Protection of Data from Discovery & Admission into Evidence

23 U.S.C. 148(h)(4) states “Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for any purpose relating to this section [HSIP], shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location identified or addressed in the reports, surveys, schedules, lists, or other data.”

23 U.S.C. 409 states “Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential accident sites, hazardous roadway conditions, or railway-highway crossings, pursuant to sections 130, 144, and 148 of this title or for the purpose of developing any highway safety construction improvement project which may be implemented utilizing Federal-aid highway funds shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data.”
# Table of Contents

Disclaimer ...................................................................................................................................................... ii

Executive Summary ....................................................................................................................................... 1

Introduction .................................................................................................................................................. 3

Program Structure ........................................................................................................................................ 3
  Program Administration ........................................................................................................................... 3
  Program Methodology .............................................................................................................................. 6

Progress in Implementing Projects ............................................................................................................. 45
  Funds Programmed ............................................................................................................................. 45
  General Listing of Projects .................................................................................................................. 48

Progress in Achieving Safety Performance Targets .................................................................................... 60
  Overview of General Safety Trends ........................................................................................................ 60
  Application of Special Rules .................................................................................................................... 74

Assessment of the Effectiveness of the Improvements (Program Evaluation) .......................................... 76
  SHSP Emphasis Areas .............................................................................................................................. 77
  Groups of similar project types ............................................................................................................... 82
  Systemic Treatments ............................................................................................................................... 87
  Project Evaluation ................................................................................................................................... 93

Glossary ....................................................................................................................................................... 96
Executive Summary

The purpose of the Georgia Highway Safety Improvement Program (HSIP) is to provide for a continuous and systematic procedure that identifies and reviews specific traffic safety issues around the state to identify locations with potential for improvement. The ultimate goal of the HSIP process is to reduce the number of crashes, injuries and fatalities by eliminating certain predominant types of crashes through the implementation of engineering solutions.

Each year, the Department sets aside safety funding to implement safety projects. The total Highway Safety Improvement Program allocation fell to approximately $32,714,305 because of limited federal availability during Fiscal Year 2015. This past year represented the ninth consecutive year of lower fatalities after reaching a 32-year high in 2005. Georgia’s total number of fatalities decreased 1.0% from the previous year. Despite no discernible change in statewide travel, Georgia’s statewide fatality rate continues to decrease. These trends are closely monitored by all highway safety professionals in Georgia and remain the focus of the state’s Strategic Highway Safety Plan (SHSP).

The Governor’s Office of Highway Safety (GOHS) develops and supports the SHSP. The plan has specific Emphasis Area Task Teams that are organized to develop specific emphasis area countermeasures.

Countermeasures are represented in proposed safety projects. Combining existing highway safety plans represented in HSIP and professional efforts of the task team members has successfully leveraged many existing resources to address the safety emphasis target areas. The multi-disciplinary safety teams have succeeded in engaging the four safety E’s into their efforts to identify safety projects.

Projects that comprise the HSIP are usually moderately-sized projects that include intersection improvements, signal upgrades (LEDs), ramp improvements, corridor improvements, turn lanes, signage, corridor improvements and traffic engineering studies. All public roads are included in one or more of the various emphasis areas of the program. Safety projects may be nominated or identified from a large number of sources. One of the most common methods is by an analysis of vehicle crash locations and types.

Locations reported by citizens, elected officials, local governments, city and county engineers, emergency agencies and metropolitan planning organizations are all accepted for analysis. A project may qualify as a safety project because of a positive impact on an existing safety problem, because of evidence that it will prevent a hazardous condition, or because, it falls into one of several pre-approved categories of improvements that are known to provide safety benefits. Examples of this last category include guardrail, traffic signals, railroad crossing warning devices, and most intersection improvements. Public pedestrian and bicycle facilities and traffic calming projects may also be eligible for hazard elimination projects. Once a project has been identified, a benefit/cost analysis is performed.
The Metropolitan Planning Organizations (MPO) and local governments are encouraged to develop high crash lists for local roads that can be used to identify hazard elimination projects. City and county engineers and local public agencies are encouraged annually to examine local road systems and recommend safety projects. These projects will be submitted to the District Traffic Engineer for approval and recommendation for project concept and project programming in the Office of Traffic Operations in exactly the same manner as projects on the State Routes.

As Georgia highway fatalities continue to decline at 4 to 5% per year, the nation’s highway fatalities slightly declined three percent in 2013 to approximately 30,057 (FARS). The aggressive safety emphasis by Georgia DOT, the Department of Public Safety and the Governor’s Office of Highway Safety continue to keep the state’s numbers trending downward. Every Georgia DOT project is designed and constructed to meet or exceed federal safety guidelines. GDOT continues to look for still more ways to improve safety. The Office of Traffic Operations is refining and utilizing our crash data and road safety audits to improve safety and reduce fatalities, injuries and crashes. We are building roundabout intersections, increasing the use of cable barrier on divided roadways, raising center concrete median barriers, installing rumble strips, installing more retro-reflective signage, applying pavement markings, coordinating traffic signal timing and installing pedestrian accommodations to make our roads safer.
Introduction

The Highway Safety Improvement Program (HSIP) is a core Federal-aid program with the purpose of achieving a significant reduction in fatalities and serious injuries on all public roads. As per 23 U.S.C. 148(h) and 23 CFR 924.15, States are required to report annually on the progress being made to advance HSIP implementation and evaluation efforts. The format of this report is consistent with the HSIP MAP-21 Reporting Guidance dated February 13, 2013 and consists of four sections: program structure, progress in implementing HSIP projects, progress in achieving safety performance targets, and assessment of the effectiveness of the improvements.

Program Structure

Program Administration

How are Highway Safety Improvement Program funds allocated in a State?

- Central
- District
- Other

Describe how local roads are addressed as part of Highway Safety Improvement Program.

The state is continuing the high risk rural roads program as part of the HSIP. Additionally the state has an established Off System Safety Program that works through the same program coordinators. The Department employs District Coordinators that work with the Department's District Traffic Operations and local government to identify a group of roads that are not part of the state highway system and have safety deficiencies. Once the roads are selected, the list is prioritized and selected by a review team. The cost of the planned safety improvements are taken into consideration as well as the effectiveness of each countermeasure. The Department dedicates $1 million annually for each of the state's seven construction districts. This money is solely used to fund our off-system safety program.
Additionally, larger HRRR projects are individually programmed using HSIP funds. The work normally consists of installing retro-reflective signage, applying pavement markings, installing rumble strips or guardrail.

**Identify which internal partners are involved with Highway Safety Improvement Program planning.**

- Design
- Planning
- Maintenance
- Operations
- Governors Highway Safety Office
- Other:

**Briefly describe coordination with internal partners.**

Georgia’s Strategic Highway Safety Plan (SHSP) involves a variety of internal and external partners at the federal, state and local levels as well as the private sector. The SHSP was updated and in place during FY 2015 with Task Teams developing plans for the various Emphasis Areas. The task teams are comprised of a combination of engineering, emergency management, enforcement and education professionals who come from community organizations, private businesses, schools, and public institutions. The teams work together to establish measureable goal(s) that are designed to improve one or more of the established emphasis areas. Throughout the year, the teams track their progress against their goal(s). The teams report their progress to the participating groups and to the Governor’s Office of Highway Safety (GOHS). Also, the GOHS hold quarterly Safety Program Leadership Meetings for the Executive Board and task team leaders. GDOT’s Safety Action Plan is executed to implement engineering solutions to highway safety problems. GDOT’s Safety Action Plan is a key component of its HSIP and both are aligned with the goals of the state’s SHSP and a number of its Emphasis Areas.

Georgia’s SHSP Key Emphasis Areas are as follows:

- Occupant Protection - Seatbelts and Air Bags
- Serious Crash Type - Intersections, Keeping Vehicles on the Road – lane departure, Head-on and Cross Median Crashes, Minimizing
Consequences of Leaving Road, Work Zones

Aggressive Driving/Super Speeder

Impaired Driver

Age related issues - Graduated Driver's Licensing, Younger Adult Drivers, Older Drivers

Non-motorized User - Pedestrians, Bicyclists

Vehicle Type - Heavy Trucks, Motorcycles

Trauma System/Increasing EMS Capabilities

Traffic/Crash Records and Data Analysis

Traffic Incident Management Enhancement (TIME)

We also work closely with GDOT Maintenance and District Traffic Operations. As road maintenance plans are being developed the district TO teams review sites and plans to ensure signs and pavement marking meet current specifications. The TO teams and HSIP/Safety Section work with our Off System Coordinators to identify good project locations using the data driven county report cards. These activities are critical pieces to support the goals of the Serious Crash Type Task Team and promote the alignment between HSIP and SHSP.

Identify which external partners are involved with Highway Safety Improvement Program planning.

- Metropolitan Planning Organizations
- Governors Highway Safety Office
- Local Government Association
- Other: Other-Public Safety & Local Law Enforcement

Identify any program administration practices used to implement the HSIP that have changed since the last reporting period.

- Multi-disciplinary HSIP steering committee
Other: Previously our off system safety projects were “local let” projects. We have pulled the project engineering back in house and we are letting the off system safety projects the same as our other GDOT HSIP projects.

Describe any other aspects of Highway Safety Improvement Program Administration on which you would like to elaborate.

Over the past year Georgia DOT has completed our crash location data process. This process is a critical part of our program administration. Having improved crash location information that is tied to our road center line network will allow Georgia to better manage the HSIP program and improve our responsiveness in selecting the best projects.

Georgia has selected a vendor to house and coordinate our crash reporting. Many of the lessons learned over the past five years have already been used to guide our data base design, customer service and quality assurance efforts. Some of the items that we will focus on in the latest contract with Appriss will be:

- Geo Coding crash locations
- Cross referencing FARS
- Establishing separate production and reporting databases
- Develop graphical QA tools
- Promoting data analytics for our customers
- Using “heat maps” to highlight focus points.

**Program Methodology**

Select the programs that are administered under the HSIP.

- Median Barrier
- Intersection
- Safe Corridor
- Horizontal Curve
- Bicycle Safety
- Rural State Highways
- Skid Hazard
- Crash Data
- Red Light Running Prevention
2015 Georgia Highway Safety Improvement Program

- Roadway Departure
- Low-Cost Spot Improvements
- Sign Replacement And Improvement
- Local Safety
- Pedestrian Safety
- Right Angle Crash
- Left Turn Crash
- Shoulder Improvement
- Segments
- Other:

Program: Median Barrier

Date of Program Methodology: 7/1/2012

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury crashes only</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
<tr>
<td>Other</td>
<td>Lane miles</td>
<td>Roadside features</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
☐ EPDO crash frequency with EB adjustment
☐ Relative severity index
☐ Crash rate
☐ Critical rate
☐ Level of service of safety (LOSS)
☐ Excess expected crash frequency using SPF
☐ Excess expected crash frequency with the EB adjustment
☐ Excess expected crash frequency using method of moments
☒ Probability of specific crash types
☒ Excess proportions of specific crash types
☐ Other

Are local roads (non-state owned and operated) included or addressed in this program?
☐ Yes
☒ No

How are highway safety improvement projects advanced for implementation?
☐ Competitive application process
☒ Selection committee
☐ Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
Rank of Priority Consideration

- Ranking based on B/C 2
- Available funding 1
- Incremental B/C
- Ranking based on net benefit
- Other

Program: Intersection
Date of Program Methodology: 7/1/2012

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
<tr>
<td>crashes only</td>
<td></td>
<td>Roadside features</td>
</tr>
<tr>
<td>Other</td>
<td>Lane miles</td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
Equivalent property damage only (EPDO Crash frequency)

EPDO crash frequency with EB adjustment

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).
Program: Safe Corridor
Date of Program Methodology: 7/1/2012

What data types were used in the program methodology?

Crashes
- All crashes
- Fatal crashes only
- Fatal and serious injury crashes only
- Other

Exposure
- Traffic
- Volume
- Population
- Lane miles
- Other

Roadway
- Median width
- Horizontal curvature
- Functional classification
- Roadside features
- Other

What project identification methodology was used for this program?
Crash frequency

Expected crash frequency with EB adjustment

Equivalent property damage only (EPDO Crash frequency)

EPDO crash frequency with EB adjustment

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical
rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

- Ranking based on B/C
- Available funding
  - Incremental B/C
- Ranking based on net benefit
- Other

Program: Horizontal Curve

Date of Program Methodology: 7/1/2012

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
<tr>
<td>crashes only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Lane miles</td>
<td>Roadside features</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?
Crash frequency

Expected crash frequency with EB adjustment

Equivalent property damage only (EPDO Crash frequency)

EPDO crash frequency with EB adjustment

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPF

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical
rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
☒ Rank of Priority Consideration

☐ Ranking based on B/C
☒ Available funding 1
☐ Incremental B/C
☐ Ranking based on net benefit
☐ Other
☒ severity index 2

Program: Bicycle Safety

Date of Program Methodology: 7/1/2012

What data types were used in the program methodology?

Crashes
☐ All crashes
☐ Fatal crashes only
☒ Fatal and serious injury crashes only
☒ Other-Bicycle Crashes

Exposure
☒ Traffic
☐ Volume
☐ Population

Roadway
☐ Median width
☐ Horizontal curvature
☐ Functional classification
☐ Roadside features
☐ Other
☒ Other
What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other

Are local roads (non-state owned and operated) included or addressed in this program?

- Yes
- No

If yes, are local road projects identified using the same methodology as state roads?

- Yes
- No

How are highway safety improvement projects advanced for implementation?

- Competitive application process
Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

- Ranking based on B/C
- Available funding 1
- Incremental B/C
- Ranking based on net benefit
- Other

Program: Rural State Highways

Date of Program Methodology: 7/1/2012

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
</tbody>
</table>
2015 Georgia Highway Safety Improvement Program

Crashes only

- [ ] Other
- [ ] Lane miles
- [ ] Roadside features
- [ ] Other
- [ ] Other

What project identification methodology was used for this program?

- [ ] Crash frequency
- [ ] Expected crash frequency with EB adjustment
- [ ] Equivalent property damage only (EPDO Crash frequency)
- [ ] EPDO crash frequency with EB adjustment
- [ ] Relative severity index
- [ ] Crash rate
- [ ] Critical rate
- [ ] Level of service of safety (LOSS)
- [ ] Excess expected crash frequency using SPF
- [ ] Excess expected crash frequency with the EB adjustment
- [ ] Excess expected crash frequency using method of moments
- [ ] Probability of specific crash types
- [ ] Excess proportions of specific crash types
- [ ] Other

Are local roads (non-state owned and operated) included or addressed in this program?

- [ ] Yes
- [ ] No

How are highway safety improvement projects advanced for implementation?
Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
☒ Rank of Priority Consideration

☐ Ranking based on B/C 2
☒ Available funding 1
☐ Incremental B/C
☐ Ranking based on net benefit
☐ Other

Program: Skid Hazard
Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

Crashes
☒ All crashes
☐ Fatal crashes only

Exposure
☒ Traffic
☐ Volume

Roadway
☐ Median width
☐ Horizontal curvature
What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPF
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other

Are local roads (non-state owned and operated) included or addressed in this program?

- Yes
- No

How are highway safety improvement projects advanced for implementation?
Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

<table>
<thead>
<tr>
<th>Method</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranking based on B/C</td>
<td>1</td>
</tr>
<tr>
<td>Available funding</td>
<td>2</td>
</tr>
<tr>
<td>Incremental B/C</td>
<td></td>
</tr>
<tr>
<td>Ranking based on net benefit</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

Program: Crash Data

Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td></td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>│ Volume</td>
<td>Horizontal curvature</td>
<td></td>
</tr>
</tbody>
</table>
### 2015 Georgia Highway Safety Improvement Program

<table>
<thead>
<tr>
<th>Fatal and serious injury crashes only</th>
<th>Population</th>
<th>Functional classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>Lane miles</td>
<td>Roadside features</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>

**What project identification methodology was used for this program?**

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other

**Are local roads (non-state owned and operated) included or addressed in this program?**

- Yes
- No

If yes, are local road projects identified using the same methodology as state roads?
If no, describe the methodology used to identify local road projects as part of this program.

These projects are generally more systemic in nature.

How are highway safety improvement projects advanced for implementation?

- Competitive application process
- Selection committee
- Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

- Ranking based on B/C 100
- Available funding
- Incremental B/C
- Ranking based on net benefit
- Other

Program: Red Light Running Prevention
Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

**Crashes**
- All crashes
- Fatal crashes only
- Fatal and serious injury crashes only
- Other

**Exposure**
- Traffic
- Volume
- Population
- Lane miles
- Other

**Roadway**
- Median width
- Horizontal curvature
- Functional classification
- Roadside features
- Other

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPF
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
Other-identification of crashes that may be correctable by red-light cameras

Are local roads (non-state owned and operated) included or addressed in this program?

- Yes
- No

If yes, are local road projects identified using the same methodology as state roads?

- Yes
- No

How are highway safety improvement projects advanced for implementation?

- Competitive application process
- Selection committee
- Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

- Ranking based on B/C
- Available funding 1
- Incremental B/C
- Ranking based on net benefit
- Other
Program: Roadway Departure

Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ All crashes</td>
<td>☒ Traffic</td>
<td>☐ Median width</td>
</tr>
<tr>
<td>☐ Fatal crashes only</td>
<td>☒ Volume</td>
<td>☐ Horizontal curvature</td>
</tr>
<tr>
<td>☒ Fatal and serious injury crashes only</td>
<td>☐ Population</td>
<td>☐ Functional classification</td>
</tr>
<tr>
<td>☐ Other</td>
<td>☐ Lane miles</td>
<td>☐ Roadside features</td>
</tr>
<tr>
<td>☐ Other</td>
<td>☐ Other</td>
<td>☐ Other</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

<table>
<thead>
<tr>
<th>Crash frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ Crash frequency</td>
</tr>
<tr>
<td>☐ Expected crash frequency with EB adjustment</td>
</tr>
<tr>
<td>☐ Equivalent property damage only (EPDO Crash frequency)</td>
</tr>
<tr>
<td>☐ EPDO crash frequency with EB adjustment</td>
</tr>
<tr>
<td>☒ Relative severity index</td>
</tr>
<tr>
<td>☒ Crash rate</td>
</tr>
<tr>
<td>☐ Critical rate</td>
</tr>
<tr>
<td>☐ Level of service of safety (LOSS)</td>
</tr>
<tr>
<td>☐ Excess expected crash frequency using SPFs</td>
</tr>
<tr>
<td>☐ Excess expected crash frequency with the EB adjustment</td>
</tr>
</tbody>
</table>
Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C 1
Available funding 2
Incremental B/C
Ranking based on net benefit
Other
Program: Low-Cost Spot Improvements

Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
<tr>
<td>crashes only</td>
<td>Other</td>
<td>Roadside features</td>
</tr>
<tr>
<td>Other</td>
<td>Lane miles</td>
<td>Other</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPF
- Excess expected crash frequency with the EB adjustment
Excess expected crash frequency using method of moments
◆ Probability of specific crash types
☐ Excess proportions of specific crash types
☐ Other

Are local roads (non-state owned and operated) included or addressed in this program?
◆ Yes
☐ No

If yes, are local road projects identified using the same methodology as state roads?
◆ Yes
☐ No

How are highway safety improvement projects advanced for implementation?
☐ Competitive application process
◆ Selection committee
☐ Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
◆ Rank of Priority Consideration

☐ Ranking based on B/C 1
☐ Available funding
Program: Sign Replacement And Improvement

Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

- **Crashes**
  - All crashes
  - Fatal crashes only
  - Fatal and serious injury crashes only
  - Other

- **Exposure**
  - Traffic
  - Volume
  - Population

- **Roadway**
  - Median width
  - Horizontal curvature
  - Functional classification
  - Lane miles
  - Roadside features
  - Other

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPF's

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

☑ Yes

☐ No

If yes, are local road projects identified using the same methodology as state roads?

☑ Yes

☐ No

How are highway safety improvement projects advanced for implementation?

☑ Competitive application process

☐ selection committee

☑ Other-Off system route can receive marking upgrades from the off system safety program application

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
Rank of Priority Consideration

- Ranking based on B/C 1
  - Available funding
  - Incremental B/C
  - Ranking based on net benefit
  - Other

Program: Local Safety
Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

**Crashes**
- All crashes
- Fatal crashes only
- Fatal and serious injury crashes only
- Other

**Exposure**
- Traffic
- Volume
- Population
- Lane miles
- Other

**Roadway**
- Median width
- Horizontal curvature
- Functional classification
- Roadside features
- Other

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other

Are local roads (non-state owned and operated) included or addressed in this program?
- Yes
- No

If yes, are local road projects identified using the same methodology as state roads?
- Yes
- No

How are highway safety improvement projects advanced for implementation?
- Competitive application process
- selection committee
- Other
Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

<table>
<thead>
<tr>
<th>Relative Weight in Scoring</th>
<th>Rank of Priority Consideration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranking based on B/C</td>
<td>Available funding 1</td>
</tr>
<tr>
<td>Incremental B/C</td>
<td></td>
</tr>
<tr>
<td>Ranking based on net benefit</td>
<td>Other</td>
</tr>
</tbody>
</table>

Program: Pedestrian Safety

Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
<tr>
<td>crashes only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Lane miles</td>
<td>Roadside features</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- [*] Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other

Are local roads (non-state owned and operated) included or addressed in this program?

- [*] Yes
- No

If yes, are local road projects identified using the same methodology as state roads?

- [*] Yes
- No

How are highway safety improvement projects advanced for implementation?

- Competitive application process
Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

- Ranking based on B/C 1
- Available funding
- Incremental B/C
- Ranking based on net benefit
- Other

Program: Right Angle Crash

Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
</tbody>
</table>
crashes only

<table>
<thead>
<tr>
<th>Other</th>
<th>Lane miles</th>
<th>Roadside features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

- [x] Crash frequency
- [ ] Expected crash frequency with EB adjustment
- [ ] Equivalent property damage only (EPDO Crash frequency)
- [ ] EPDO crash frequency with EB adjustment
- [ ] Relative severity index
- [x] Crash rate
- [ ] Critical rate
- [ ] Level of service of safety (LOSS)
- [ ] Excess expected crash frequency using SPFs
- [ ] Excess expected crash frequency with the EB adjustment
- [ ] Excess expected crash frequency using method of moments
- [ ] Probability of specific crash types
- [x] Excess proportions of specific crash types
- [ ] Other

Are local roads (non-state owned and operated) included or addressed in this program?

- [x] Yes
- [ ] No

If yes, are local road projects identified using the same methodology as state roads?

- [x] Yes
How are highway safety improvement projects advanced for implementation?

☐ Competitive application process
☒ Selection committee
☐ Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
☒ Rank of Priority Consideration

☒ Ranking based on B/C 1
☐ Available funding
☐ Incremental B/C
☐ Ranking based on net benefit
☐ Other

Program: Left Turn Crash

Date of Program Methodology: 7/1/2013

What data types were used in the program methodology?
### Crashes
- All crashes
- Fatal crashes only
- Fatal and serious injury crashes only
- Other

### Exposure
- Traffic
- Volume
- Population
- Lane miles
- Other

### Roadway
- Median width
- Horizontal curvature
- Functional classification
- Roadside features
- Other

---

**What project identification methodology was used for this program?**

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other

---

**Are local roads (non-state owned and operated) included or addressed in this program?**
If yes, are local road projects identified using the same methodology as state roads?

- [x] Yes
- [ ] No

How are highway safety improvement projects advanced for implementation?

- [ ] Competitive application process
- [x] Selection committee
- [ ] Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- [x] Relative Weight in Scoring
- [x] Rank of Priority Consideration

- [x] Ranking based on B/C 1
- [ ] Available funding
- [ ] Incremental B/C
- [ ] Ranking based on net benefit
- [ ] Other
Program: Shoulder Improvement
Date of Program Methodology: 5/1/2015

What data types were used in the program methodology?

Crashes
- All crashes
- Fatal crashes only
- Fatal and serious injury crashes only
- Other

Exposure
- Traffic
- Volume
- Population
- Lane miles
- Other

Roadway
- Median width
- Horizontal curvature
- Functional classification
- Roadside features
- Other

What project identification methodology was used for this program?
- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
Are excess proportions of specific crash types
☐ Other

Are local roads (non-state owned and operated) included or addressed in this program?
☐ Yes
☒ No

How are highway safety improvement projects advanced for implementation?
☐ Competitive application process
☒ Selection committee
☐ Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

☐ Relative Weight in Scoring
☒ Rank of Priority Consideration

☐ Ranking based on B/C
☐ Available funding 1
☐ Incremental B/C
☐ Ranking based on net benefit
☐ Other
What proportion of highway safety improvement program funds address systemic improvements?

0

Highway safety improvement program funds are used to address which of the following systemic improvements?

- ☐ Cable Median Barriers
- ☐ Traffic Control Device Rehabilitation
- ☐ Install/Improve Signing
- ☐ Upgrade Guard Rails
- ☐ Safety Edge
- ☐ Add/Upgrade/Modify/Remove Traffic Signal
- ☐ Rumble Strips
- ☐ Pavement/Shoulder Widening
- ☐ Install/Improve Pavement Marking and/or Delineation
- ☐ Clear Zone Improvements
- ☐ Install/Improve Lighting
- ☐ Other

What process is used to identify potential countermeasures?

☒ Engineering Study
☒ Road Safety Assessment
☐ Other:
Identify any program methodology practices used to implement the HSIP that have changed since the last reporting period.

☐ Highway Safety Manual
☐ Road Safety audits
☒ Systemic Approach
☐ Other:

Describe any other aspects of the Highway Safety Improvement Program methodology on which you would like to elaborate.

Over the past year we have been working with our GDOT Maintenance Office and Environmental Office to incorporate specific safety counter measures like safety edge, rumble strips and pavement markings into our resurfacing projects.
## Progress in Implementing Projects

### Funds Programmed

Reporting period for Highway Safety Improvement Program funding.

- ☑ Calendar Year
- ☑ State Fiscal Year
- ☐ Federal Fiscal Year

Enter the programmed and obligated funding for each applicable funding category.

<table>
<thead>
<tr>
<th>Funding Category</th>
<th>Programmed*</th>
<th>Obligated</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSIP (Section 148)</td>
<td>70000000</td>
<td>32714305</td>
</tr>
<tr>
<td>HRRRP (SAFETEA-LU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRRR Special Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penalty Transfer - Section 154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penalty Transfer – Section 164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incentive Grants - Section 163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incentive Grants (Section 406)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Federal-aid Funds (i.e. STP, NHPP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State and Local Funds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How much funding is programmed to local (non-state owned and maintained) safety projects?
$7,000,000.00

How much funding is obligated to local safety projects?
$1,270,981.00

How much funding is programmed to non-infrastructure safety projects?
$550,000.00

How much funding is obligated to non-infrastructure safety projects?
$550,000.00

How much funding was transferred in to the HSIP from other core program areas during the reporting period?
$0.00
How much funding was transferred out of the HSIP to other core program areas during the reporting period?

$0.00

Discuss impediments to obligating Highway Safety Improvement Program funds and plans to overcome this in the future.

Safety is a core responsibility of Georgia DOT. We build safety into all of our programs. HSIP is only a part of the Department’s total program and safety effort. Until this year, the available funding for HSIP has been increased. The greatest hurdle has been the lack of a long term federal transportation bill that will clearly establish funding levels. We will continue to work with our federal partners to identify funding needs and work through these issues.

Over the past year we established a process to incorporate proven safety countermeasures into the maintenance resurfacing program. We will continue to seek opportunities to promote safety into our core programs.

Describe any other aspects of the general Highway Safety Improvement Program implementation progress on which you would like to elaborate.

There are no other comments
General Listing of Projects
List each highway safety improvement project obligated during the reporting period.

<table>
<thead>
<tr>
<th>Project</th>
<th>Improvement Category</th>
<th>Output Numbers</th>
<th>HSIP Cost</th>
<th>Total Cost</th>
<th>Funding Category</th>
<th>Functional Classification</th>
<th>AADT</th>
<th>Speed</th>
<th>Roadway Ownership</th>
<th>Relationship to SHSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000410 Spalding SR 362 @ CR 507/ROVER-WILLIAMSON ROADS-TURN Lanes</td>
<td>Intersection geometry Auxiliary lanes - add right-turn lane (free-flow)</td>
<td>1 Numbers</td>
<td>2787077.34</td>
<td>2787077.34</td>
<td>HSIP (Section 148)</td>
<td>Rural Major Collector</td>
<td>9100</td>
<td>55</td>
<td>State Highway Agency</td>
<td>Improving the design and operation of highway intersections</td>
</tr>
<tr>
<td>0007311 Fulton CR 3266/Bell Road @ CR 72/Boles Road</td>
<td>Intersection traffic control Modify control - all-way stop to roundabout</td>
<td>1 Numbers</td>
<td>499481</td>
<td>499481</td>
<td>HSIP (Section 148)</td>
<td>Urban Local Road or Street</td>
<td>12219</td>
<td>45</td>
<td>County Highway Agency</td>
<td>Improving the design and operation of highway intersections</td>
</tr>
<tr>
<td>Project Number</td>
<td>Description</td>
<td>Category</td>
<td>Line Numbers</td>
<td>Notes</td>
<td>Agency</td>
<td>Pedestrians</td>
<td>Intersection Improvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------------------------------------------------------------------------</td>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0007495</td>
<td>Pedestrians and bicyclists Crosswalk @ 19 SR locations in District 1-Ped Upgrade</td>
<td>Rural Principal Arterial - Other</td>
<td>2527721 .14</td>
<td>0</td>
<td>State Highway Agency</td>
<td>Making walking and street crossing easier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0008457</td>
<td>Intersection traffic control @ 19 @ CR 101/Century Road - Intersection Improvement</td>
<td>Urban Principal Arterial - Other</td>
<td>816020.3</td>
<td>55</td>
<td>State Highway Agency</td>
<td>Improving the design and operation of highway intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0008542</td>
<td>Intersection traffic control @ 42 FM CR 328/Roberts Rd to CR 648/Locust Grove Griffin Rd - Intersection Improvement</td>
<td>Rural Minor Arterial</td>
<td>1899750 .23</td>
<td>45</td>
<td>State Highway Agency</td>
<td>Improving the design and operation of highway intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0009218</td>
<td>Intersection traffic control @ 61 @ Nebo Road/Mayfield</td>
<td>Urban Minor</td>
<td>2892062 .98</td>
<td>55</td>
<td>State Highway Agency</td>
<td>Improving the design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROAD</td>
<td>Intersection traffic control - other</td>
<td>1</td>
<td>300000</td>
<td>300000</td>
<td>HSIP (Section 148)</td>
<td>Arterial</td>
<td>Agency</td>
<td>Improving the design and operation of highway intersections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0009620 Murray SR 225 @ MT Carmel Road/Mitchell Bridge Road - ROUNDABOUT</td>
<td>Intersection traffic control Modify control - all-way stop to roundabout</td>
<td>1 Numbers</td>
<td>2767835.73</td>
<td>2767835.73</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Other</td>
<td>8250</td>
<td>45</td>
<td>State Highway Agency</td>
<td></td>
</tr>
<tr>
<td>0009846 Colquitt SR 33/US 319 @ SR 33 SO - ROUNDABOUT</td>
<td>Intersection traffic control Modify control - all-way stop to roundabout</td>
<td>1 Numbers</td>
<td>640000</td>
<td>640000</td>
<td>HSIP (Section 148)</td>
<td>Rural Minor Arterial</td>
<td>7800</td>
<td>35</td>
<td>State Highway Agency</td>
<td></td>
</tr>
<tr>
<td>0009870 Effingham SR 17 @ SR 119</td>
<td>Intersection traffic control</td>
<td>1 Numbers</td>
<td>640000</td>
<td>640000</td>
<td>HSIP (Section 148)</td>
<td>Rural Minor Arterial</td>
<td>7800</td>
<td>35</td>
<td>State Highway Agency</td>
<td></td>
</tr>
<tr>
<td>Project Number</td>
<td>Description</td>
<td>Agency</td>
<td>Intersections</td>
<td>Design and OPERATION of highway Intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------------------------------------------------------------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>---------------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0009953 Walton SR 81 @ CR 461/CR 462/BOLD SPRINGS ROAD-ROUNDABOUT</td>
<td>Modify control - all-way stop to roundabout</td>
<td>710000</td>
<td>710000</td>
<td>HSIP (Section 148) Rural Major Collector</td>
<td>9700</td>
<td>45</td>
<td>State Highway Agency</td>
<td>Improve the design and operation of highway intersections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0009993 Appling SHARP CURVE TREATMENTS @ SEV LOCS IN DISTRICT 1</td>
<td>Intersection traffic control Modify control - two-way stop to roundabout</td>
<td>1 Numbers</td>
<td>3567444</td>
<td>3567444</td>
<td>HSIP (Section 148) Project on multiple roads</td>
<td>0</td>
<td>0</td>
<td>State Highway Agency</td>
<td>Improve the design and operation of highway intersections</td>
<td></td>
</tr>
<tr>
<td>0010292 Dougherty SR 520/US 82 @ CR 459/COUNTY LINE</td>
<td>Roadway Pavement surface - high friction surface</td>
<td>8.19 Miles</td>
<td>550000</td>
<td>550000</td>
<td>HSIP (Section 148) Urban Principal Arterial</td>
<td>1420</td>
<td>55</td>
<td>State Highway Agency</td>
<td>Improve the design and operation of highway intersections</td>
<td></td>
</tr>
<tr>
<td>ROAD - INTERSECTION IMPROVEMENT</td>
<td>Intersection traffic control</td>
<td>Modify control - two-way stop to roundabout</td>
<td>1 Numbers</td>
<td>Other Agency</td>
<td>8950</td>
<td>55</td>
<td>State Highway Agency</td>
<td>Intersections Improving the design and operation of highway intersections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0010364 Bulloch SR 26 @ CR 585/BURKHALTER ROAD</td>
<td>Intersection traffic control</td>
<td>Modify control - two-way stop to roundabout</td>
<td>1 Numbers</td>
<td>HSIP (Section 148)</td>
<td>Rural Minor Arterial</td>
<td>8950</td>
<td>55</td>
<td>State Highway Agency</td>
<td>Intersections Improving the design and operation of highway intersections</td>
<td></td>
</tr>
<tr>
<td>0010925 Fulton I-285 Ramps at Riverside Drive Roundabouts-ROUNDABOUT</td>
<td>Intersection traffic control</td>
<td>Modify control - modifications to roundabout</td>
<td>2 Numbers</td>
<td>HSIP (Section 148)</td>
<td>Urban Minor Arterial</td>
<td>19240</td>
<td>35</td>
<td>State Highway Agency</td>
<td>Intersections Improving the design and operation of highway intersections</td>
<td></td>
</tr>
<tr>
<td>0010925 Fulton I-285 Ramps at Riverside Drive Roundabouts-ROUNDABOUT</td>
<td>Intersection traffic control</td>
<td>Modify control - two-way stop to roundabout</td>
<td>1 Numbers</td>
<td>HSIP (Section 148)</td>
<td>Rural Minor Arterial</td>
<td>8950</td>
<td>55</td>
<td>State Highway Agency</td>
<td>Intersections Improving the design and operation of highway intersections</td>
<td></td>
</tr>
<tr>
<td>ROUNDABOUT</td>
<td>Agency</td>
<td>and operators of highway intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------------------------</td>
<td>----------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>0010939 Cobb SR 3 @ SR 92</strong></td>
<td><strong>State Highway Agency</strong></td>
<td>Improving the design and operatio of highway intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection geometry modification to roundabout</td>
<td>490000</td>
<td>490000</td>
<td><strong>HSIP (Section 148)</strong></td>
<td><strong>Urban Minor Arterial</strong></td>
<td>3877</td>
<td>55</td>
<td><strong>Intersections</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>0011832 Chatham SR 26 from McKenzie St to 15th St - 14 Locs - RRFB</strong></td>
<td><strong>State Highway Agency</strong></td>
<td>Improving the design and operatio of highway intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection traffic control Modify traffic signal - add flashing yellow arrow</td>
<td>290776</td>
<td>290776</td>
<td><strong>HSIP (Section 148)</strong></td>
<td><strong>Rural Principal Arterial - Other</strong></td>
<td>0</td>
<td>30</td>
<td><strong>Intersections</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>0012870 Fulton SR 9/US 19 FROM CS 164/DEERING ROAD</strong></td>
<td><strong>State Highway Agency</strong></td>
<td>Improving the design and operatio of highway intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roadway widening</td>
<td>200000</td>
<td>200000</td>
<td><strong>HSIP (Section 148)</strong></td>
<td><strong>Urban Principal Arterial</strong></td>
<td>4110</td>
<td>35</td>
<td><strong>Pedestrians</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Making walking and</strong></td>
<td></td>
</tr>
</tbody>
</table>

**Notes:**
- **HSIP (Section 148)**: Highway Safety Improvement Program (Section 148)
<table>
<thead>
<tr>
<th>TO CS 3377/PHARR ROAD</th>
<th>(road diet, roadway reconfiguration)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0013236 Banks OFF SYSTEM SAFETY IMPROVEMENTS @ 15 CR LOCS IN BANKS COUNTY</td>
<td>Roadway - restripe to revise separation between opposing lanes and/or shoulder widths</td>
<td>20 Miles</td>
<td>275000</td>
<td>275000</td>
<td>HSIP (Section 148)</td>
<td>Project on multiple poads</td>
</tr>
<tr>
<td>County Highway Agency</td>
<td>Roadway Departure</td>
<td>Reducing serious crash types - roadway departure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0013266 Hart OFF SYSTEM SAFETY IMPROVEMENTS @ 99 LOCS IN HART COUNTY</td>
<td>Roadway - restripe to revise separation between opposing lanes and/or shoulder widths</td>
<td>20 Miles</td>
<td>275500</td>
<td>275500</td>
<td>HSIP (Section 148)</td>
<td>Project on multiple poads</td>
</tr>
<tr>
<td>County Highway Agency</td>
<td>Roadway Departure</td>
<td>Reducing serious crash types - roadway departure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0013300 Bartow OFF</td>
<td>Roadway</td>
<td>2</td>
<td>25000</td>
<td>25000</td>
<td>HSIP</td>
<td>Project</td>
</tr>
<tr>
<td>County</td>
<td>Roadway</td>
<td>Reducing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item Number</td>
<td>Project Description</td>
<td>Roadway</td>
<td>Miles</td>
<td>Section</td>
<td>Project Length</td>
<td>Status</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>0013326 Whitfield OFF</td>
<td>SYSTEM SAFETY IMPROVEMENTS @ 74 LOCS IN DALTON</td>
<td>Roadway - restripe to revise separation between opposing lanes and/or shoulder widths</td>
<td>22 Miles</td>
<td>25000</td>
<td>25000</td>
<td>HSIP (Section 148)</td>
</tr>
<tr>
<td>0013328 Gordon OFF</td>
<td>SYSTEM SAFETY IMPROVEMENTS @ 6 CR LOCS IN GORDON COUNTY</td>
<td>Roadway - restripe to revise separation between opposing</td>
<td>2 Miles</td>
<td>25000</td>
<td>25000</td>
<td>HSIP (Section 148)</td>
</tr>
<tr>
<td>Project Number</td>
<td>Location</td>
<td>Description</td>
<td>Length</td>
<td>Cost</td>
<td>Project Type</td>
<td>Days</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
<td>------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>0013329 Bulloch OFF SYSTEM SAFETY IMPROVEMENTS @ 7 LOCS IN BULLOCH COUNTY</td>
<td>Roadway</td>
<td>Restripe to revise separation between opposing lanes and/or shoulder widths</td>
<td>2 Miles</td>
<td>40000</td>
<td>HSIP (Section 148)</td>
<td>0</td>
</tr>
<tr>
<td>0013330 Bryan OFF SYSTEM SAFETY IMPROVEMENTS @ 6 LOCS IN PEMBROKE</td>
<td>Roadway</td>
<td>Restripe to revise separation between opposing lanes and/or shoulder widths</td>
<td>2 Miles</td>
<td>8000</td>
<td>HSIP (Section 148)</td>
<td>0</td>
</tr>
<tr>
<td>0013331 Tattmall OFF</td>
<td>Roadway</td>
<td></td>
<td>2</td>
<td>18000</td>
<td>HSIP</td>
<td>0</td>
</tr>
<tr>
<td>LOCS IN TATTNALL COUNTY</td>
<td>Roadway - restripe to revise separation between opposing lanes and/or shoulder widths</td>
<td>Miles</td>
<td>(Section 148) on multiple roads</td>
<td>Highways Agency Departure</td>
<td>serious crash types - roadway departur e</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>-------</td>
<td>--------------------------------</td>
<td>--------------------------</td>
<td>----------------------------------------</td>
<td></td>
</tr>
<tr>
<td>0013349 Baldwin OFF</td>
<td>Roadway - restripe to revise separation between opposing lanes and/or shoulder widths</td>
<td>2</td>
<td>20000</td>
<td>20000</td>
<td>County Highway Agency Departure</td>
<td>Reducing serious crash types - roadway departure</td>
</tr>
<tr>
<td>0013351 Burke OFF</td>
<td>Roadway - restripe to revise separation between opposing</td>
<td>2</td>
<td>40000</td>
<td>40000</td>
<td>County Highway Agency Departure</td>
<td>Reducing serious crash types - roadway departur e</td>
</tr>
<tr>
<td>Project Number</td>
<td>Project Description</td>
<td>Roadway</td>
<td>Miles</td>
<td>Total Cost</td>
<td>HSIP Section</td>
<td>Project Type</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>---------</td>
<td>-------</td>
<td>------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>0013354 Newton OFF SYSTEM SAFETY IMPROVEMENTS @ 5 CR LOCS IN NEWTON COUNTY</td>
<td>Roadway Roadway - restripe to revise separation between opposing lanes and/or shoulder widths</td>
<td>2 Miles</td>
<td>20000</td>
<td>20000</td>
<td>HSIP (Section 148)</td>
<td>Project on multiple roads</td>
</tr>
<tr>
<td>M004782 Fulton SR 154/SR 166 from CS 2995/Barge Rd to West of CS 2353/Sylvan Rd</td>
<td>Roadway Rumble strips - unspecified or other</td>
<td>1 Numbers</td>
<td>695024.43</td>
<td>695024.43</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Other Freeways and Expressways</td>
</tr>
<tr>
<td>M005308 Fulton 403 (I-85) SR 74 TO METROPOLITAN PKWY (MP61 - MP 76)</td>
<td>Roadway Rumble strips - unspecified</td>
<td>2 Miles</td>
<td>2511561.55</td>
<td>2511561.55</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Interstate</td>
</tr>
<tr>
<td>Project ID</td>
<td>Description</td>
<td>Location</td>
<td>Distance</td>
<td>Improvements</td>
<td>Type</td>
<td>Agency</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>M005310 Fulton SR 400 from Nancy Creek to SR 140</td>
<td>Roadway Rumble strips - unspecified or other</td>
<td>2 Miles</td>
<td>1962139.3</td>
<td>1962139.3</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Other Freeways and Expressways</td>
</tr>
</tbody>
</table>
Progress in Achieving Safety Performance Targets

Overview of General Safety Trends
Present data showing the general highway safety trends in the state for the past five years.

<table>
<thead>
<tr>
<th>Performance Measures*</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of fatalities</td>
<td>1482</td>
<td>1388.4</td>
<td>1298.4</td>
<td>1233.4</td>
<td>1207.4</td>
</tr>
<tr>
<td>Number of serious injuries</td>
<td>4655</td>
<td>4042.2</td>
<td>3468</td>
<td>2974.4</td>
<td>2661.6</td>
</tr>
<tr>
<td>Fatality rate (per HMVMT)</td>
<td>1.33</td>
<td>1.26</td>
<td>1.19</td>
<td>1.13</td>
<td>1.1</td>
</tr>
<tr>
<td>Serious injury rate (per HMVMT)</td>
<td>4.18</td>
<td>3.67</td>
<td>3.18</td>
<td>2.73</td>
<td>2.43</td>
</tr>
</tbody>
</table>

*Performance measure data is presented using a five-year rolling average.
Number of Fatalities and Serious Injuries for the Last Five Years
Rate of Fatalities and Serious Injuries for the Last Five Years

![Graph showing the rate of fatalities and serious injuries for the last five years. The graph indicates a decrease in both fatality and serious injury rates from 2010 to 2014.](image)

- Fatality Rate (per HMVMT)
- Serious Injuries Rate (per HMVMT)
To the maximum extent possible, present performance measure* data by functional classification and ownership.

**Year - 2014**

<table>
<thead>
<tr>
<th>Function Classification</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - INTERSTATE</td>
<td>73.8</td>
<td>85.6</td>
<td>0.84</td>
<td>1.03</td>
</tr>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXPRESSWAYS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - OTHER</td>
<td>94.2</td>
<td>129</td>
<td>1.5</td>
<td>2.12</td>
</tr>
<tr>
<td>RURAL MINOR ARTERIAL</td>
<td>136.8</td>
<td>180</td>
<td>2.28</td>
<td>2.99</td>
</tr>
<tr>
<td>RURAL MINOR COLLECTOR</td>
<td>37.2</td>
<td>43.8</td>
<td>3.09</td>
<td>3.07</td>
</tr>
<tr>
<td>RURAL MAJOR COLLECTOR</td>
<td>166.2</td>
<td>189.2</td>
<td>3.11</td>
<td>3.59</td>
</tr>
<tr>
<td>RURAL LOCAL ROAD OR STREET</td>
<td>95.2</td>
<td>135.6</td>
<td>1.77</td>
<td>2.63</td>
</tr>
<tr>
<td>URBAN PRINCIPAL</td>
<td>95.4</td>
<td>260.8</td>
<td>0.48</td>
<td>1.29</td>
</tr>
<tr>
<td>Category</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
<td>2018</td>
</tr>
<tr>
<td>-----------------------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>ARTERIAL - INTERSTATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URBAN PRINCIPAL ARTERIAL - OTHER</td>
<td>10.6</td>
<td>31.2</td>
<td>0.34</td>
<td>1.2</td>
</tr>
<tr>
<td>FREEWAYS AND EXPRESSWAYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URBAN PRINCIPAL ARTERIAL - OTHER</td>
<td>150.4</td>
<td>512</td>
<td>1.17</td>
<td>3.92</td>
</tr>
<tr>
<td>URBAN MINOR ARTERIAL</td>
<td>177.8</td>
<td>589.6</td>
<td>1.17</td>
<td>3.83</td>
</tr>
<tr>
<td>URBAN MINOR COLLECTOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>URBAN MAJOR COLLECTOR</td>
<td>52</td>
<td>164.2</td>
<td>1</td>
<td>3.13</td>
</tr>
<tr>
<td>URBAN LOCAL ROAD OR STREET</td>
<td>118.6</td>
<td>340.6</td>
<td>0.62</td>
<td>2.25</td>
</tr>
</tbody>
</table>
# Fatalities by Roadway Functional Classification

![Bar chart showing number of fatalities by roadway functional classification from 2010 to 2014.](chart.png)

Roadway Functional Classification:
- Major Collector (U)
- Minor Collector (R)
- Minor Arterial (R)
- Principal Arterial (R)
- Principal Arterial - Other (U)
- Principal Arterial - Interstate (R)
- Principal Arterial - “Other Freeways and Expressways” (U)
- Local Road or Street (R)

The chart displays the number of fatalities over the years for each classification type, with a color code for each year.
# Serious Injuries by Roadway Functional Classification

![Bar Chart](chart.png)

Roadway Functional Classification:

- Major Collector (U)
- Minor Collector (R)
- Local Road or Street (R)
- Principal Arterial - Other (R)
- Principal Arterial - Other Freeways and Expressways (U)
- Principal Arterial - Interstate (R)
- Minor Arterial - Other (U)
- Major Arterial (U)

Legend:
- 2010
- 2011
- 2012
- 2013
- 2014

# of Serious Injuries on the Y-axis, Range: 0 to 1400.
Serious Injury Rate by Roadway Functional Classification

2010  2011  2012  2013  2014
## Year - 2014

<table>
<thead>
<tr>
<th>Roadway Ownership</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE HIGHWAY AGENCY</td>
<td>720.8</td>
<td>1578.8</td>
<td>1.09</td>
<td>2.4</td>
</tr>
<tr>
<td>COUNTY HIGHWAY AGENCY</td>
<td>341</td>
<td>749.6</td>
<td>1.18</td>
<td>2.6</td>
</tr>
<tr>
<td>TOWN OR TOWNSHIP HIGHWAY AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CITY OF MUNICIPAL HIGHWAY AGENCY</td>
<td>145.4</td>
<td>333.4</td>
<td>1.06</td>
<td>2.42</td>
</tr>
<tr>
<td>STATE PARK, FOREST, OR RESERVATION AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LOCAL PARK, FOREST OR RESERVATION AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER STATE AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER LOCAL AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRIVATE (OTHER THAN RAILROAD)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAILROAD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STATE TOLL AUTHORITY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LOCAL TOLL AUTHORITY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER PUBLIC INSTRUMENTALITY (E.G. AIRPORT, SCHOOL, UNIVERSITY)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Number of Serious Injuries by Roadway Ownership

Roadway Functional Classification

- State
- County
- Town
- City
- State Park
- Other State
- Other Local
- Private
- Railroad
- State Toll
- Local Toll

# of Serious Injuries

- 2010
- 2011
- 2012
- 2013
- 2014
Serious Injury Rate by Roadway Ownership

2010 2011 2012 2013 2014

Roadway Functional Classification

Serious Injury Rate (per HMVMT)
Describe any other aspects of the general highway safety trends on which you would like to elaborate.

There are no other comments

**Application of Special Rules**

Present the rate of traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65.

<table>
<thead>
<tr>
<th>Older Driver Performance Measures</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatality rate (per capita)</td>
<td>0.22</td>
<td>0.19</td>
<td>0.15</td>
<td>0.12</td>
<td>0.09</td>
</tr>
<tr>
<td>Serious injury rate (per capita)</td>
<td>0.54</td>
<td>0.54</td>
<td>0.47</td>
<td>0.38</td>
<td>0.31</td>
</tr>
<tr>
<td>Fatality and serious injury rate (per capita)</td>
<td>0.75</td>
<td>0.73</td>
<td>0.61</td>
<td>0.5</td>
<td>0.4</td>
</tr>
</tbody>
</table>

*Performance measure data is presented using a five-year rolling average.

(F+SI 65+ 2011/2011 population figure)+(F+SI 65+ 2010/2010 pop. Figure)+....../5 equation and it looks like this:


Does the older driver special rule apply to your state?

No
Assessment of the Effectiveness of the Improvements (Program Evaluation)

What indicators of success can you use to demonstrate effectiveness and success in the Highway Safety Improvement Program?

- None
- Benefit/cost
- Policy change
- Other: Other - Annual reduction in the total number of fatalities

What significant programmatic changes have occurred since the last reporting period?

- Shift Focus to Fatalities and Serious Injuries
- Include Local Roads in Highway Safety Improvement Program
- Organizational Changes
- None
- Other:

Briefly describe significant program changes that have occurred since the last reporting period.

n/a
**SHSP Emphasis Areas**

For each SHSP emphasis area that relates to the HSIP, present trends in emphasis area performance measures.

**Year - 2013**

<table>
<thead>
<tr>
<th>HSIP-related SHSP Emphasis Areas</th>
<th>Target Crash Type</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Departure</td>
<td></td>
<td>171.2</td>
<td>553.6</td>
<td>0.16</td>
<td>0.51</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Roadway Departure</td>
<td></td>
<td>229.2</td>
<td>598.6</td>
<td>0.21</td>
<td>0.55</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intersections</td>
<td></td>
<td>411.4</td>
<td>1632.4</td>
<td>0.38</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pedestrians</td>
<td></td>
<td>159.2</td>
<td>206.4</td>
<td>0.15</td>
<td>0.19</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bicyclists</td>
<td></td>
<td>19.2</td>
<td>41</td>
<td>0.02</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Older Drivers</td>
<td></td>
<td>191</td>
<td>266.8</td>
<td>0.18</td>
<td>0.24</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Motorcyclists</td>
<td></td>
<td>137.4</td>
<td>317</td>
<td>0.13</td>
<td>0.29</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Work Zones</td>
<td></td>
<td>16.2</td>
<td>73.2</td>
<td>0.02</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td>1233.2</td>
<td>3248</td>
<td>1.13</td>
<td>2.98</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Number of Fatalities by SHSP Emphasis Area

Year 2010 to Year 2014

<table>
<thead>
<tr>
<th>Year</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Number of Serious Injuries by SHSP Emphasis Area

Year 2010 to Year 2014

<table>
<thead>
<tr>
<th>Year</th>
<th>Lane Departure</th>
<th>Roadway Departure</th>
<th>Intersections</th>
<th>Pedestrians</th>
<th>Bicyclists</th>
<th>Older Drivers</th>
<th>Motorcyclists</th>
<th>Work Zones</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHSP Emphasis Area
Fatality Rate by SHSP Emphasis Area

Year 2010 to Year 2014

Rate of Fatalities

SHSP Emphasis Area
Serious Injury Rate by SHSP Emphasis Area

Year 2010 to Year 2014

SHSP Emphasis Area
Groups of similar project types
Present the overall effectiveness of groups of similar types of projects.

**Year - 2013**

<table>
<thead>
<tr>
<th>HSIP Sub-program Types</th>
<th>Target Crash Type</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Barrier</td>
<td>6.2</td>
<td>15.4</td>
<td>0.01</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pedestrian Safety</td>
<td>159.2</td>
<td>206.4</td>
<td>0.15</td>
<td>0.19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Red Light Running Prevention</td>
<td>19</td>
<td>55.4</td>
<td>0.02</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intersection</td>
<td>411.4</td>
<td>1632.4</td>
<td>0.38</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rural State Highways</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
# Fatalities by Target Crash Type for Groups of Similar Projects

Year 2010 to Year 2014

![Graph showing fatal crashes by target crash type for years 2010 to 2014.](image)

- **Target Crash Type**
  - All
  - Angle
  - Cross median
  - Fixed object
  - Sideswipe
  - Head on
  - Left-turn
  - Night-time
  - Intersections
  - Non-intersection
  - Rear-end
  - Right-turn
  - Run-off-road
  - Speed-related
  - Truck-related
  - Vehicle/animal
  - Vehicle/bicycle
  - Wet road
Fatality Rate by Target Crash Type for Groups of Similar Projects

Year 2010 to Year 2014

Target Crash Type

Rate of Fatalities

- All
- Angle
- Cross median
- Fixed object
- Sideswipe
- Head on
- Left-turn
- Night-time
- Intersections
- Non-intersection
- Rear-end
- Right-turn
- Run-off-road
- Speed-related
- Truck-related
- Vehicle/animal
- Vehicle/bicycle
- Vehicle/pedestrian
Serious Injury Rate by Target Crash Type for Groups of Similar Projects

Year 2010 to Year 2014

Target Crash Type
**Systemic Treatments**
Present the overall effectiveness of systemic treatments.

**Year - 2013**

<table>
<thead>
<tr>
<th>Systemic improvement</th>
<th>Target Crash Type</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable Median Barriers</td>
<td></td>
<td>26.2</td>
<td>102.2</td>
<td>0.02</td>
<td>0.09</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
# Fatalities by Target Crash Type for Systemic Safety Improvements

Year 2010 to Year 2014

Target Crash Type

<table>
<thead>
<tr>
<th>Crash Type</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross-median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed object</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sideswipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head-on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left-turn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Night-time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-intersection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear-end</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right-turn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run-off-road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed-related</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck-related</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle/animal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle/e cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walker/pedestrian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

# of Fatalities
# Serious Injuries by Target Crash Type for Systemic Safety Improvements

Year 2010 to Year 2014

![Bar chart showing the number of serious injuries by target crash type for different years (2010-2014). The chart includes crash types such as 'All', 'Angle', 'Cross median', 'Fixed object', 'Head on', 'Left-turn', 'Night-time', 'Intersections', 'Non-intersection', 'Rear-end', 'Right-turn', 'Run-off-road', 'Speed-related', 'Truck-related', 'Vehicle/animal', 'Vehicle/bicycle', 'Vehicle/road'. The chart is color-coded for each year, with 2010 in blue, 2011 in red, 2012 in green, 2013 in purple, and 2014 in orange. The y-axis represents the number of serious injuries, and the x-axis represents the target crash types.](image-url)
Fatality Rate by Target Crash Type for Systemic Safety Improvements

Year 2010 to Year 2014

Rate of Fatalities

Target Crash Type

- All
- Angle
- Cross-median
- Fixed object
- Sideswipe
- Head-on
- Left-turn
- Night-time
- Intersections
- Non-intersection
- Rear-end
- Right-turn
- Run-off-road
- Speed-related
- Truck-related
- Vehicle/animal
- Vehicle/bicycle
- Walker/pedestrian
Serious Injury Rate by Target Crash Type for Systemic Safety Improvements

Year 2010 to Year 2014

Target Crash Type

Rate of Serious Injuries

2010 2011 2012 2013 2014
Describe any other aspects of the overall Highway Safety Improvement Program effectiveness on which you would like to elaborate.

The state continues to aggressively promote highway safety through education, emergency response, enforcement and engineering. GDOT worked closely with our Governor’s Office of Highway Safety to complete the 2015 SHSP. In this process we updated our goals for pedestrian, intersection, lane-departure and bicycle safety. To support this effort we examined our implementation planes and all of these are nearing final revision. This work has led us to further promote effective countermeasures. Over the year we worked with our maintenance office to develop the steps and processes to ensure the implementation plan countermeasures are incorporated as needed into our resurfacing project. Safety edge, rumble strips, signs, shoulder improvements and pavement markings will be reviewed and added as needed. Additionally, the state continues the median cable barrier installation program by identifying the next segments for treatment on our state highways. The Interstate corridors and freeways that showed the occurrence of median crossovers were identified and prioritized. Going forward, we will continue to target limited access facilities and other applicable divided highways to install cable barriers. We have also worked through the identification and location of sub-standard guardrail end treatments. These locations have been mapped and will be programmed in the coming year.
### Project Evaluation

Provide project evaluation data for completed projects (optional).

<table>
<thead>
<tr>
<th>Location</th>
<th>Functional Class</th>
<th>Improvement Category</th>
<th>Improvement Type</th>
<th>Bef-Fatal</th>
<th>Bef-Serious Injury</th>
<th>Bef-All Injuries</th>
<th>Bef-PDO</th>
<th>Aft-Fatal</th>
<th>Aft-Serious Injury</th>
<th>Aft-All Injuries</th>
<th>Aft-PDO</th>
<th>Aft-Total</th>
<th>Evaluation Results (Benefit/Cost Ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 193 @ CR 835/HAPPY VALLEY ROAD Walker County</td>
<td>Urban Minor Arterial</td>
<td>Intersection geometry</td>
<td>Intersection geometry - other</td>
<td>0</td>
<td>14</td>
<td>14</td>
<td>17</td>
<td>45</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>SR 46 @ SR 67 Bulloch County</td>
<td>Rural Minor Arterial</td>
<td>Intersection geometry</td>
<td>Intersection geometry - other</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>SR 81 @ CR 376/RACETRACK RD Henry County</td>
<td>Urban Principal Arterial - Other</td>
<td>Intersection geometry</td>
<td>Intersection geometry - other</td>
<td>0</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>
Optional Attachments

<table>
<thead>
<tr>
<th>Sections</th>
<th>Files Attached</th>
</tr>
</thead>
</table>


Glossary

5 year rolling average means the average of five individual, consecutive annual points of data (e.g. annual fatality rate).

Emphasis area means a highway safety priority in a State’s SHSP, identified through a data-driven, collaborative process.

Highway safety improvement project means strategies, activities and projects on a public road that are consistent with a State strategic highway safety plan and corrects or improves a hazardous road location or feature or addresses a highway safety problem.

HMVMT means hundred million vehicle miles traveled.

Non-infrastructure projects are projects that do not result in construction. Examples of non-infrastructure projects include road safety audits, transportation safety planning activities, improvements in the collection and analysis of data, education and outreach, and enforcement activities.

Older driver special rule applies if traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65 in a State increases during the most recent 2-year period for which data are available, as defined in the Older Driver and Pedestrian Special Rule Interim Guidance dated February 13, 2013.

Performance measure means indicators that enable decision-makers and other stakeholders to monitor changes in system condition and performance against established visions, goals, and objectives.

Programmed funds mean those funds that have been programmed in the Statewide Transportation Improvement Program (STIP) to be expended on highway safety improvement projects.

Roadway Functional Classification means the process by which streets and highways are grouped into classes, or systems, according to the character of service they are intended to provide.

Strategic Highway Safety Plan (SHSP) means a comprehensive, multi-disciplinary plan, based on safety data developed by a State Department of Transportation in accordance with 23 U.S.C. 148.

Systemic safety improvement means an improvement that is widely implemented based on high risk roadway features that are correlated with specific severe crash types.

Transfer means, in accordance with provisions of 23 U.S.C. 126, a State may transfer from an apportionment under section 104(b) not to exceed 50 percent of the amount apportioned for the fiscal year to any other apportionment of the State under that section.