>11</td>
<td>14</td>
<td>1.74</td>
<td>2.19</td>
</tr>
<tr>
<td>RURAL MINOR COLLECTOR</td>
<td>3</td>
<td>7</td>
<td>1.2</td>
<td>2.8</td>
</tr>
<tr>
<td>RURAL MAJOR COLLECTOR</td>
<td>20</td>
<td>27</td>
<td>2.4</td>
<td>3.33</td>
</tr>
<tr>
<td>RURAL LOCAL ROAD OR STREET</td>
<td>12</td>
<td>13</td>
<td>2.49</td>
<td>2.57</td>
</tr>
<tr>
<td>URBAN PRINCIPAL</td>
<td>45</td>
<td>39</td>
<td>0.32</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>ARTERIAL - INTERSTATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URBAN PRINCIPAL</td>
<td>46</td>
<td>42</td>
<td>0.36</td>
<td>0.33</td>
</tr>
<tr>
<td>ARTERIAL - OTHER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREEWAYS AND EXPRESSWAYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URBAN PRINCIPAL</td>
<td>133</td>
<td>290</td>
<td>0.81</td>
<td>1.77</td>
</tr>
<tr>
<td>ARTERIAL - OTHER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URBAN MINOR ARTERIAL</td>
<td>104</td>
<td>272</td>
<td>0.93</td>
<td>2.42</td>
</tr>
<tr>
<td>URBAN MINOR COLLECTOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>URBAN MAJOR COLLECTOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>URBAN LOCAL ROAD OR STREET</td>
<td>41</td>
<td>124</td>
<td>0.41</td>
<td>1.22</td>
</tr>
<tr>
<td>OTHER</td>
<td>52</td>
<td>305</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>URBAN COLLECTOR -</td>
<td>41</td>
<td>103</td>
<td>0.78</td>
<td>1.94</td>
</tr>
<tr>
<td>MAJOR AND MINOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fatalities by Roadway Functional Classification

![Bar chart showing the number of fatalities by roadway functional classification from 2009 to 2013.](chart.png)

Roadway Functional Classification

- MAJOR COLLECTOR (U)
- PRINCIPAL ARTERIAL (R)
- MINOR COLLECTOR (R)
- LOCAL ROAD OR STREET (R)
- PRINCIPAL ARTERIAL - OTHER (R)
- MINOR COLLECTOR - OTHER (R)
- PRINCIPAL ARTERIAL - INTERSTATE (U)
- MINOR COLLECTOR - INTERSTATE (R)
- PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXPRESSWAYS (U)
- MAJOR COLLECTOR - OTHER FREEWAYS AND EXPRESSWAYS (U)
- PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXPRESSWAYS (R)

of Fatalities

- 2009
- 2010
- 2011
- 2012
- 2013
Serious Injuries by Roadway Functional Classification

![Bar Chart]

- **2009**
- **2010**
- **2011**
- **2012**
- **2013**

Y-axis: # of Serious Injuries

X-axis: Roadway Functional Classification

57
Fatality Rate by Roadway Functional Classification

Roadway Functional Classification

2009 2010 2011 2012 2013
Serious Injury Rate by Roadway Functional Classification

Roadway Functional Classification

2009 2010 2011 2012 2013
<table>
<thead>
<tr>
<th>Roadway Ownership</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE HIGHWAY AGENCY</td>
<td>208.8</td>
<td>320.4</td>
<td>0.71</td>
<td>1.09</td>
</tr>
<tr>
<td>COUNTY HIGHWAY AGENCY</td>
<td>149.4</td>
<td>364.2</td>
<td>1.04</td>
<td>2.54</td>
</tr>
<tr>
<td>TOWN OR TOWNSHIP HIGHWAY AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CITY OF MUNICIPAL HIGHWAY AGENCY</td>
<td>76.2</td>
<td>229.8</td>
<td>1.46</td>
<td>4.41</td>
</tr>
<tr>
<td>STATE PARK, FOREST, OR RESERVATION AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LOCAL PARK, FOREST OR RESERVATION AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER STATE AGENCY</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER LOCAL AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRIVATE (OTHER THAN RAILROAD)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAILROAD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STATE TOLL AUTHORITY</td>
<td>45.4</td>
<td>37.4</td>
<td>0.34</td>
<td>0.28</td>
</tr>
<tr>
<td>LOCAL TOLL AUTHORITY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER PUBLIC INSTRUMENTALITY (E.G. AIRPORT, SCHOOL, UNIVERSITY)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INDIAN TRIBE NATION</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER</td>
<td>51.2</td>
<td>304.8</td>
<td>0.47</td>
<td>2.8</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>-----</td>
</tr>
</tbody>
</table>

2014 New Jersey Highway Safety Improvement Program
Number of Fatalities by Roadway Ownership

- 2009
- 2010
- 2011
- 2012
- 2013

of Fatalities

Roadway Functional Classification
Number of Serious Injuries by Roadway Ownership

Roadway Functional Classification

of Serious Injuries

- State
- County
- Town
- City
- Local Park
- Other State
- Other Local
- Railroad
- State Toll
- Local Toll
- Other
Fatality Rate by Roadway Ownership

Roadway Functional Classification

- State
- County
- Town
- City
- Local Park
- Other State
- Private
- Railroad
- State Toll
- Local Toll
- Other

Fatality Rate (per HMVMT)

- 2009
- 2010
- 2011
- 2012
- 2013
Serious Injury Rate by Roadway Ownership

Roadway Functional Classification

Serious Injury Rate (per HWVMT)

- 2009
- 2010
- 2011
- 2012
- 2013
Describe any other aspects of the general highway safety trends on which you would like to elaborate.

No comments.

Application of Special Rules

Present the rate of traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65.

<table>
<thead>
<tr>
<th>Older Driver Performance Measures</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatality rate (per capita)</td>
<td>0.796</td>
<td>0.792</td>
<td>0.768</td>
<td>0.768</td>
<td>0.618</td>
</tr>
<tr>
<td>Serious injury rate (per capita)</td>
<td>1.356</td>
<td>1.276</td>
<td>1.21</td>
<td>1.168</td>
<td>0.912</td>
</tr>
<tr>
<td>Fatality and serious injury rate (per capita)</td>
<td>2.154</td>
<td>2.068</td>
<td>1.978</td>
<td>1.936</td>
<td>1.53</td>
</tr>
</tbody>
</table>

Performance measure data is presented using a five-year rolling average.

NJ Number of People 65 Years of Age and Older (Per 1,000 Total Pop)

2005 = 125
2006 = 129
2007 = 131
2008 = 132
2009 = 134
2010 = 135
2011 = 137
2012 = 141

For Fatal Rate:
\[(\frac{F}{2012 \text{ Drivers and Pedestrians 65 years of age and older/2012 Population Figure}}) + (\frac{F}{2011 \text{ Drivers and Pedestrians 65 years of age and older/2011 Population Figure}}) + (\frac{F}{2010 \text{ Drivers and Pedestrians 65 years of age and older/2010 Population Figure}}) + (\frac{F}{2009 \text{ Drivers and Pedestrians 65 years of age and older/2009 Population Figure}}) + (\frac{F}{2008 \text{ Drivers and Pedestrians 65 years of age and older/2008 Population Figure}}) / 5\]

\[((121/141) + (96/137) + (114/135) + (92/134) + (99/132)) / 5\]

For Serious Injury Rate:
\[(\frac{SI}{2012 \text{ Drivers and Pedestrians 65 years of age and older/2012 Population Figure}}) + (\frac{SI}{2011 \text{ Drivers and Pedestrians 65 years of age and older/2011 Population Figure}}) + (\frac{SI}{2010 \text{ Drivers and Pedestrians 65 years of age and older/2010 Population Figure}}) + (\frac{SI}{2009 \text{ Drivers and Pedestrians 65 years of age and older/2009 Population Figure}}) + (\frac{SI}{2008 \text{ Drivers and Pedestrians 65 years of age and older/2008 Population Figure}}) / 5\]
Pedestrians 65 years of age and older/2011 Population Figure) + (SI 2010 Drivers and Pedestrians 65 years of age and older /2010 Population Figure) + (SI 2009 Drivers and Pedestrians 65 years of age and older/2009 Population Figure) + (SI 2008 Drivers and Pedestrians 65 years of age and older/2008 Population Figure)) / 5

\[\frac{(181/141)+(133/137)+(148/135)+(162/134)+(169/132)}{5} \]

For Fatality and Serious Injury Rate:

\[
(F+SI \ 2012 \ Drivers \ and \ Pedestrians \ 65 \ years \ of \ age \ and \ older/2012 \ Population \ Figure) + (F+SI \ 2011 \ Drivers \ and \ Pedestrians \ 65 \ years \ of \ age \ and \ older/2011 \ Population \ Figure) + (F+SI \ 2010 \ Drivers \ and \ Pedestrians \ 65 \ years \ of \ age \ and \ older/2010 \ Population \ Figure) + (F+SI \ 2009 \ Drivers \ and \ Pedestrians \ 65 \ years \ of \ age \ and \ older/2009 \ Population \ Figure) + (F+SI \ 2008 \ Drivers \ and \ Pedestrians \ 65 \ years \ of \ age \ and \ older/2008 \ Population \ Figure) \) / 5

\[\frac{(302/141)+(229/137)+(262/135)+(254/134)+(268/132)}{5} \]
Does the older driver special rule apply to your state?

No
Assessment of the Effectiveness of the Improvements (Program Evaluation)

What indicators of success can you use to demonstrate effectiveness and success in the Highway Safety Improvement Program?

- None
- Benefit/cost
- Policy change
- Other: Other-Obligated more funds to MPOs to target crashes on local roadways

What significant programmatic changes have occurred since the last reporting period?

- Shift Focus to Fatalities and Serious Injuries
- Include Local Roads in Highway Safety Improvement Program
- Organizational Changes
- None
- Other: Other-More systemic programs included in HSIP
- Other: Other-More systemic programs, more funding available for local roadways
- Other: Other-Update of SHSP
Briefly describe significant program changes that have occurred since the last reporting period.

New Jersey is currently finalizing a revision to the SHSP, which will be the basis for future HSIP program planning. Within the past year, NJDOT has embraced the systemic application of low-cost safety countermeasures, specifically Center-Line Rumble Strips which is planned to be installed in over 500 miles within the state, on both the State and Local systems. New Jersey is looking to build on this success and continue to apply the safety improvements systemically.

Within the last year, NJDOT has also supported increased programing to the local roadway agencies, through the MPOs, whose roadway system experience 51% of all fatalities, and 32% of all serious injury crashes in the state. In the current reporting period, NJDOT has supported over $26 Million worth of projects on the local system out of total $40 Million obligated. This funding apportionment of HSIP aligns well with the crash data for local roadways. Additionally, NJDOT oversaw the production of network screening list for each of the MPO regions including both County and Municipal owned roadways.

NJDOT is also working to advance more projects and larger HSIP eligible projects through its Division of Project Management for implementation.
SHSP Emphasis Areas
For each SHSP emphasis area that relates to the HSIP, present trends in emphasis area performance measures.

Year - 2013

<table>
<thead>
<tr>
<th>HSIP-related SHSP Emphasis Areas</th>
<th>Target Crash Type</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway Departure</td>
<td>Run-off-road</td>
<td>237.8</td>
<td>458.8</td>
<td>0.32</td>
<td>0.62</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intersections</td>
<td>All</td>
<td>139.2</td>
<td>496</td>
<td>0.19</td>
<td>0.68</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Older Drivers</td>
<td>All</td>
<td>142.6</td>
<td>254.4</td>
<td>0.19</td>
<td>0.35</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Curb Aggressive Driving</td>
<td>All</td>
<td>169.2</td>
<td>426.2</td>
<td>0.23</td>
<td>0.58</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Increase Driver Safety Awarness</td>
<td>All</td>
<td>50.4</td>
<td>147.6</td>
<td>0.07</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reduce Young Driver Crashes</td>
<td>All</td>
<td>62.4</td>
<td>195.6</td>
<td>0.09</td>
<td>0.27</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reduce Impaired Driving</td>
<td>All</td>
<td>125.2</td>
<td>431.4</td>
<td>0.17</td>
<td>0.59</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reduce Pedestrian, Bicycle, Rail & Vehicular Conflicts</td>
<td>Ped/Bike/Rail</td>
<td>151.2</td>
<td>309.4</td>
<td>0.21</td>
<td>0.42</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Number of Fatalities by SHSP Emphasis Area

Year 2009 to Year 2013

- Lane Departure
- Roadway Departure
- Intersections
- Pedestrians
- Bicyclists
- Older Drivers

of Fatalities

SHSP Emphasis Area
Number of Serious Injuries by SHSP Emphasis Area

Year 2009 to Year 2013

SHSP Emphasis Area

- Lane Departure
- Roadway Departure
- Intersections
- Pedestrians
- Bicyclists
- Older Drivers

of Serious Injuries

- 2009
- 2010
- 2011
- 2012
- 2013
Groups of similar project types

Present the overall effectiveness of groups of similar types of projects.

Year - 2013

<table>
<thead>
<tr>
<th>HSIP Sub-program Types</th>
<th>Target Crash Type</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersection</td>
<td>All</td>
<td>139</td>
<td>496</td>
<td>0.19</td>
<td>0.68</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Local Safety</td>
<td>All</td>
<td>268</td>
<td>787</td>
<td>1.36</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pedestrian Safety</td>
<td>Vehicle/pedestrian</td>
<td>181</td>
<td>387</td>
<td>0.25</td>
<td>0.53</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Right Angle Crash</td>
<td>Angle</td>
<td>55</td>
<td>213</td>
<td>0.08</td>
<td>0.29</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Safe Corridor</td>
<td>All</td>
<td>23</td>
<td>46</td>
<td>0.03</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Left Turn Crash</td>
<td>Left-turn</td>
<td>17</td>
<td>55</td>
<td>0.02</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Roadway Departure</td>
<td>Run-off-road</td>
<td>238</td>
<td>459</td>
<td>0.32</td>
<td>0.62</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other-High Risk Rural Roads</td>
<td>All</td>
<td>25</td>
<td>41</td>
<td>0.03</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Fatalities by Target Crash Type for Groups of Similar Projects

Year 2009 to Year 2013

- 2009
- 2010
- 2011
- 2012
- 2013

Target Crash Type

- All
- Angle
- Cross-median
- Fixed object
- Sideswipe
- Head on
- Left turn
- Night-time
- Non-intersection
- Rear end
- Right turn
- Run-off-road
- Speed-related
- Truck-related
- Vehicle/animal
- Vehicle/bicycle
- Wet road

of Fatalities
#Serious Injuries by Target Crash Type for Groups of Similar Projects

Year 2009 to Year 2013

- 2009
- 2010
- 2011
- 2012
- 2013

Target Crash Type

of Serious Injuries

- All
- Angle
- Cross median
- Pedestrian object
- Side swipe
- Head-on
- Left-turn
- Night-time
- Non-intersection
- Rear-end
- Right-turn
- Run-off-road
- Speed-related
- Truck-related
- Vehicle/animal
- Vehicle/bicycle
- Wet road
Fatality Rate by Target Crash Type for Groups of Similar Projects

Year 2009 to Year 2013

Target Crash Type

Rate of Fatalities

2009 2010 2011 2012 2013
Systemic Treatments

Present the overall effectiveness of systemic treatments.

Year - 2013

<table>
<thead>
<tr>
<th>Systemic improvement</th>
<th>Target Crash Type</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Cross Center Line Crashes</td>
<td>Head on</td>
<td>102</td>
<td>146</td>
<td>0.14</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Fatalities by Target Crash Type for Systemic Safety Improvements

Year 2009 to Year 2013

- # of Fatalities
- Target Crash Type

- 2009
- 2010
- 2011
- 2012
- 2013
Serious Injuries by Target Crash Type for Systemic Safety Improvements

Year 2009 to Year 2013

![Bar chart showing the number of serious injuries by target crash type from 2009 to 2013.](chart.png)

- **Target Crash Type**
 - All
 - Angle
 - Cross-median
 - Fixed object
 - Head-on
 - Left-turn
 - Night-time
 - Non-intersection
 - Rear-end
 - Right-turn
 - Run-off-road
 - Speed-related
 - Truck-related
 - Vehicle/animal
 - Vehicle/bicycle
 - Vehicle/wet-road

Legend:
- Blue: 2009
- Red: 2010
- Green: 2011
- Purple: 2012
- Orange: 2013
Fatality Rate by Target Crash Type for Systemic Safety Improvements

Year 2009 to Year 2013

Rate of Fatalities

Target Crash Type

Air, Angle, Cross median, Fixed Object, Sideswipe, Head on, Left-turn, Night-time, Non-intersection, Rear end, Right-turn, Run-off-road, Speed-related, Truck-related, Vehicle/animal, Vehicle/bicycle, Wet road
Serious Injury Rate by Target Crash Type for Systemic Safety Improvements

Year 2009 to Year 2013

Rate of Serious Injury

Target Crash Type

Air, Angle, Fixed Object, Sideswipe, Head-on, Left-turn, Night-time, Non-intersection, Rear-end, Right-turn, Run-off-road, Speed-related, Vehicle/Animal, Vehicle/Bicycle, Wet Road
Describe any other aspects of the overall Highway Safety Improvement Program effectiveness on which you would like to elaborate.

No comments.
Provide project evaluation data for completed projects (optional).

<table>
<thead>
<tr>
<th>Location</th>
<th>Functional Class</th>
<th>Improvement Category</th>
<th>Improvement Type</th>
<th>Bef-Fatal</th>
<th>Bef-Serious Injury</th>
<th>Bef-Other Injury</th>
<th>Bef-PDO</th>
<th>Bef-Total</th>
<th>Aft-Fatal</th>
<th>Aft-Serious Injury</th>
<th>Aft-Other Injury</th>
<th>Aft-PDO</th>
<th>Aft-Total</th>
<th>Evaluation Results (Benefit/Cost Ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No evaluation data</td>
<td></td>
</tr>
</tbody>
</table>
Optional Attachments

<table>
<thead>
<tr>
<th>Sections</th>
<th>Files Attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Structure: Program Administration</td>
<td>General Notes for the Annual Safety Report 2014.docx</td>
</tr>
<tr>
<td>Program Structure: Program Administration</td>
<td>Final HSIP Manual Nov 22 rd_1.pdf</td>
</tr>
</tbody>
</table>
Glossary

5 year rolling average means the average of five individual, consecutive annual points of data (e.g. annual fatality rate).

Emphasis area means a highway safety priority in a State’s SHSP, identified through a data-driven, collaborative process.

Highway safety improvement project means strategies, activities and projects on a public road that are consistent with a State strategic highway safety plan and corrects or improves a hazardous road location or feature or addresses a highway safety problem.

HMVMT means hundred million vehicle miles traveled.

Non-infrastructure projects are projects that do not result in construction. Examples of non-infrastructure projects include road safety audits, transportation safety planning activities, improvements in the collection and analysis of data, education and outreach, and enforcement activities.

Older driver special rule applies if traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65 in a State increases during the most recent 2-year period for which data are available, as defined in the Older Driver and Pedestrian Special Rule Interim Guidance dated February 13, 2013.

Performance measure means indicators that enable decision-makers and other stakeholders to monitor changes in system condition and performance against established visions, goals, and objectives.

Programmed funds mean those funds that have been programmed in the Statewide Transportation Improvement Program (STIP) to be expended on highway safety improvement projects.

Roadway Functional Classification means the process by which streets and highways are grouped into classes, or systems, according to the character of service they are intended to provide.

Strategic Highway Safety Plan (SHSP) means a comprehensive, multi-disciplinary plan, based on safety data developed by a State Department of Transportation in accordance with 23 U.S.C. 148.

Systemic safety improvement means an improvement that is widely implemented based on high risk roadway features that are correlated with specific severe crash types.

Transfer means, in accordance with provisions of 23 U.S.C. 126, a State may transfer from an apportionment under section 104(b) not to exceed 50 percent of the amount apportioned for the fiscal year to any other apportionment of the State under that section.