District Of Columbia
Highway Safety Improvement Program
2015 Annual Report

Prepared by: DC
Protection of Data from Discovery & Admission into Evidence

23 U.S.C. 148(h)(4) states “Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for any purpose relating to this section [HSIP], shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location identified or addressed in the reports, surveys, schedules, lists, or other data.”

23 U.S.C. 409 states “Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential accident sites, hazardous roadway conditions, or railway-highway crossings, pursuant to sections 130, 144, and 148 of this title or for the purpose of developing any highway safety construction improvement project which may be implemented utilizing Federal-aid highway funds shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data.”
Table of Contents

Disclaimer.. ii
Executive Summary... 1
Introduction .. 5
Program Structure .. 5
 Program Administration ... 5
 Program Methodology.. 11
Progress in Implementing Projects ... 47
 Funds Programmed ... 47
 General Listing of Projects .. 50
Progress in Achieving Safety Performance Targets .. 51
 Overview of General Safety Trends .. 51
 Application of Special Rules .. 66
Assessment of the Effectiveness of the Improvements (Program Evaluation) .. 70
 SHSP Emphasis Areas ... 72
 Groups of similar project types .. 77
 Systemic Treatments ... 82
 Project Evaluation ... 90
Glossary... 92
Executive Summary

The District of Columbia's Safety Program is the focal point of the HSIP program. The Safety Program has continued to evolve in the years 2011 to 2014. The Department took a major initiative in the year 2010 by aligning Divisions and staff to ensure that Safety becomes the core of every activity performed by the Department of Transportation. As a result, the Safety Division has been expanded to handle the added responsibilities. The Safety Team at District Department of Transportation (DDOT) reviews all transportation planning and engineering studies, traffic control plans and design plans at all stages of design and construction. The new alignment has helped with the integration of Safety into all tasks and activities performed within the District of Columbia.

The DDOT Executive Management has adopted the Six Sigma for process improvements. Six Sigma principles have been used as a foundation in shaping the new Safety Team. Six Sigma is a proven disciplined approach for improving measurable results for any organization. Using these tools has helped with the coordination performed by in-house staff, other District of Columbia agencies and residents of the District. Using data and applying Six Sigma methodologies has positively impacted all road users by helping the Safety Team be able to address issues using the appropriated data over the last year.

The Agency has continued to operate the Traffic Safety Data Center at Howard University was established to support DDOT and Metropolitan Police Department (MPD) in developing and sustaining an effective process for providing timely, accurate, complete, uniform and accessible traffic and related transportation data. In addition, DDOT has completed the upgrade of TARAS (Traffic Accident Record and Analysis System) in close coordination with the MPD. These efforts have assisted in daily transfer and access to the critical transportation data and MPD's crash database. Developed by DDOT, the TARAS process automatically accesses the MPD's crash database and extracts all the data fields from their PD-10 forms. DDOT has also participated in all the major safety campaigns as mandated by the NHTSA.

Further, DDOT Safety Team utilizes the annual report on Crash Statistics and Commercial Motor Vehicles (CMV) in performing safety reviews and analyses for traffic operations and crash data at intersections, corridors and construction work zones. The Safety Program has been successful in reducing the accident rate and the fatality rate for pedestrians and bicyclists in the District of Columbia by implementing the innovative approach to traffic safety. Over all goal is to reduce serious and fatal injuries in the District by 50% by the year 2025.

DDOT has also implemented several transportation safety initiatives within the District such as:
1. MoveDC (www.movedc.org)

- Develop a coordinated, multimodal long-range transportation plan, addressing all modes of transportation in the District of Columbia.

2. goDCgo (www.godcgo.com)

- Provides information and website links on regional buses, DCCirculator, Metrobus and Metrorails as well as information on walking and biking in the District of Columbia.

3. StreetcarSafety (www.dcstreetcar.com)

- The DC Streetcar Team sends regular construction and safety updates that encompass all aspects of DC Streetcar system’s functions, including Traffic Control Plans (TCP’s) during construction. In addition, the DDOT Safety Team reviews plans and drawings for final design, new traffic signals, traffic signage and pavement markings for the Streetcar system.

4. SafetyMatters

- Safety Matters projects are high impact, low cost improvements to neighborhood streets such as new pavement markings, signs, signals, curb changes, or lighting to improve bicycle, pedestrian, and driver safety.

5. SafeRouteToSchool

- The DCSafeRouteToSchool Program works to:
 * Improves safety for students who walk and bicycle to school
 * Encourage students and their parents to walk and bicycle to school, fuel consumption, and reduce pollution and traffic congestion near schools

6. CrashDataImprovementProgram
- DDOT has established new Crash Data Improvement Program (CDIP) that would identify metrics in terms of timeliness, accuracy, and completeness of the crash data.

- DDOT organized CDIP workshop that included participants from DDOT agencies, MPD, FHWA, NHTSA, Highway Safety Office (HSO) and private consultants to familiarize the collectors, processors, maintainers, and users with the concepts of data quality and how quality data improves safety decisions.

- The CDIP workshop organized by DDOT TOA staff mainly focused on:

 a. Crash Data Collection;

 b. Crash Data Reporting, and,

 c. Crash Data Processing.

7. Traffic Incident Management Program

- DDOT has established new Traffic Incident Management (TIM) program that consists of effectively planned and coordinated multidisciplinary processes to detect, respond to, and clear traffic incidents so that traffic flow may be restored as safely and quickly as possible.

- DDOT organized TIM workshop that included participants from MPD, FHWA, NHTSA, HSO, Fire, EMS, VDOT, HSEMA, MDSHA, Maryland Police, Virginia Police, Howard University, DPW, and several other agencies.

- TOA staff at DDOT has prepared draft legislation for Move Over Law and Memorandum of Understanding (MOU) with other participating agencies to implement and enforce laws for Traffic Incident Management program in the District.

8. Vision Zero Initiative

- Vision Zero Initiative aims to improve pedestrian and bicycle transportation safety by showcasing effective local actions, empowering local leaders to take actions, and promoting partnerships to advance pedestrian and bicycle safety.

- DDOT is partnering with more than twenty (20) District government agencies in the Vision Zero Initiative, as MPD, Fire, EMS, HSEMA, DOH, OAG, OCTO, OP, City Administrator, etc. to identify effective strategies on education, enforcement, and engineering related to the Vision Zero Initiative.
In addition, DDOT has also implemented the following strategies to improve the safety of pedestrians and bicyclists in the District:

- Installed High-Intensity Activated Cross Walk (HAWK) traffic signals at 5 locations in FY 2013
- Implemented Leading Pedestrian Intervals (LPI) improvement at 50 intersections in FY 2014
- Implemented Leading Pedestrian Intervals (LPI) improvement at 14 intersections in FY 2015
- Reviewed and approved 9 miles of bike lanes
Introduction

The Highway Safety Improvement Program (HSIP) is a core Federal-aid program with the purpose of achieving a significant reduction in fatalities and serious injuries on all public roads. As per 23 U.S.C. 148(h) and 23 CFR 924.15, States are required to report annually on the progress being made to advance HSIP implementation and evaluation efforts. The format of this report is consistent with the HSIP MAP-21 Reporting Guidance dated February 13, 2013 and consists of four sections: program structure, progress in implementing HSIP projects, progress in achieving safety performance targets, and assessment of the effectiveness of the improvements.

Program Structure

Program Administration

How are Highway Safety Improvement Program funds allocated in a State?

- Central
- District
- Other

Describe how local roads are addressed as part of Highway Safety Improvement Program.

The District of Columbia does not have a local roads program. All roads are considered for HSIP and Safety Improvement projects.

HSIP funds are Centrally administered within the District of Columbia by the Department of Transportation through our Resource Administration and our Office of the Chief Financial Officer for the District of Columbia.

Identify which internal partners are involved with Highway Safety Improvement Program planning.
Briefly describe coordination with internal partners.

The DDOT Safety Team is an independent, multidisciplinary team with members across DDOT and other District of Columbia agencies. The DDOT Safety Team meets on bi-monthly basis and reviews the overall Safety Program. The internal DDOT Safety Team has members from following organizations at DDOT that coordinate safety issues and education:

1. Transportation Operations Administration (TOA)
 - TOA team includes designers, traffic engineers, transportation technicians, parking specialists, signal operation engineers, maintenance staff and street light specialists.
 - TOA team identifies issues related to the vehicular safety, accidents, vehicle queuing, sight distance obstructions and other traffic safety concerns
 - TOA team performs traffic analysis, engineering design and develops recommendations addressing traffic safety concerns

2. Policy, Planning and Sustainability Administration (PPSA)
 - PPSA team includes ward planners, pedestrian and bicycle planners
 - PPSA team identifies pedestrian and bike issues and develops recommendations to improve pedestrian and bike safety

3. Progressive Transportation Services Administration (PTSA)
 - PTSA team includes transportation planners for transit and metro
 - PTSA team provides estimates for transit ridership and identifies issues related to transit
circulation and capacity and develops appropriate recommendations

4. Urban Forestry Administration (UFA)
 - UFA team includes ward arborists
 - UFA team identifies streetscaping issues and provides appropriate recommendations

5. Infrastructure Project Management Administration (IPMA)
 - IPMA team consists of engineers, technicians and field operations personnel
 - IPMA team is responsible for the design, engineering and construction of roadways, bridges, traffic signals and alley projects in the District of Columbia
 - IPMA also manages special construction projects and all roadway assets

6. Parking Operations Branch
 - Parking Operations Branch manages operations and conditions of all parking meters
 - Parking Operations Branch consists of managers and technicians

7. Streetlights Operations Branch
 - Streetlights Operations Branch manages operations and condition of the District's street, alley, bridge, tunnel and navigation lighting systems through a streetlight asset management contract
 - Streetlights Operations Branch consists of managers, engineers, technicians and field operations personnel

8. Safe Routes to School
 - DC Safe Routes to School (SRTS) program receives funding from the Federal Highway Administration (FHWA)
 - DC Safe Routes to School Program works to:

 DC Safe Routes to School (SRTS) program receives funding from the Federal Highway Administration (FHWA)
 - DC Safe Routes to School Program works

 * Improve safety for students who walk and bicycle to school

 * Encourage students and their parents to walk and bicycle to school

 * Boost student physical activity, reduce parents’ fuel consumption, and reduce pollution and traffic congestion near schools

 To help achieve those goals, DDOT offers Safe Routes to School planning assistance for DC Schools that are interested in improving safety for student walkers and cyclists
Identify which external partners are involved with Highway Safety Improvement Program planning.

- Metropolitan Planning Organizations
- Governors Highway Safety Office
- Local Government Association
- Other: Other-Metropolitan Police Department (MPD), National Highway Traffic Safety Administration (NHTSA), Federal Highway Administration (FHWA) DC Division, Washington Metro Area Transit Authority (WMATA)

Identify any program administration practices used to implement the HSIP that have changed since the last reporting period.

- Multi-disciplinary HSIP steering committee
- Other:

Describe any other aspects of Highway Safety Improvement Program Administration on which you would like to elaborate.

The District of Columbia's Safety Program is the focal point of the HSIP program. The Safety Program has continued to evolve from the years 2011 to 2013. The Department took a major initiative in the year 2010 by aligning Divisions and staff to ensure that Safety becomes the core of every activity performed by the Department of Transportation. As a result, the Safety Division has been expanded to handle the
added responsibilities. District Department of Transportation (DDOT) Safety Team reviews all the studies, either conducted by DDOT staff or by Consultants, and design plans at all stages of design and construction. The new alignment has helped with the integration of Safety into all tasks and activities performed within the District of Columbia.

The DDOT Executive Management has adopted the Six Sigma for process improvements. Six Sigma principles have been used as a foundation in shaping the new Safety Team. Six Sigma is a proven disciplined approach for improving measurable results for any organization. Using these tools has helped with the coordination performed by in-house staff, other District of Columbia agencies and residents of the District. Using data and applying Six Sigma methodologies has positively impacted all road users by helping the Safety Team be able to address issues using the appropriate data. With reducing the number of fatalities and serious injuries as the primary goal of the Safety Program, a multi-level Safety Improvement Program has been implemented to allow the Safety Team to thoroughly, effectively and efficiently address and respond to all immediate, short-term and long-term safety concerns.

DDOT has used innovative practices in implementing the HSIP projects. These include: High Crash Location Analysis, Benefit and Cost Analysis, Road Safety Audits, Quick Field Safety Reviews and the "Decision Lens" (A software solution used for quickly collecting and synthesizing qualitative and quantitative information from multiple data sources and stakeholders for trade-off, prioritization and/or resource allocation decisions). With these innovative practices the Department is progressing toward a comprehensive, data-driven approach. As an example, those sites identified as needing a RSA will follow the recommended FHWA RSA procedures that includes the use of an independent, multi-disciplinary team with members from across DDOT and other District of Columbia agencies.

Further, DDOT Safety Team utilizes the annual reports on Crash Statistics and Commercial Motor Vehicles (CMV) in performing safety reviews and analyses for traffic operations and crash data at intersections, corridors and construction work zones. The Safety Program has been a success in reducing the accident rate and the fatality rate for pedestrians and bicyclists in the District of Columbia by implementing the innovative approaches to traffic safety. Over overall goal is to reduce serious and fatal injuries in the District by 50% by the year 2025.

DDOT has also implemented several transportation safety initiatives within the District such as:

1. MoveDC (www.movedc.org)
 - Develop a coordinated, multimodal long range transportation plan, addressing all modes of transportation in the District

2. goDCgo (www.godcgo.com)
 - Provides information and website links on regional buses, DC Circulator, Metrobus and Metrorail as well as information on walking and biking in the City
3. Streetcar Safety (www.dastreetcar.com)
 DC Streetcar Team sends regular construction and safety updates that encompass all aspects of DC Streetcar system's functions, including during Construction. In addition, the DDOT Safety Team reviews plans and drawings for final design, new traffic signals, traffic signage and pavement markings for the Streetcar system.

4. Safety Matters
 Safety Matters projects are high impact, low cost improvements to neighborhood streets such as new pavement markings, signs, signals, curb changes, or lighting to improve bicycle, pedestrian, and driver safety

5. Safe Routes to School
 The DC Safe Routes to School Program works to:
 * Improve safety for students who walk and bicycle to school
 * Encourage students and their parents to walk and bicycle to school
 * Boost student physical activity, reduce parents’ fuel consumption, and reduce pollution and traffic congestion near schools

6. Crash Data Improvement Program
 * DDOT has established new Crash Data Improvement Program (CDIP) that would identify metrics in terms of timeliness, accuracy and completeness of the crash data
 * DDOT organized CDIP workshop that included participants from DDOT agencies, MPD, FHWA, NHTSA, Highway Safety Office (HSO) and private consultants to familiarize the collectors, processors, maintainers and users with the concepts of data quality and how quality data improves safety decisions
 * The CDIP workshop organized by DDOT TOA staff mainly focused on:
 a. Crash Data Collection
 b. Crash Data Reporting
 c. Crash Data Processing

7. Traffic Incident Management Program
 * DDOT has established new Traffic Incident Management (TIM) program that consists of a effectively planned and coordinated multidisciplinary process to detect, respond to and clear traffic incidents so that traffic flow may be restored as safely and quickly as possible.
 * DDOT organized TIM workshop that included participants from MPD, FHWA, NHTSA, HSO, Fire, EMS, VDOT, HSEMA, MDSHA, Maryland Police, Virginia Police, Howard University, DPW and several other agencies
 * TOA staff at DDOT has prepared draft legislation for Move Over Law and Memorandum of Understanding (MOU) with other participating agencies to implement and enforce laws for Traffic Incident Management program in the District of Columbia
* DDOT organized TIM Train-the-Trainer (TtT) workshop that included participants from MPD, FHWA, NHTSA, HSO, Fire, EMS, VDOT, HSEMA, MDSHA, Maryland Police, Virginia Police, Howard University, DPW and several other agencies
* DDOT organized the SHRP2 Transportation Management Systems and Operations (TMS&O) workshop for the entire Washington Metropolitan Region (DMV area) and First Responders
* DDOT organized Bicycle and Pedestrian Safety Workshop for the entire Washington Metropolitan Region (DMV area)
* DDOT staff participated in the FHWA Training Program for Complete Street Design
* DDOT TOA staff attended the 2014 North American Travel Monitoring Exposition and Conference (NATMEC)
* DDOT staff attended the annual Highway Information Seminar (HIS) training

8. Vision Zero Initiative

-Vision Zero Initiative aims to improve pedestrian and bicycle transportation safety by showcasing effective local actions, empowering local leaders to take actions, and promoting partnerships to advance pedestrian and bicycle safety

- DDOT is partnering with more than twenty (20) District government agencies in the Vision Zero Initiative, as MPD, Fire, EMS, HSEMA, DOH, OAG, OCTO, OP, City Administrator, etc. to identify effective strategies on education, enforcement, and engineering related to the Vision Zero Initiative

In addition, DDOT has also implemented the following strategies to improve the safety of pedestrians and bicyclists in the District:

- Installed High-Intensity Activated Crosswalk (HAWK) traffic signals at 5 locations in FY 2013
- Implemented Leading Pedestrian Intervals (LPI) improvement at 50 intersections in FY 2014
- Implemented Leading Pedestrian Intervals (LPI) improvement at 14 intersections in FY 2015
- Reviewed and approved 9 miles of bike lanes

DDOT Safety Team has identified the top five percent high hazard locations in the District for further safety analysis. Overall, the goal is to meet the SHSP goal - to reduce the total serious and fatal injuries in the District by fifty-percent (50%) by the year 2025. The District of Columbia does not have a local roads program. All roads are considered for the HSIP projects.

Program Methodology
Select the programs that are administered under the HSIP.
<table>
<thead>
<tr>
<th>Program: Intersection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Program Methodology: 10/1/2014</td>
</tr>
</tbody>
</table>

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury crashes only</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
<tr>
<td>Other</td>
<td>Lane miles</td>
<td>Roadside features</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>
What project identification methodology was used for this program?

☒ Crash frequency
☐ Expected crash frequency with EB adjustment
☐ Equivalent property damage only (EPDO Crash frequency)
☐ EPDO crash frequency with EB adjustment
☐ Relative severity index
☒ Crash rate
☐ Critical rate
☐ Level of service of safety (LOSS)
☐ Excess expected crash frequency using SPFs
☐ Excess expected crash frequency with the EB adjustment
☐ Excess expected crash frequency using method of moments
☐ Probability of specific crash types
☐ Excess proportions of specific crash types
☐ Other

Are local roads (non-state owned and operated) included or addressed in this program?

☒ Yes
☐ No

If yes, are local road projects identified using the same methodology as state roads?

☒ Yes
☐ No

How are highway safety improvement projects advanced for implementation?

☐ Competitive application process
Other-DDOT Safety Team utilizes the annual reports on Crash statistics and Commercial Motor Vehicles (CMV) in performing safety reviews and analyses for traffic operations and crash data at intersections, corridors and construction work zones.

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

- Ranking based on B/C
- Available funding
- Incremental B/C
- Ranking based on net benefit
- Other

- Number of injuries: 3
- Number of injury collisions: 2
- Total number of collisions: 1

Program: Safe Corridor

Date of Program Methodology: 10/1/2014
What data types were used in the program methodology?

Crashes
- ☑️ All crashes
- ☐ Fatal crashes only
- ☐ Fatal and serious injury crashes only
- ☐ Other

Exposure
- ☑️ Traffic
- ☐ Volume
- ☐ Population
- ☐ Lane miles
- ☐ Other

Roadway
- ☐ Median width
- ☐ Horizontal curvature
- ☑️ Functional classification
- ☐ Roadside features
- ☐ Other

What project identification methodology was used for this program?

- ☑️ Crash frequency
- ☐ Expected crash frequency with EB adjustment
- ☐ Equivalent property damage only (EPDO Crash frequency)
- ☐ EPDO crash frequency with EB adjustment
- ☐ Relative severity index
- ☑️ Crash rate
- ☐ Critical rate
- ☐ Level of service of safety (LOSS)
- ☐ Excess expected crash frequency using SPF
- ☐ Excess expected crash frequency with the EB adjustment
- ☐ Excess expected crash frequency using method of moments
- ☐ Probability of specific crash types
- ☐ Excess proportions of specific crash types
- ☐ Other

Are local roads (non-state owned and operated) included or addressed in this program?
Yes

No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

- [x] Competitive application process
- [] selection committee
- [x] Other

- Projects for Design are automatically implemented through Construction. These projects are advanced by "Decision Lens" and internal review of annual Crash statistics report and Commercial Motor Vehicles (CMV) report

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- [] Relative Weight in Scoring
- [x] Rank of Priority Consideration

- [] Ranking based on B/C
- [] Available funding
- [] Incremental B/C
- [] Ranking based on net benefit
- [] Other

- [x] Total number of collisions 1
Program: Bicycle Safety

Date of Program Methodology: 10/1/2014

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury crashes only</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
<tr>
<td>Other</td>
<td>Lane miles</td>
<td>Roadside features</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

- ✔ Crash frequency
- □ Expected crash frequency with EB adjustment
- □ Equivalent property damage only (EPDO Crash frequency)
- □ EPDO crash frequency with EB adjustment
- □ Relative severity index
- ✔ Crash rate
- □ Critical rate
- □ Level of service of safety (LOSS)
- □ Excess expected crash frequency using SPF

☐ Excess expected crash frequency with the EB adjustment
☐ Excess expected crash frequency using method of moments
☐ Probability of specific crash types
☐ Excess proportions of specific crash types
☐ Other

Are local roads (non-state owned and operated) included or addressed in this program?
☒ Yes
☐ No

If yes, are local road projects identified using the same methodology as state roads?
☒ Yes
☐ No

How are highway safety improvement projects advanced for implementation?
☐ Competitive application process
☐ selection committee
☒ Other-Separate funds are allocated to implement bike safety projects

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
☒ Rank of Priority Consideration

☐ Ranking based on B/C
Available funding
 Incremental B/C
 Ranking based on net benefit
 Other
 Total Number of Collisions 1

Program: Skid Hazard
Date of Program Methodology: 10/1/2014

What data types were used in the program methodology?

Crashes
- All crashes
- Fatal crashes only
- Fatal and serious injury crashes only
- Other

Exposure
- Traffic
- Volume
- Population
- Lane miles
- Other

Roadway
- Median width
- Horizontal curvature
- Functional classification
- Roadside features
- Other

What project identification methodology was used for this program?
- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
Are local roads (non-state owned and operated) included or addressed in this program?

- Yes
- No

If yes, are local road projects identified using the same methodology as state roads?

- Yes
- No

How are highway safety improvement projects advanced for implementation?

- Competitive application process
- Selection committee

- Other - Skid improvement projects are implemented by "Decision Lens" software program used by all DDOT Managers

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical
rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

- Ranking based on B/C
- Available funding
- Incremental B/C
- Ranking based on net benefit
- Other

- Total Number of Collisions: 1

Program: Crash Data

Date of Program Methodology: 10/1/2014

What data types were used in the program methodology?

Crashes
- All crashes
- Fatal crashes only
- Fatal and serious injury crashes only
- Other

Exposure
- Traffic
- Volume
- Population
- Other

Roadway
- Median width
- Horizontal curvature
- Functional classification
- Roadside features
- Other
What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other

Are local roads (non-state owned and operated) included or addressed in this program?

- Yes
- No

If yes, are local road projects identified using the same methodology as state roads?

- Yes
- No

How are highway safety improvement projects advanced for implementation?

- Competitive application process
Other - Projects for Design are automatically implemented through Construction. These projects are advanced by "Decision Lens" and internal review of annual Crash statistics report and Commercial Motor Vehicles (CMV) report.

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

- Ranking based on B/C
- Available funding
- Incremental B/C
- Ranking based on net benefit
- Other
- Total Number of Collisions: 1

Program: Red Light Running Prevention

Date of Program Methodology: 10/1/2014

What data types were used in the program methodology?

Crashes Exposure Roadway
What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPF's
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other

Are local roads (non-state owned and operated) included or addressed in this program?

- Yes
No

If yes, are local road projects identified using the same methodology as state roads?
☑ Yes
☐ No

How are highway safety improvement projects advanced for implementation?

☐ Competitive application process
☐ Selection committee
☐ Other

☐ Other - Projects for Design are automatically implemented through Construction. These projects are advanced by "Decision Lens" and internal review of annual Crash statistics report and Commercial Motor Vehicles (CMV) report

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
☑ Rank of Priority Consideration

☐ Ranking based on B/C
☐ Available funding
☐ Incremental B/C
☐ Ranking based on net benefit
☐ Other

☑ Total Number of Collisions 1
Program: Low-Cost Spot Improvements

Date of Program Methodology: 10/1/2014

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ All crashes</td>
<td>☒ Traffic</td>
<td>☐ Median width</td>
</tr>
<tr>
<td>☐ Fatal crashes only</td>
<td>☒ Volume</td>
<td>☐ Horizontal curvature</td>
</tr>
<tr>
<td>☐ Fatal and serious injury</td>
<td>☐ Population</td>
<td>☒ Functional classification</td>
</tr>
<tr>
<td>crashes only</td>
<td></td>
<td>☐ Roadside features</td>
</tr>
<tr>
<td>☐ Other</td>
<td>☐ Lane miles</td>
<td>☐ Other</td>
</tr>
<tr>
<td></td>
<td>☐ Other</td>
<td></td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

- ☒ Crash frequency
- ☐ Expected crash frequency with EB adjustment
- ☐ Equivalent property damage only (EPDO Crash frequency)
- ☐ EPDO crash frequency with EB adjustment
- ☐ Relative severity index
- ☒ Crash rate
- ☐ Critical rate
- ☐ Level of service of safety (LOSS)
- ☐ Excess expected crash frequency using SPF
- ☐ Excess expected crash frequency with the EB adjustment
Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

- Yes
- No

If yes, are local road projects identified using the same methodology as state roads?

- Yes
- No

How are highway safety improvement projects advanced for implementation?

- Competitive application process

- Selection committee

- Other

- Other - Projects for Design are automatically implemented through Construction. These projects are advanced by "Decision Lens" and internal review of annual Crash statistics report and Commercial Motor Vehicles (CMV) report

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring

- Rank of Priority Consideration
2015 District Of Columbia Highway Safety Improvement Program

☐ Ranking based on B/C
☐ Available funding
☐ Incremental B/C
☐ Ranking based on net benefit
☐ Other
☒ Total Number of Collisions 1

Program: Sign Replacement And Improvement

Date of Program Methodology: 10/1/2014

What data types were used in the program methodology?

Crashes
☒ All crashes
☐ Fatal crashes only
☐ Fatal and serious injury crashes only
☐ Other

Exposure
☒ Traffic
☒ Volume
☐ Population
☐ Other

Roadway
☐ Median width
☐ Horizontal curvature
☒ Functional classification
☐ Roadside features
☐ Other

What project identification methodology was used for this program?

☒ Crash frequency
☐ Expected crash frequency with EB adjustment
☐ Equivalent property damage only (EPDO Crash frequency)
EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other

Are local roads (non-state owned and operated) included or addressed in this program?
- Yes
- No

If yes, are local road projects identified using the same methodology as state roads?
- Yes
- No

How are highway safety improvement projects advanced for implementation?
- Competitive application process
- Selection committee
- Other
- Other-These projects are advanced by "Decision Lens" and internal review of annual Crash statistics report and Commercial Motor Vehicles (CMV) report
Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Select the processes used to prioritize projects for implementation.

 - [] Relative Weight in Scoring
 - [x] Rank of Priority Consideration

- For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

 - [] Ranking based on B/C
 - [] Available funding
 - [] Incremental B/C
 - [] Ranking based on net benefit
 - [] Other

- Total Number of Collisions: 1

Program: Local Safety
Date of Program Methodology: 10/1/2014

What data types were used in the program methodology?

- **Crashes**
 - [x] All crashes
 - [] Fatal crashes only
 - [] Fatal and serious injury crashes only
 - [] Other

- **Exposure**
 - [x] Traffic
 - [x] Volume
 - [] Population
 - [] Lane miles

- **Roadway**
 - [] Median width
 - [] Horizontal curvature
 - [] Functional classification
 - [] Roadside features
What project identification methodology was used for this program?

☑ Crash frequency
☐ Expected crash frequency with EB adjustment
☐ Equivalent property damage only (EPDO Crash frequency)
☐ EPDO crash frequency with EB adjustment
☐ Relative severity index
☑ Crash rate
☐ Critical rate
☐ Level of service of safety (LOSS)
☐ Excess expected crash frequency using SPFs
☐ Excess expected crash frequency with the EB adjustment
☐ Excess expected crash frequency using method of moments
☐ Probability of specific crash types
☐ Excess proportions of specific crash types
☐ Other

Are local roads (non-state owned and operated) included or addressed in this program?

☑ Yes
☐ No

If yes, are local road projects identified using the same methodology as state roads?

☑ Yes
☐ No
How are highway safety improvement projects advanced for implementation?

- Competitive application process
- Selection committee
- Other - These projects are advanced by "Decision Lens" program utilized by all DDOT Managers

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

- Ranking based on B/C
- Available funding
- Incremental B/C
- Ranking based on net benefit
- Other

Total Number of Collisions: 1

Program: Pedestrian Safety

Date of Program Methodology: 10/1/2014

What data types were used in the program methodology?

Crashes Exposure Roadway
What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other

Are local roads (non-state owned and operated) included or addressed in this program?

- Yes
If yes, are local road projects identified using the same methodology as state roads?

☑ Yes

☐ No

How are highway safety improvement projects advanced for implementation?

☐ Competitive application process

☐ Selection committee

☑ Other-These projects are advanced by "Decision Lens" program utilized by all DDOT Managers

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring

☑ Rank of Priority Consideration

☐ Ranking based on B/C

☐ Available funding

☐ Incremental B/C

☐ Ranking based on net benefit

☐ Other

☑ Total Number of Collisions 1
Program: Right Angle Crash

Date of Program Methodology: 10/1/2014

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ All crashes</td>
<td>☒ Traffic</td>
<td>☐ Median width</td>
</tr>
<tr>
<td>☐ Fatal crashes only</td>
<td>☐ Volume</td>
<td>☐ Horizontal curvature</td>
</tr>
<tr>
<td>☐ Fatal and serious injury crashes only</td>
<td>☐ Population</td>
<td>☒ Functional classification</td>
</tr>
<tr>
<td>☐ Other</td>
<td>☐ Lane miles</td>
<td>☐ Roadside features</td>
</tr>
<tr>
<td>☐ Other</td>
<td>☐ Other</td>
<td>☐ Other</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

- ☒ Crash frequency
- ☐ Expected crash frequency with EB adjustment
- ☐ Equivalent property damage only (EPDO Crash frequency)
- ☐ EPDO crash frequency with EB adjustment
- ☐ Relative severity index
- ☒ Crash rate
- ☐ Critical rate
- ☐ Level of service of safety (LOSS)
- ☐ Excess expected crash frequency using SPF
- ☐ Excess expected crash frequency with the EB adjustment
- ☐ Excess expected crash frequency using method of moments
- ☐ Probability of specific crash types
Excess proportions of specific crash types
- Other

Are local roads (non-state owned and operated) included or addressed in this program?
- Yes
- No

If yes, are local road projects identified using the same methodology as state roads?
- Yes
- No

How are highway safety improvement projects advanced for implementation?
- Competitive application process
- Selection committee
- Other—These projects are advanced by "Decision Lens" program utilized by all the DDOT Managers

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

<table>
<thead>
<tr>
<th>Relative Weight in Scoring</th>
<th>Rank of Priority Consideration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranking based on B/C</td>
<td></td>
</tr>
<tr>
<td>Available funding</td>
<td></td>
</tr>
<tr>
<td>Incremental B/C</td>
<td></td>
</tr>
<tr>
<td>Ranking based on net benefit</td>
<td></td>
</tr>
</tbody>
</table>
Program: Segments

Date of Program Methodology: 10/1/2014

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>✅ All crashes</td>
<td>✅ Traffic</td>
<td>✅ Median width</td>
</tr>
<tr>
<td>□ Fatal crashes only</td>
<td>□ Volume</td>
<td>□ Horizontal curvature</td>
</tr>
<tr>
<td>□ Fatal and serious injury</td>
<td>□ Population</td>
<td>✅ Functional classification</td>
</tr>
<tr>
<td>crashes only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Other</td>
<td>□ Lane miles</td>
<td>□ Roadside features</td>
</tr>
<tr>
<td></td>
<td>□ Other</td>
<td>□ Other</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

	✅ Crash frequency	
	□ Expected crash frequency with EB adjustment	
	□ Equivalent property damage only (EPDO Crash frequency)	
	□ EPDO crash frequency with EB adjustment	
	□ Relative severity index	
	✅ Crash rate	
	□ Critical rate	
Level of service of safety (LOSS)
Excess expected crash frequency using SPFs
Excess expected crash frequency with the EB adjustment
Excess expected crash frequency using method of moments
Probability of specific crash types
Excess proportions of specific crash types
Other

Are local roads (non-state owned and operated) included or addressed in this program?
- Yes
- No

If yes, are local road projects identified using the same methodology as state roads?
- Yes
- No

How are highway safety improvement projects advanced for implementation?
- Competitive application process
- selection committee
- Other-These projects are advanced by "Decision Lens" program utilized by all DDOT Managers

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration
District Of Columbia
Highway Safety Improvement Program

- Ranking based on B/C
- Available funding
- Incremental B/C
- Ranking based on net benefit
- Other
- Total Number of Collisions 1

Program: Other-Sight distance analysis
Date of Program Methodology: 10/1/2013

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗ All crashes</td>
<td>✗ Traffic</td>
<td>✗ Median width</td>
</tr>
<tr>
<td></td>
<td>✗ Fatal crashes only</td>
<td>✗ Volume</td>
</tr>
<tr>
<td></td>
<td>✗ Fatal and serious injury</td>
<td>✗ Population</td>
</tr>
<tr>
<td>crashes only</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>✗ Other</td>
<td>✗ Lane miles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✗ Other</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

- ☑ Crash frequency
- ☐ Expected crash frequency with EB adjustment
- ☐ Equivalent property damage only (EPDO Crash frequency)
Are local roads (non-state owned and operated) included or addressed in this program?

- Yes
- No

If yes, are local road projects identified using the same methodology as state roads?

- Yes
- No

How are highway safety improvement projects advanced for implementation?

- Competitive application process
- Selection committee
- Other-These projects are utilized by "Decision Lens" program utilized by all DDOT Managers

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical
rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

 - Ranking based on B/C
 - Available funding
 - Incremental B/C
 - Ranking based on net benefit
 - Other
 - Total number of collisions: 1

What proportion of highway safety improvement program funds address systemic improvements?

75%

Highway safety improvement program funds are used to address which of the following systemic improvements?

- Cable Median Barriers
- Rumble Strips
- Traffic Control Device Rehabilitation
- Pavement/Shoulder Widening
- Install/Improve Signing
- Install/Improve Pavement Marking and/or Delineation
- Upgrade Guard Rails
- Clear Zone Improvements
- Safety Edge
- Install/Improve Lighting
- Add/Upgrade/Modify/Remove Traffic Signal
- Other
What process is used to identify potential countermeasures?

- Engineering Study
- Road Safety Assessment
- Other: Design Review, Capital Project Review, Sight Distance Analysis, Roadway Geometry, Accident Analysis

Identify any program methodology practices used to implement the HSIP that have changed since the last reporting period.

- Highway Safety Manual
- Road Safety audits
- Systemic Approach
- Other: Highway Capacity Manual (HCM), MUTCD, AASHTO Green Book, DDOT Design and

Describe any other aspects of the Highway Safety Improvement Program methodology on which you would like to elaborate.
The District of Columbia's Safety Program is the focal point of the HSIP program. The Safety Program has continued to evolve in the years 2011 to 2014. The Department took a major initiative in the year 2010 by aligning Divisions and staff to ensure that Safety becomes the core of every activity performed by the Department of Transportation. As a result, the Safety Division has been expanded to handle the added responsibilities. The Safety Team at District Department of Transportation (DDOT) reviews all transportation planning and engineering studies, traffic control plans and design plans at all stages of design and construction. The new alignment has helped with the integration of Safety into all tasks and activities performed within the District of Columbia.

The DDOT Executive Management has adopted the Six Sigma for process improvements. Six Sigma principles have been used as a foundation in shaping the new Safety Team. Six Sigma is a proven disciplined approach for improving measurable results for any organization. Using these tools has helped with the coordination performed by in-house staff, other District of Columbia agencies and residents of the District. Using data and applying Six Sigma methodologies has positively impacted all road users by helping the Safety Team be able to address issues using the appropriate data over the last year.

The Agency has continued to operate the Traffic Safety Data Center at Howard University was established to support DDOT and Metropolitan Police Department (MPD) in developing and sustaining an effective process for providing timely, accurate, complete, uniform and accessible traffic and related transportation data. In addition, DDOT has completed the upgrade of TARAS (Traffic Accident Record and Analysis System) in close coordination with the MPD. These efforts have assisted in the daily transfer and access to the critical transportation data and MPD’s crash database. Developed by DDOT, the TARAS process automatically accesses the MPD’s crash database and extracts all the delta records and pertinent fields from their PD-10 forms. DDOT has also participated in all the major safety campaigns as mandated by the NHTSA.

Further, DDOT Safety Team utilizes the annual reports on Crash Statistics and Commercial Motor Vehicles (CMV) in performing safety reviews and analyses for traffic operations and crash data at intersections, corridors and construction work zones. The Safety Program has been a success in reducing the accident rate and the fatality rate for pedestrians and bicyclists in the District of Columbia by implementing the innovative approaches to traffic safety. Over overall goal is to reduce serious and fatal injuries in the District by 50% by the year 2025.

DDOT has also implemented several transportation safety initiatives within the District such as:

1. MoveDC (www.movedc.org)
 - Develop a coordinated, multimodal long range transportation plan, addressing all modes of transportation in the District of Columbia.

2. goDCgo (www.godcgo.com)
- Provides information and website links on regional buses, DC Circulator, Metrobus and Metrorail as well as information on walking and biking in the District of Columbia.

3. Streetcar Safety (www.dcsstreetcar.com)

- The DC Streetcar Team sends regular construction and safety updates that encompass all aspects of DC Streetcar system's functions, including Traffic Control Plans (TCP's) during construction. In addition, the DDOT Safety Team reviews plans and drawings for final design, new traffic signals, traffic signage and pavement markings for the Streetcar system.

4. Safety Matters

- Safety Matters projects are high impact, low cost improvements to neighborhood streets such as new pavement markings, signs, signals, curb changes, or lighting to improve bicycle, pedestrian, and driver safety.

5. Safe Routes to School

- The DC Safe Routes to School Program works to:
 - Improve safety for students who walk and bicycle to school
 - Encourage students and their parents to walk and bicycle to school fuel consumption, and reduce pollution and traffic congestion near schools

6. Crash Data Improvement Program

- DDOT has established new Crash Data Improvement Program (CDIP) that would identify metrics in terms of timeliness, accuracy and completeness of the crash data

- DDOT organized the CDIP workshop that included participants from DDOT agencies, MPD, FHWA, NHTSA, Highway Safety Office (HSO) and private consultants to familiarize the collectors, processors, maintainers and users with the concepts of data quality and how quality data improves safety decisions

- The CDIP workshop organized by DDOT TOA staff mainly focused on:
 a. Crash Data Collection;
 b. Crash Data Reporting, and,
 c. Crash Data Processing

7. Traffic Incident Management Program
* DDOT has established new Traffic Incident Management (TIM) program that consists of an effectively planned and coordinated multidisciplinary process to detect, respond to and clear traffic incidents so that traffic flow may be restored as safely and quickly as possible.

* DDOT organized TIM workshop that included participants from MPD, FHWA, NHTSA, HSO, Fire, EMS, VDOT, HSEMA, MDSHA, Maryland Police, Virginia Police, Howard University, DPW and several other agencies

* TOA staff at DDOT has prepared draft legislation for Move Over Law and Memorandum of Understanding (MOU) with other participating agencies to implement and enforce laws for Traffic Incident Management program in the District of Columbia

* DDOT organized TIM Train-the-Trainer (TtT) workshop that included participants from MPD, FHWA, NHTSA, HSO, Fire, EMS, VDOT, HSEMA, MDSHA, Maryland Police, Virginia Police, Howard University, DPW and several other agencies

* DDOT organized the SHRP2 Transportation Management Systems and Operations (TMS&O) workshop for the entire Washington Metropolitan Region (DMV area) and First Responders

* DDOT organized Bicycle and Pedestrian Safety Workshop for the entire Washington Metropolitan Region (DMV area)

* DDOT staff participated in the FHWA Training Program for Complete Street Design

* DDOT TOA staff attended the 2014 North American Travel Monitoring Exposition and Conference (NATMEC)

* DDOT staff attended the annual Highway Information Seminar (HIS) training

8. Vision Zero Initiative

- Vision Zero Initiative aims to improve pedestrian and bicycle transportation safety by showcasing effective local actions, empowering local leaders to take actions, and promoting partnerships to advance pedestrian and bicycle safety

- DDOT is partnering with more than twenty (20) District government agencies in the Vision Zero Initiative, as MPD, Fire, EMS, HSEMA, DOH, OAG, OCTO, OP, City Administrator, etc. to identify effective strategies on education, enforcement, and engineering related to the Vision Zero Initiative

In addition, DDOT has also implemented the following strategies to improve the safety of pedestrians and bicyclists in the District:

- Installed High-Intensity Activated CrossWalk (HAWK) traffic signals at 5 locations in FY 2013
- Implemented Leading Pedestrian Intervals (LPI) improvement at 50 intersections in FY 2014

- Implemented Leading Pedestrian Intervals (LPI) improvement at 14 intersections in FY 2015

- Reviewed and approved 9 miles of bike lanes
Progress in Implementing Projects

Funds Programmed

Reporting period for Highway Safety Improvement Program funding.

- ☑ Calendar Year
- ☐ State Fiscal Year
- ☑ Federal Fiscal Year

Enter the programmed and obligated funding for each applicable funding category.

<table>
<thead>
<tr>
<th>Funding Category</th>
<th>Programmed*</th>
<th>Obligated</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSIP (Section 148)</td>
<td>100</td>
<td>100 %</td>
</tr>
<tr>
<td>HRRRP (SAFETEA-LU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRRR Special Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penalty Transfer - Section 154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penalty Transfer – Section 164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incentive Grants - Section 163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incentive Grants (Section 406)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Federal-aid Funds (i.e. STP, NHPP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State and Local Funds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2015 District Of Columbia Highway Safety Improvement Program

<table>
<thead>
<tr>
<th>Totals</th>
<th>100</th>
<th>100%</th>
<th>100</th>
<th>100%</th>
</tr>
</thead>
</table>

How much funding is programmed to local (non-state owned and maintained) safety projects?

0 %

How much funding is obligated to local safety projects?

$0.00

How much funding is programmed to non-infrastructure safety projects?

0 %

How much funding is obligated to non-infrastructure safety projects?

$0.00

How much funding was transferred in to the HSIP from other core program areas during the reporting period?

0 %
How much funding was transferred out of the HSIP to other core program areas during the reporting period?

$0.00

Discuss impediments to obligating Highway Safety Improvement Program funds and plans to overcome this in the future.

Since the District of Columbia is different from the other states, DDOT is required to address all the safety issues and not just the High Hazard locations. DDOT has completed the upgrade of TARAS (Traffic Accident Record and Analysis System) database with close coordination from the MPD. The TARAS database generates the list of High Hazard Locations for the District of Columbia. However, there are additional locations identified for the potential traffic safety improvement that are not included in the list of High Hazard Locations. DDOT utilizes the "Safety Matters" program to address the traffic safety issues at these additional locations using the same data driven approach for the High Hazard Locations. The "Safety Matters" program is not funded and is being done through coordination with the Pavement Rehabilitation and Reconstruction Program and Maintenance Program which is not sufficient. Therefore, we would like to have our complete safety program included for the HSIP funding. DDOT is also coordinating with the SHSO to ensure data-driven approaches are utilized to establish the performance targets for the HSIP and the SHSP program.

Describe any other aspects of the general Highway Safety Improvement Program implementation progress on which you would like to elaborate.

DDOT annually solicits assistance of Consultant services to analyze the top high hazard intersections within the District. Consultants perform analysis of traffic volumes (motorists, bike, pedestrians, transit), crash data, traffic operations, signal timing, geometric design, etc. and develop most effective countermeasures, based on the cost/benefit analyses, at the top high hazard intersections. Further, Consultant prepares Draft HSIP Reports, summarizing analyses and recommendations for each intersection, and submits to DDOT Safety Team. DDOT Safety Team reviews the HSIP reports and provides comments on the Draft HSIP reports. The Consultant incorporates all the comments and submits the Final HSIP Reports to Safety Team. The Safety Team sends the Final HSIP Reports to DDOT Signals and ITS Team for constructing the recommended roadway improvements at the top high hazard intersections.
General Listing of Projects

List each highway safety improvement project obligated during the reporting period.

<table>
<thead>
<tr>
<th>Project</th>
<th>Improvement Category</th>
<th>Output</th>
<th>HSIP Cost</th>
<th>Total Cost</th>
<th>Funding Category</th>
<th>Functional Classification</th>
<th>AADT</th>
<th>Speed</th>
<th>Roadway Ownership</th>
<th>Relationship to SHSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>TBD</td>
<td>Miles</td>
<td>1</td>
<td>1</td>
<td>TBD</td>
<td>TBD</td>
<td>1</td>
<td>1</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Progress in Achieving Safety Performance Targets

Overview of General Safety Trends
Present data showing the general highway safety trends in the state for the past five years.

<table>
<thead>
<tr>
<th>Performance Measures*</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of fatalities</td>
<td>25</td>
<td>32</td>
<td>19</td>
<td>29</td>
<td>26</td>
</tr>
<tr>
<td>Number of serious injuries</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fatality rate (per HMVMT)</td>
<td>0.7</td>
<td>0.9</td>
<td>0.53</td>
<td>0.81</td>
<td>0.72</td>
</tr>
<tr>
<td>Serious injury rate (per HMVMT)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Performance measure data is presented using a five-year rolling average.
Number of Fatalities and Serious Injuries for the Last Five Years

- **# Fatalities**
- **# Serious Injuries**

Years:
- 2010
- 2011
- 2012
- 2013
- 2014

- # Fatalities:
 - 2010: 25
 - 2011: 32
 - 2012: 19
 - 2013: 29
 - 2014: 26

- # Serious Injuries:
 - 2010: 0
 - 2011: 0
 - 2012: 0
 - 2013: 0
 - 2014: 0
Rate of Fatalities and Serious Injuries for the Last Five Years

Fatality Rate (per HMVMT) Serious Injuries Rate (per HMVMT)
To the maximum extent possible, present performance measure* data by functional classification and ownership.

Year - 2014

<table>
<thead>
<tr>
<th>Function Classification</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - INTERSTATE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXPRESSWAYS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - OTHER</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RURAL MINOR ARTERIAL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RURAL MINOR COLLECTOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RURAL MAJOR COLLECTOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RURAL LOCAL ROAD OR STREET</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>URBAN PRINCIPAL</td>
<td>3</td>
<td>0</td>
<td>0.08</td>
<td>0</td>
</tr>
<tr>
<td>Category</td>
<td>Count</td>
<td>Length</td>
<td>Standard Deviation</td>
<td>Other</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>--------</td>
<td>--------------------</td>
<td>-------</td>
</tr>
<tr>
<td>ARTERIAL - INTERSTATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URBAN PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXPRESSWAYS</td>
<td>1</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>URBAN PRINCIPAL ARTERIAL - OTHER</td>
<td>7</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>URBAN MINOR ARTERIAL</td>
<td>13</td>
<td>0</td>
<td>0.36</td>
<td>0</td>
</tr>
<tr>
<td>URBAN MINOR COLLECTOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>URBAN MAJOR COLLECTOR</td>
<td>4</td>
<td>0</td>
<td>0.11</td>
<td>0</td>
</tr>
<tr>
<td>URBAN LOCAL ROAD OR STREET</td>
<td>14</td>
<td>0</td>
<td>0.34</td>
<td>0</td>
</tr>
<tr>
<td>URBAN COLLECTOR</td>
<td>4</td>
<td>0</td>
<td>0.11</td>
<td>0</td>
</tr>
<tr>
<td>URBAN LOCAL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Fatalities by Roadway Functional Classification

![Bar chart showing fatalities by roadway functional classification for the years 2010 to 2014.](image_url)
Serious Injuries by Roadway Functional Classification
Fatality Rate by Roadway Functional Classification

Roadway Functional Classification
Serious Injury Rate by Roadway Functional Classification

Roadway Functional Classification:
- MAJOR COLLECTOR (U)
- MINOR COLLECTOR (R)
- LOCAL ROAD OR STREET (R)
- PRINCIPAL ARTERIAL (R)
- MINOR ARTERIAL (R)
- PRINCIPAL ARTERIAL - OTHER (R)
- MINOR ARTERIAL - OTHER (R)
- PRINCIPAL ARTERIAL - INTERSTATE (R)
- MINOR ARTERIAL - INTERSTATE (R)
- PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXPRESSWAYS (R)
- MINOR ARTERIAL - OTHER FREEWAYS AND EXPRESSWAYS (R)

Serious Injury Rate (per HMVMT):
- 2010
- 2011
- 2012
- 2013
- 2014
Year - 2012

<table>
<thead>
<tr>
<th>Roadway Ownership</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE HIGHWAY AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>COUNTY HIGHWAY AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOWN OR TOWNSHIP HIGHWAY AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CITY OF MUNICIPAL HIGHWAY AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STATE PARK, FOREST, OR RESERVATION AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LOCAL PARK, FOREST OR RESERVATION AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER STATE AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER LOCAL AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRIVATE (OTHER THAN RAILROAD)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAILROAD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STATE TOLL AUTHORITY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LOCAL TOLL AUTHORITY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER PUBLIC INSTRUMENTALITY (E.G. AIRPORT, SCHOOL, UNIVERSITY)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2010 DISTRICTWIDE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Year</td>
<td>Districtwide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>16, 421, 0.45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Number of Fatalities by Roadway Ownership

- **2010**
- **2011**
- **2012**
- **2013**
- **2014**

Roadway Functional Classification

- State
- County
- Town
- City
- State Park
- Other Local
- Other State
- Private
- Railroad
- State Toll
- Local Toll
- Other
Number of Serious Injuries by Roadway Ownership

- **2010**
- **2011**
- **2012**
- **2013**
- **2014**

- **# of Serious Injuries**
 - 500
 - 400
 - 300
 - 200
 - 100
 - 0

- **Roadway Functional Classification**
 - STATE
 - COUNTY
 - TOWN
 - CITY
 - LOCAL PARK
 - OTHER STATE
 - PRIVATE
 - RAILROAD
 - STATE TOLL
 - OTHER TOLL
Serious Injury Rate by Roadway Ownership

Roadway Functional Classification

- State
- County
- Town
- City
- State Park
- Other State
- Other Local
- Railroad
- State Toll
- Local Toll
- Other
Describe any other aspects of the general highway safety trends on which you would like to elaborate.

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatalities</td>
<td>25</td>
<td>32</td>
<td>19</td>
<td>29</td>
<td>18</td>
</tr>
<tr>
<td>Disabling Injuries</td>
<td>303</td>
<td>305</td>
<td>344</td>
<td>309</td>
<td>314</td>
</tr>
<tr>
<td>Non-Disabling Injuries</td>
<td>1363</td>
<td>1301</td>
<td>1275</td>
<td>1398</td>
<td>1490</td>
</tr>
</tbody>
</table>

Application of Special Rules

Present the rate of traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65.

<table>
<thead>
<tr>
<th>Older Driver Performance Measures</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatality rate (per capita)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Serious injury rate (per capita)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fatality and serious injury rate (per capita)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Performance measure data is presented using a five-year rolling average.

Fatality rate per capita (r) is the ratio of the total number of fatalities of drivers and pedestrians at the age of 65 or over (f) per 1,000 resident population (N) for the District of Columbia. Below are the calculations of fatality rate per capita (r) for years 2008 to 2013:

2008

- Total number of fatalities for drivers and pedestrians at the age of 65 or over (f) in 2008 = 16
- Total population for the District of Columbia (N) in the year 2008 = 595,130 residents
2015 District Of Columbia Highway Safety Improvement Program

- Fatality rate per capita \(r = \frac{f}{N} \times 1000 = 0.027 \)

2009
- Total number of fatalities for drivers and pedestrians at the age of 65 or over \(f \) in 2009 = 5
- Total population for the District of Columbia \(N \) in the year 2009 = 598,426 residents
- Fatality rate per capita \(r = \frac{f}{N} \times 1000 = 0.008 \)

2010
- Total number of fatalities for drivers and pedestrians at the age of 65 or over \(f \) in 2010 = 7
- Total population for the District of Columbia \(N \) in the year 2010 = 601,723 residents
- Fatality rate per capita \(r = \frac{f}{N} \times 1000 = 0.012 \)

2011
- Total number of fatalities for drivers and pedestrians at the age of 65 or over \(f \) in 2011 = 7
- Total population for the District of Columbia \(N \) in the year 2011 = 601,723 residents
- Fatality rate per capita \(r = \frac{f}{N} \times 1000 = 0.012 \)

2012
- Total number of fatalities for drivers and pedestrians at the age of 65 or over \(f \) in 2012 = 0
- Total population for the District of Columbia \(N \) in the year 2012 = 632,323 residents
- Fatality rate per capita \(r = \frac{f}{N} \times 1000 = 0.000 \)

2013
- Total number of fatalities for drivers and pedestrians at the age of 65 or over (f) in 2013 = 8
- Total population for the District of Columbia (N) in the year 2013 = 646,449 residents
- Fatality rate per capita (r) = \(f/N \times 1000 = 0.012 \)

Does the older driver special rule apply to your state?

No
Assessment of the Effectiveness of the Improvements (Program Evaluation)

What indicators of success can you use to demonstrate effectiveness and success in the Highway Safety Improvement Program?

- [] None
- [] Benefit/cost
- [] Policy change
- [x] Other: Other-Number of fatalities, Fatality rate, Number of Disabling Injuries, Total Number of Injuries

What significant programmatic changes have occurred since the last reporting period?

- [] Shift Focus to Fatalities and Serious Injuries
- [] Include Local Roads in Highway Safety Improvement Program
- [x] Organizational Changes
- [] None
- [x] Other: Other-DDOT has established Performance Targets in the HSIP and SHSP Program

Briefly describe significant program changes that have occurred since the last reporting period.
DDOT has hired one (1) Transportation Engineer in the Safety Team under the Transportation Operations Administration (TOA).
SHSP Emphasis Areas

For each SHSP emphasis area that relates to the HSIP, present trends in emphasis area performance measures.

Year - 2014

<table>
<thead>
<tr>
<th>HSIP-related SHSP Emphasis Areas</th>
<th>Target Crash Type</th>
<th>Number of Fatalities</th>
<th>Number of Serious Injuries</th>
<th>Fatality Rate (per HMVMT)</th>
<th>Serious Injury Rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Departure</td>
<td>Improper Lane Change</td>
<td>5</td>
<td>0</td>
<td>0.14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intersections</td>
<td>Intersections</td>
<td>11</td>
<td>0</td>
<td>0.31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pedestrians</td>
<td>Pedestrian-related</td>
<td>7</td>
<td>0</td>
<td>0.19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bicyclists</td>
<td>Bike-related</td>
<td>1</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Older Drivers</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0.11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Motorcyclists</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Number of Fatalities by SHSP Emphasis Area

Year 2010 to Year 2014

of Fatalities

- Lane Departure
- Intersections
- Pedestrians
- Bicyclists
- Older Drivers
- Motorcyclists

SHSP Emphasis Area
Number of Serious Injuries by SHSP Emphasis Area

Year 2010 to Year 2014

<table>
<thead>
<tr>
<th>SHSP Emphasis Area</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Departure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedestrians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bicyclists</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Older Drivers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorcyclists</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

of Serious Injuries

0 100 200 300 400 500
Fatality Rate by SHSP Emphasis Area

Year 2010 to Year 2014

SHSP Emphasis Area

Rate of Fatalities
Serious Injury Rate by SHSP Emphasis Area

Year 2010 to Year 2014

SHSP Emphasis Area:
- Lane Departure
- Intersections
- Pedestrians
- Bicyclists
- Older Drivers
- Motorcyclists
Groups of similar project types
Present the overall effectiveness of groups of similar types of projects.

Year - 2014

<table>
<thead>
<tr>
<th>HSIP Sub-program Types</th>
<th>Target Crash Type</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicycle Safety</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pedestrian Safety</td>
<td></td>
<td>7</td>
<td>0</td>
<td>0.19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Red Light Running Prevention</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Right Angle Crash</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intersection</td>
<td></td>
<td>11</td>
<td>0</td>
<td>0.31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Fatalities by Target Crash Type for Groups of Similar Projects

Year 2010 to Year 2014

[Diagram showing number of fatalities by target crash type for the years 2010 to 2014. Each crash type is represented with a different color bar for each year.]
#Serious Injuries by Target Crash Type for Groups of Similar Projects

Year 2010 to Year 2014

Target Crash Type

- All
- Angle
- Cross median
- Fixed object
- Head-on
- Left-turn
- Night-time
- Intersection
- Rear-end
- Right-turn
- Run-off-road
- Speed-related
- Truck-related
- Vehicle/animal
- Vehicle/ocycle
- Walkway
Fatality Rate by Target Crash Type for Groups of Similar Projects

Year 2010 to Year 2014

Rate of Fatalities

Target Crash Type

- All
- Angle
- Cross median
- Fixed object
- Sideswipe
- Head-on
- Left-turn
- Night-time
- Intersections
- Non-intersection
- Rear-end
- Right-turn
- Run-off-road
- Speed-related
- Truck-related
- Vehicle/animal
- Vehicle/bicycle
- Vehicle/pedestrian

2010 - 2012 - 2012 - 2013 - 2014
Serious Injury Rate by Target Crash Type for Groups of Similar Projects

Year 2010 to Year 2014

Rate of Serious Injuries

Target Crash Type
Systemic Treatments
Present the overall effectiveness of systemic treatments.

Year - 2014

<table>
<thead>
<tr>
<th>Systemic improvement</th>
<th>Target Crash Type</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install/Improve Lighting</td>
<td>Other Defects</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Install/Improve Pavement Marking and/or Delineation</td>
<td>Road Defects</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Fatalities by Target Crash Type for Systemic Safety Improvements

Year 2010 to Year 2014

Target Crash Type
Fatality Rate by Target Crash Type for Systemic Safety Improvements

Year 2010 to Year 2014

Rate of Fatalities

Target Crash Type

2010 2012 2012 2013 2014
Serious Injury Rate by Target Crash Type for Systemic Safety Improvements

Year 2010 to Year 2014

Target Crash Type

Rate of Serious Injuries

2010 2011 2012 2013 2014
Describe any other aspects of the overall Highway Safety Improvement Program effectiveness on which you would like to elaborate.

DDOT has also implemented several transportation safety initiatives under the HSIP project, such as:

1. MoveDC (www.movedc.org)
 - Develop a coordinated, multi-modal long range transportation plan, addressing all modes of transportation in the District of Columbia.

2. goDCgo (www.godcgo.com)
 - Provides information and website links on regional buses, DC Circulator, Metrobus and Metrorail as well as information on walking and biking in the District of Columbia.

3. Streetcar Safety (www.dcstreetcar.com)
 - The DC Streetcar Team sends regular construction and safety updates that encompass all aspects of DC Streetcar system's functions, including Traffic Control Plans (TCP's) during construction. In addition, the DDOT Safety Team reviews plans and drawings for final design, new traffic signals, traffic signage and pavement markings for the Streetcar system.

4. Safety Matters
 - Safety Matters projects are high impact, low cost improvements to neighborhood streets such as new pavement markings, signs, signals, curb changes, or lighting to improve bicycle, pedestrian, and driver safety.

5. Safe Routes to School
 - The DC Safe Routes to School Program works to:
 * Improve safety for students who walk and bicycle to school
* Encourage students and their parents to walk and bicycle to school to reduce fuel consumption, and reduce pollution and traffic congestion near schools.

6. Crash Data Improvement Program

- DDOT has established a new Crash Data Improvement Program (CDIP) that would identify metrics in terms of timeliness, accuracy, and completeness of the crash data.

- DDOT organized the CDIP workshop that included participants from DDOT agencies, MPD, FHWA, NHTSA, Highway Safety Office (HSO) and private consultants to familiarize the collectors, processors, maintainers, and users with the concepts of data quality and how quality data improves safety decisions.

- The CDIP workshop organized by DDOT TOA staff mainly focused on:

 a. Crash Data Collection;

 b. Crash Data Reporting, and,

 c. Crash Data Processing.

7. Traffic Incident Management (TIM) Program

- DDOT has established a new TIM program that consists of planned and coordinated multidisciplinary process to detect, respond, and clear traffic incidents so that traffic flow may be restored as safely and quickly as possible.

- DDOT organized the TIM workshop that included participants from MPD, FHWA, NHTSA, HSO, Fire, EMS, VDOT, HSEMA, MDSHA, Maryland Police, Virginia Police, Howard University, DPW, and several other agencies.

- TOA staff at DDOT has prepared draft legislation for Move Over Law and Memorandum of Understanding (MOU) with other participating agencies to implement and enforce laws for Traffic Incident Management program in the District.

8. Vision Zero Initiative
- Vision Zero Initiative aims to improve pedestrian and bicycle transportation safety by showcasing effective local actions, empowering local leaders to take actions, and promoting partnerships to advance pedestrian and bicycle safety.

- DDOT is partnering with more than twenty (20) District government agencies in the Vision Zero Initiative, as MPD, Fire, EMS, HSEMA, DOH, OAG, OCTO, OP, City Administrator, etc. to identify effective strategies on education, enforcement, and engineering related to the Vision Zero Initiative.

In addition, DDOT has also implemented the following strategies to improve the safety of pedestrians and bicyclists in the District:

- Installed High-Intensity Activated CrossWalk (HAWK) traffic signals at 5 locations in FY 2013
- Implemented Leading Pedestrian Intervals (LPI) improvement at 50 intersections in FY 2014
- Implemented Leading Pedestrian Intervals (LPI) improvement at 14 intersections in FY 2015
- Reviewed and approved 9 miles of bike lanes
Project Evaluation

Provide project evaluation data for completed projects (optional).

<table>
<thead>
<tr>
<th>Location</th>
<th>Functional Class</th>
<th>Improvement Category</th>
<th>Improvement Type</th>
<th>Bef-Fatal</th>
<th>Bef-Serious Injury</th>
<th>Bef-All Injuries</th>
<th>Bef-PDO</th>
<th>Aft-Fatal</th>
<th>Aft-Serious Injury</th>
<th>Aft-All Injuries</th>
<th>Aft-PDO</th>
<th>Aft-Total</th>
<th>Evaluation Results (Benefit/Cost Ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersection of 9th Street and Massachusetts Avenue, NW</td>
<td>Urban Principal Arterial - Other</td>
<td></td>
<td></td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection of 7th Street and Mount Vernon Pl, NW</td>
<td>Urban Principal Arterial - Other</td>
<td></td>
<td></td>
<td>3</td>
<td>12</td>
<td>15</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optional Attachments

<table>
<thead>
<tr>
<th>Sections</th>
<th>Files Attached</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5 year rolling average means the average of five individual, consecutive annual points of data (e.g. annual fatality rate).

Emphasis area means a highway safety priority in a State’s SHSP, identified through a data-driven, collaborative process.

Highway safety improvement project means strategies, activities and projects on a public road that are consistent with a State strategic highway safety plan and corrects or improves a hazardous road location or feature or addresses a highway safety problem.

HMVMT means hundred million vehicle miles traveled.

Non-infrastructure projects are projects that do not result in construction. Examples of non-infrastructure projects include road safety audits, transportation safety planning activities, improvements in the collection and analysis of data, education and outreach, and enforcement activities.

Older driver special rule applies if traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65 in a State increases during the most recent 2-year period for which data are available, as defined in the Older Driver and Pedestrian Special Rule Interim Guidance dated February 13, 2013.

Performance measure means indicators that enable decision-makers and other stakeholders to monitor changes in system condition and performance against established visions, goals, and objectives.

Programmed funds mean those funds that have been programmed in the Statewide Transportation Improvement Program (STIP) to be expended on highway safety improvement projects.

Roadway Functional Classification means the process by which streets and highways are grouped into classes, or systems, according to the character of service they are intended to provide.

Strategic Highway Safety Plan (SHSP) means a comprehensive, multi-disciplinary plan, based on safety data developed by a State Department of Transportation in accordance with 23 U.S.C. 148.

Systemic safety improvement means an improvement that is widely implemented based on high risk roadway features that are correlated with specific severe crash types.

Transfer means, in accordance with provisions of 23 U.S.C. 126, a State may transfer from an apportionment under section 104(b) not to exceed 50 percent of the amount apportioned for the fiscal year to any other apportionment of the State under that section.