Disclaimer

Protection of Data from Discovery & Admission into Evidence

23 U.S.C. 148(h)(4) states “Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for any purpose relating to this section [HSIP], shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location identified or addressed in the reports, surveys, schedules, lists, or other data.”

23 U.S.C. 409 states “Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential accident sites, hazardous roadway conditions, or railway-highway crossings, pursuant to sections 130, 144, and 148 of this title or for the purpose of developing any highway safety construction improvement project which may be implemented utilizing Federal-aid highway funds shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data.”
Table of Contents

Disclaimer.. ii
Executive Summary... 1
Introduction .. 2
Program Structure .. 2
 Program Administration ... 2
 Program Methodology ... 8
Progress in Implementing Projects ... 18
 Funds Programmed.. 18
 General Listing of Projects ... 29
Progress in Achieving Safety Performance Targets ... 52
 Overview of General Safety Trends ... 52
 Application of Special Rules .. 67
Assessment of the Effectiveness of the Improvements (Program Evaluation) 69
 SHSP Emphasis Areas .. 71
 Groups of similar project types ... 76
 Systemic Treatments .. 81
 Project Evaluation ... 87
Glossary... 89
Executive Summary

One of the greatest challenges facing Ohio is reducing the number of fatalities and injuries and the costs associated with traffic crashes statewide.

In 2014, there were 282,368 crashes in Ohio – 1,008 people were killed and 100,554 people were injured. In addition to the emotional impact, the economic cost to Ohio is about $14 billion per year in lost wages, increased health care and other related costs.

The vast majority of these crashes are caused by driver error. To reduce crashes and injuries, and save lives, the Ohio Department of Transportation is working with the Department of Public Safety, the public and local, state and federal agencies to: identify and improve high-crash and severe-crash locations through engineering; enforce traffic laws; and promote safe driving behavior through public education.

Despite these numbers, Ohio has made significant improvements in highway safety over the past several years. Since 2005, Ohio fatalities have decreased 24%; serious injuries decreased 21%; all injuries decreased 23%; and all crashes decreased 21%.

To reduce crashes and injuries, and save lives, the Ohio Department of Transportation routinely works with local, state and federal safety advocates to:
• Identify and improve locations with potential for safety improvement (physical construction projects)
• Enforce traffic laws
• Promote safe driving behavior through public education

Many fatalities are preventable. Hundreds of lives could be saved each year if all motorists used a seatbelt, drove sober and traveled at appropriate speeds.
Introduction

The Highway Safety Improvement Program (HSIP) is a core Federal-aid program with the purpose of achieving a significant reduction in fatalities and serious injuries on all public roads. As per 23 U.S.C. 148(h) and 23 CFR 924.15, States are required to report annually on the progress being made to advance HSIP implementation and evaluation efforts. The format of this report is consistent with the HSIP MAP-21 Reporting Guidance dated February 13, 2013 and consists of four sections: program structure, progress in implementing HSIP projects, progress in achieving safety performance targets, and assessment of the effectiveness of the improvements.

Program Structure

Program Administration

How are Highway Safety Improvement Program funds allocated in a State?

- Central
- District
- Other

Describe how local roads are addressed as part of Highway Safety Improvement Program.

Local road safety improvements are a focus of both Ohio’s SHSP and HSIP. Through our close collaboration with the Local Technical Assistance Program, County Engineers Association and Metropolitan Planning Organizations, we have been expanding training, technical assistance, and funding opportunities available to our local partners.

This collaboration begins with local involvement in developing and implementing Ohio’s SHSP. Our plan focuses on the safety of all public roads and all road users, including cars, trucks, trains, motorcycles, pedestrians and bikes.
Ohio has formed a statewide steering committee with local government representation and involvement. This committee meets quarterly to 1) review crash trends and 2) discuss key strategies being implemented across agencies and jurisdictions to reduce fatalities and serious injuries on all Ohio roads. These agencies are then tasked with sharing information and resources with other safety organizations throughout Ohio.

Emphasis Areas

Ohio has identified five emphasis areas in the plan based on crash data:

1. Improve the quality, accuracy, timeliness and availability of crash data.
2. Reduce the occurrence and severity of run-off-road, intersection and head-on collisions.
3. Address high-risk drivers and behaviors such as young drivers, impaired driving, low seat belt use, distracted driving and excessive speed.
4. Target motorcycle and bicycle riders, pedestrians and commercial vehicles, which are more likely to be involved in serious crashes.
5. Reduce the high number of rear-end collisions caused by congestion and work zones.

These emphasis areas were chosen because they represent the greatest causes of serious injuries and deaths on Ohio roads. A complete listing of target areas and strategies are elaborated in the Highway Safety Improvement Program implementation section of this report, prior to the project listings.

Local governments can qualify for funding and technical assistance to address emphasis areas through HSIP programs administered by ODOT and the County Engineers Association.

ODOT uses the SHSP as a basis for developing its HSIP. ODOT has one of the largest programs in the country, dedicating about $102 million annually for engineering improvements at high-crash and severe-crash locations across the state. We also dedicate a portion of the funding for low-cost, systematic safety improvements that prevent roadway departure and intersection crashes identified in the SHSP. A small portion of this funding is also used to conduct work zone enforcement efforts and other small enforcement and education efforts.

This funding can be used by ODOT District Offices or local governments to improve safety on any public roadway. While the majority of HSIP investments focus on engineering improvements, ODOT uses a portion of the funding to supplement education (everymove.ohio.gov) and enforcement programs that encourage safer driving.

To qualify for funding, local governments identify and study high-crash or severe-crash locations within their own jurisdiction. To determine the best countermeasures for these locations, local governments typically conduct an engineering analysis that includes a review of existing roadway conditions and crash reports. This analysis will help identify common crash patterns and determine the best strategies to reduce crashes.
Projects sponsors are encouraged to examine a full range of options from short-term, low-cost strategies, such as new signs, pavement markings and drainage improvements to mid-cost, mid-term strategies such as new traffic signals, turn lanes and realignments.

Local governments may pay for these improvements through their annual budget or they can seek money each spring (April 30) and fall (September 30) through ODOT’s Highway Safety Improvement Program. The maximum amount of funding available is $5 million per project. A multi-discipline committee at ODOT headquarters reviews all applications and supporting safety studies. The committee can approve a proposal, select a different safety strategy or request further study before allocating money. ODOT spends approximately $85 million dollars in safety funds annually through this program.

Once funding is secured, safety projects are scheduled for construction. How quickly projects proceed to construction depends on the available funding and complexity of the project. Short-term, low-cost projects can be implemented within a few months. Other projects that require environmental mitigation, complex engineering design and/or utility and right of way relocation may take several years. In all cases, ODOT encourages sponsors to act as quickly as possible. Upon project completion, the department monitors locations to make sure the improvements are reducing crashes as designed.

ODOT also provides an additional $12 million, separate from $102 million, annually to the County Engineers Association of Ohio (CEAO) to make safety improvements on county-maintained roads. This funding can be used to make spot and systematic improvements tied to the SHSP. Applications are accepted once a year and scored using criteria developed in conjunction with ODOT.

The CEAO subdivides the $12 million in to several smaller funding categories. Each county is permitted to program eligible construction projects up to $5 million overall for spot safety improvements. In addition to spot safety improvements, CEAO provides up to $300,000 per county for each guardrail project, $150,000 per county for each pavement marking project, $75,000 per county for each raised pavement marker project, and $15,000 per county for curve signage upgrade projects.

ODOT continues to look for opportunities for deployment of safety improvements. With a data driven focus, we have been able to use innovative contracting practices and partnerships through LTAP and CEAO to improve safety performance on local maintained roads. We have developed creative methods to quickly produce signage for local governments and allow them to install them with their own forces. This methodology is being used to upgrade signage in curves to prevent roadway departure crashes and around schools to make walking and biking safer for kids.

Identify which internal partners are involved with Highway Safety Improvement Program planning.

- [x] Design
- [x] Planning
Briefly describe coordination with internal partners.

ODOT’s Office of Program Management accepts applications – accompanied by safety studies – from ODOT District Offices and local governments twice a year. Applications must be submitted through the District Offices, which have a multi-disciplinary committee that reviews and approves them for Central Office consideration. Projects are then reviewed and selected for funding by the Safety Review Committee in Central Office, which includes expertise in safety, planning, geometric design, and traffic operations.

Priority is given to any project that improves safety at a roadway location with high frequency, severity and rate of crashes. Projects are scored based on:
- Expected Crash Frequency
- Ratio of Observed Fatal and Serious Injuries to Observed Total Crashes
- Relative Severity Index
- Equivalent Property Damage Only Index
- Volume to Capacity Ratio
- Benefit-Cost Ratio (anticipated savings in crash costs, property damage, injuries and fatalities relative to the cost of the improvement plus cost of maintenance for the life of the project). Consideration is also given to lower-volume, lower-crash local roads with identified needs and cost-effective countermeasures.
- Highway Safety Improvement Program Funding Percentage

Funding awarded through the program is used to make traditional safety improvements at spot locations, such as intersections, and along sections or corridors throughout the state.

Ohio’s program also works collaboratively with other local, state and federal agencies to develop multi-agency safety initiatives through the Strategic Highway Safety Plan. These efforts allow ODOT to pair
engineering expertise with education and enforcement initiatives that play a key role in reducing injuries and deaths.

Identify which external partners are involved with Highway Safety Improvement Program planning.

☒ Metropolitan Planning Organizations
☒ Governors Highway Safety Office
☒ Local Government Association
☐ Other:

Identify any program administration practices used to implement the HSIP that have changed since the last reporting period.

☐ Multi-disciplinary HSIP steering committee
☒ Other: Other-Expanded Training Efforts

Describe any other aspects of Highway Safety Improvement Program Administration on which you would like to elaborate.

Ohio uses a focused approach to safety that targets resources based on the greatest need and greatest opportunity for improvements. We also promote the use of proven, cost-effective, systematic safety solutions that target critical, severe-crash types such as roadway departure and intersections crashes. These focus areas are embodied in both the HSIP and the state’s Strategic Highway Safety Plan.

We advanced the HSIP through the balanced deployment and implementation of a host of traditional spot safety investments and a host of systematic safety investments.
ODOT’s Highway Safety Improvement Program and AASHTOWare Safety Analyst Implementation

Each year, ODOT staff reviews the top safety locations in Ohio. Ohio is one of the first states in the country to fully implement Safety Analyst and use it to prioritize safety locations across Ohio. Safety Analyst uses state-of-the-art statistical methodologies to identify roadway locations and safety improvements with the highest potential for reducing crashes. The software systems flags spot locations and road segments that have higher-than-predicted crash frequencies. It also flags locations for review based on crash severity. This methodology is more efficient and cost effective and will allow the department to study fewer locations yet address more crashes each year.

ODOT has developed six priority lists based on rural and urban roadway types. The urban system covers all streets, roads, and highways located within urban boundaries designated by the U.S. Census Bureau. The Bureau defines two types of urban areas based on population. Small urban areas are urban places with a population of 5,000 or more and not located within any urbanized area. An urbanized area is an area with a population of 50,000 or more. As might be expected, the rural functional classification system covers all other streets, roads, and highways that are not located within the boundaries of small urban and urbanized areas. Approximately, $85 million is used to fund projects through this program.

The priority lists are:

1. **Rural Intersection Peak Searching Excess Locations**: These locations were selected because they have a higher-than-predicted crash frequency for each intersection. Approximately, the Top 50 locations will be studied.
2. **Rural Non-Freeway Peak Searching Excess Segment Locations**: These locations were selected because they have a higher-than-predicted crash frequency for this roadway type. Approximately, the Top 50 locations will be studied. Only crashes indicated on the OH-1 as being non-intersection crashes were included in this analysis.
3. **Rural Freeway Peak Searching Excess Locations**: These locations were selected because they have a higher-than-predicted crash frequency for this roadway type or interchange location. Approximately, the Top 50 locations will be studied.
4. **Urban Intersection Peak Searching Excess Locations**: These locations were selected because they have a higher-than-predicted fatal and injury crash frequency for each intersection. Approximately, the Top 50 locations will be studied.
5. **Urban Non-Freeway Peak Searching Excess Segment Locations**: These locations were selected because they have a higher-than-predicted fatal and injury crash frequency for this roadway type. Approximately, the Top 50 locations will be studied. Only crashes indicated on the OH-1 as being non-intersection crashes were included in this analysis.
6. **Urban Freeway Peak Searching Excess Locations**: These locations were selected because they have a higher-than-predicted fatal and injury crash frequency for this roadway type or interchange location. Approximately, the Top 50 locations will be studied.
Systematics Safety Program
The Ohio Department of Transportation spends approximately $15 million annually of the $102 million program on systematic safety improvements. These are safety improvements that can be installed across hundreds of road miles for a relatively small public investment. Systematic safety improvements are low cost improvements that are complete at similar locations to address a specific type of crash pattern.

Examples of systematic project types are Curve Signing Upgrade, Edge Line Rumble Stripes, Cable Barrier, Signal Upgrade, Intersection Signing Upgrade, Wider Pavement Markings, and Guardrail End Treatment Upgrade Projects.

Safe Routes to School Program
ODOT uses $4 million from the Transportation Alternatives Program to fund Ohio’s Safe Routes to School Program. Again, this is separate and in addition to the $102 million ODOT HSIP program. Funds can be used on any public roadway as long as the school has completed a School Travel Plan. The School Travel Plan outlines where investments should be made for a specific school district.

Other Programs
Small portions of ODOT’s HSIP Program funding ($102 million) are used for work zone enforcement, OVI checkpoints, and other educational opportunities. Although money is not specifically set aside for the High Risk Rural Roads Program in Ohio at this time, we still encourage agencies to apply for funding through our traditional application process. Any projects that are prioritized based on the HRRR Program are funded through the ODOT’s HSIP Program ($102 million).

ODOT also combines HSIP funding with other funding sources (such as MPO and Ohio Rail Development Commission) to make safety improvements.

Program Methodology
Select the programs that are administered under the HSIP.

- Median Barrier
- Horizontal Curve
- Skid Hazard
- Roadway Departure
- Local Safety
- Left Turn Crash
- Other: Other-State HSIP
- Intersection
- Bicycle Safety
- Crash Data
- Low-Cost Spot Improvements
- Pedestrian Safety
- Shoulder Improvement
- Other: Other-CEAO HSIP
- Safe Corridor
- Rural State Highways
- Red Light Running Prevention
- Sign Replacement And Improvement
- Right Angle Crash
- Segments
- Other: Other-State High Risk
Program: Other-State HSIP Program

Date of Program Methodology: 5/1/2015

What data types were used in the program methodology?

Crashes
- □ All crashes
- □ Fatal crashes only
- □ Fatal and serious injury crashes only
- □ Other

Exposure
- □ Traffic
- □ Volume
- □ Population
- □ Other

Roadway
- □ Median width
- □ Horizontal curvature
- □ Functional classification
- □ Lane miles
- □ Roadside features
- □ Other
- □ Other

What project identification methodology was used for this program?

- □ Crash frequency
- □ Expected crash frequency with EB adjustment
- □ Equivalent property damage only (EPDO Crash frequency)
- □ EPDO crash frequency with EB adjustment
- □ Relative severity index
Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Other - Volume to Capacity Ratio

Other - (Total Fatal and Serious Injuries) / Total Crashes

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical
If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

<table>
<thead>
<tr>
<th>Relative Weight in Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank of Priority Consideration</td>
</tr>
</tbody>
</table>

- Ranking based on B/C
- Available funding
- Incremental B/C
- Ranking based on net benefit
- Cost Effectiveness

Program: Other-CEAO HSIP Program

Date of Program Methodology: 7/1/2011

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
<tr>
<td>crashes only</td>
<td></td>
<td>Roadside features</td>
</tr>
<tr>
<td>Other</td>
<td>Lane miles</td>
<td>Other-Rural County Highway System</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>
What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other-Amount of Funding Requested

Are local roads (non-state owned and operated) included or addressed in this program?

- Yes
- No

If yes, are local road projects identified using the same methodology as state roads?

- Yes
- No

How are highway safety improvement projects advanced for implementation?

- Competitive application process
Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

- Ranking based on B/C
- Available funding
- Incremental B/C
- Ranking based on net benefit
- Cost Effectiveness

Program: Other-State High Risk Rural Road

Date of Program Methodology: 6/1/2008

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Median width</td>
</tr>
<tr>
<td>Fatal crashes only</td>
<td>Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury</td>
<td>Population</td>
<td>Functional classification</td>
</tr>
</tbody>
</table>
crashes only
☑ Other-Fatal and All Injury Crashes Only
☐ Lane miles
☐ Roadside features
☐ Other
☐ Other

What project identification methodology was used for this program?

☐ Crash frequency
☑ Expected crash frequency with EB adjustment
☐ Equivalent property damage only (EPDO Crash frequency)
☑ EPDO crash frequency with EB adjustment
☑ Relative severity index
☐ Crash rate
☐ Critical rate
☐ Level of service of safety (LOSS)
☐ Excess expected crash frequency using SPFs
☑ Excess expected crash frequency with the EB adjustment
☐ Excess expected crash frequency using method of moments
☐ Probability of specific crash types
☐ Excess proportions of specific crash types
☑ Other-(Fatal and Serious Injuries) / Total Crashes

Are local roads (non-state owned and operated) included or addressed in this program?

☑ Yes
☐ No

If yes, are local road projects identified using the same methodology as state roads?
Yes

How are highway safety improvement projects advanced for implementation?

- Competitive application process
- Selection committee
- Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

- Relative Weight in Scoring
- Rank of Priority Consideration

- Ranking based on B/C
- Available funding
- Incremental B/C
- Ranking based on net benefit
- Cost Effectiveness

What proportion of highway safety improvement program funds address systemic improvements?

10
Highway safety improvement program funds are used to address which of the following systemic improvements?

- [] Cable Median Barriers
- [] Rumble Strips
- [] Traffic Control Device Rehabilitation
- [] Pavement/Shoulder Widening
- [] Install/Improve Signing
- [] Install/Improve Pavement Marking and/or Delineation
- [x] Upgrade Guard Rails
- [] Clear Zone Improvements
- [] Safety Edge
- [] Install/Improve Lighting
- [x] Add/Upgrade/Modify/Remove Traffic Signal
- [x] Other Other-ODOT - Roadway Departure
- [x] Other Other-ODOT - Wet Pavement Locations
- [x] Other Other-ODOT - Intersection Signage
- [x] Other Other-CEAO - Upgrade / Install Guardrail
- [x] Other Other-CEAO - Upgrade Pavement Markings
- [x] Other Other-CEAO - Upgrade / Install RPMs
- [x] Other Other-CEAO - Upgrade / Install Curve Signage
- [] Other Other

What process is used to identify potential countermeasures?

- [x] Engineering Study
- [x] Road Safety Assessment
- [x] Other: Other-AASHTOWare Safety Analyst
Identify any program methodology practices used to implement the HSIP that have changed since the last reporting period.

- Highway Safety Manual
- Road Safety audits
- Systemic Approach
- Other:

Describe any other aspects of the Highway Safety Improvement Program methodology on which you would like to elaborate.

None.
Progress in Implementing Projects

Funds Programmed

Reporting period for Highway Safety Improvement Program funding.

- Calendar Year
- State Fiscal Year
- Federal Fiscal Year

Enter the programmed and obligated funding for each applicable funding category.

<table>
<thead>
<tr>
<th>Funding Category</th>
<th>Programmed*</th>
<th>Obligated</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSIP (Section 148)</td>
<td>84592896</td>
<td>49811033</td>
</tr>
<tr>
<td>HRRRP (SAFETEA-LU)</td>
<td>3990075</td>
<td>812807</td>
</tr>
<tr>
<td>HRRR Special Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penalty Transfer - Section 154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penalty Transfer – Section 164</td>
<td>21465633</td>
<td>21459967</td>
</tr>
<tr>
<td>Incentive Grants - Section 163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incentive Grants (Section 406)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Federal-aid Funds (i.e. STP, NHPP)</td>
<td>89254676</td>
<td>38798705</td>
</tr>
<tr>
<td>State and Local Funds</td>
<td>81774088</td>
<td>81774088</td>
</tr>
</tbody>
</table>
How much funding is programmed to local (non-state owned and maintained) safety projects?
$45,394,147.00

How much funding is obligated to local safety projects?
$26,672,803.00

How much funding is programmed to non-infrastructure safety projects?
$58,000.00

How much funding is obligated to non-infrastructure safety projects?
$58,000.00

How much funding was transferred in to the HSIP from other core program areas during the reporting period?
$0.00
How much funding was transferred out of the HSIP to other core program areas during the reporting period?

$0.00

Discuss impediments to obligating Highway Safety Improvement Program funds and plans to overcome this in the future.

In FFY 2014, Ohio obligated 100% of its HSIP funds. For SFY 2015, Ohio has obligated approximately 64%. ODOT’s safety program is making great progress working with our SHSP partners to further highway safety in Ohio.

Describe any other aspects of the general Highway Safety Improvement Program implementation progress on which you would like to elaborate.

Ohio uses the Strategic Highway Safety Plan to guide project selection for the HSIP Program. The following contains a complete list of Emphasis Areas, Targets Areas, and Strategies at the following link: zerodeaths.ohio.gov

These have been provided at the end of each SHSP Strategy field in the project listing table in the following section. An example of improve signage or install warning signs for a fixed object crash location would be coded as “II-a-4”.

Emphasis Area I – Data and Support Systems

Targets

α. Timely Data
β. Reliable Data
χ. Comprehensive Data
δ. Integrated Data and Analysis Systems

Strategies

1. Provide statistical crash information and reports to outside agencies through web-based applications that allow local governments, law enforcement and the public to download the information quickly.
2. Develop a multi-jurisdictional, statewide road inventory network that contains accurate centerline information, valid address ranges and other information features critical to improving crash information, analysis and emergency response.

3. Design and implement a centralized statewide citation tracking system so law enforcement officers, court personnel and prosecutors have up-to-date driver histories.

4. Improve railroad crossing data and integrate into statewide crash analysis system.

5. Identify those municipal and county law enforcement agencies that report the largest number of crashes and work with them to reduce delays in submitting crash reports to ODPS.

6. Implement Ohio’s Crash Outcome Data Evaluation System (CODES).

7. Use this information in crash analysis, problem identification, and program evaluation to improve decision-making at the local, state and national levels.

8. Update the Emergency Medical System Incident Reporting System to meet the standards set forth by the National EMS Information System (NEMSIS).

Emphasis Area II – Serious Crash Types

Targets

α. Fixed Object Crashes
β. Intersection Crashes
χ. Head-On Crashes
d. Cross-Median Crashes
e. Highway/Railroad Crossing Crashes

Strategies – Fixed Object Crashes (a)

1. Identify areas with disproportionate number of roadway departure crashes
2. Implement asset management for roadside safety features
3. Conduct roadway safety audits
4. Improve signs or install warning signs
5. Remove or relocate obstacles, or delineate with reflective paint and/or reflectors
6. Provide adequate clear zones, flatten slopes and reduce sharp curves
7. Shield motorists from trees, poles, or other fixed objects using guardrail or other barrier types
8. Alert motorists by installing rumble strips (pilot locations to be selected)
9. Provide selective enforcement aimed at speeding and impaired driving
10. Investigate new technologies

Strategies – Intersection Crashes (b)

1. Stop approach rumble strips
2. Improve signs and visibility of the intersection including the installation of sign post/drive post delineators, dual stop and stop ahead signs and flashing LED or beacon enhanced stop signs
3. Improve sight distance
4. Improve signal timing
5. Dynamic flashing beacons
6. Install or enhance intersection lighting
7. Increase enforcement of intersection violations
8. Access management to reduce intersection conflicts
9. Conduct roadway safety audits
10. Investigate new technologies
11. Educate motorists on intersection crash issues and encourage safer driving behavior

Strategies – Head-On Crashes (c)

1. Identify areas with disproportionate number of roadway departure crashes
2. Deploy centerline rumble strips
3. Deploy, as appropriate, “No Passing Zone” signs
4. Deploy, as appropriate, passing lanes on rural, two-lane roads
5. Train and educate motorists on passing zone markings and lanes
6. Provide selective enforcement aimed at speeding and impaired driving

Strategies – Cross-Median Crashes (d)

1. Identify areas with a disproportionate number of cross-median crashes
2. Establish policy and guidelines for installing median barrier
3. In congested areas, install “Watch for stopped traffic” signs to prevent cross-median crashes
4. Provide selective enforcement aimed at speeding, impaired and aggressive driving

Strategies – Highway/Railroad Crossing Crashes (e)

1. Streamline the process to help local governments reduce crossing profiles, eliminate redundant crossings and separate highway/rail crossings
2. Market existing programs that expand the use of alternative crash prevention methods, such as improved street lighting at approaches, rumble strips, warning signs and flashing lights
3. Continue the use of visible, high-profile law enforcement programs at problem crossings to deter drivers from violating gates and lights
4. Use automated enforcement of crossing violations to the extent allowed by law
5. Encourage greater participation in programs that establish multi-disciplinary teams to examine railroad corridors for improvements and fatal crash locations for quick corrective action
6. Modify the project selection by hazard index to include the review of older circuitry on gates and lights
7. Encourage all Ohio counties to develop or expand the County Task Force Program to encourage grass roots interest in railroad safety and to identify problem locations.

8. Expand involvement with Operation Lifesaver and other highway safety education and enforcement programs.

9. Encourage railroads to provide accurate and timely railroad crossing data such as crash, train volume and speed data, which can be better integrated into the Federal Railroad Administration’s Accident Prediction Model and other statewide analysis systems used to create safer crossings.

10. Develop policies that encourage ODOT district offices and local governments to identify and include rail improvements early in the project development process for highway improvements.

11. Encourage the closure of redundant crossings through policies and funding commitments. To ensure railroad compliance at crossings, FRA will increase inspection activities with railroad managers by conducting field tests and observations of crossing activation failures.

Emphasis Area III – High-Risk Behaviors/Drivers

Targets

α. Occupant Protection Devices – Nonuse and Misuse
β. Impaired by Alcohol
χ. Young Driver – 15 to 25
δ. Distracted or Fatigued Driver
e. Aggressive Driving
ϕ. Older Driver – 65 or Older

Strategies – Occupant Protection Devices – Nonuse and Misuse (a)

1. Support efforts to enact primary safety belt legislation through state law or local ordinances.
2. Upgrade child restraint law to include booster seats.
3. Expand the Rural Demonstration Project designed to increase safety belt use in rural areas.
4. Implement media and education campaign targeting pick-up drivers.
5. Encourage law enforcement to aggressively enforce safety belt and child restraint laws.
6. Increase emphasis on special occupant protection mobilizations (public information and high visibility enforcement campaigns).
7. Continue campaigns to educate the general public and target groups about the importance of occupant protection.
8. Pilot test the “I’m Safe” Occupant Protection Program for K through Second Grade and continue to provide other child-based educational programs.
9. Educate parents, caregivers, and grandparents about proper selection and installation of child safety seats and booster seats.
10. Encourage corporations to enact policies to require safety belt use in company vehicles or when driving on company or personal time

Strategies – Impaired by Alcohol (b)

1. Targeted Alcohol Counties – Continue target law enforcement and educational grants to those counties with the worst fatal alcohol crash problems
2. You Drink & Drive. You Lose. (YD&DYL) Crackdown – Ohio will continue to participate in the national crackdown, which combines highly visible law enforcement with both local and national media exposure.
3. Continued use of OVI checkpoints
4. Implement an OVI Tracking System to collect data from all law enforcement, courts and treatment facilities
5. Develop Statewide Citation Tracking System to improve the OVI process and Conviction rate
6. Streamline the impaired driving arrest process and provide standardized electronic OVI reporting format to all law enforcement agencies
7. Pilot Test the OVI Court Model, which is a multidisciplinary effort to forcefully intervene and break the cycle of substance abuse, addiction, crime and impaired driving
8. Expand “Traffic Safety Resource Prosecutor Program” to improve prosecution of impaired driving cases, serve as an information resource for prosecutors and conduct training for prosecutors as needed
9. Expand alcohol server programs for on and off-premise sales
10. Increase law enforcement training on alcohol-related detection techniques and issues, including training to address underage consumption and detection of impaired motorcyclists

Strategies – Young Driver – 15 to 25 (c)

1. Support strengthening the Graduated Driver Licensing (GDL) law to restrict the number of passengers and nighttime driving
2. Continue Safe Communities programs that target young drivers and passengers. These community-based organizations conduct youth educational programs, including safety belt challenges, mock crashes, “None for Under 21” rallies and teen countermeasure programs like “Every 15 Minutes,” “You Hold the Key,” and “Buckle Up for a Successful Season”
3. Expand alcohol server programs for on and off-premise sales
4. Increase law enforcement training on alcohol-related youth programs
5. Provide selective enforcement aimed at speeding and impaired drivers
6. Support court-based programs, such as the Clermont County Sheriff’s Office, “Last Chance” program, which uses educational strategies to reduce repeat driving offenses among 16 to 24-year-olds.

Strategies – Distracted or Fatigued Driver (d)
1. Deploy shoulder, edge line and centerline rumble strips
2. Expand available parking in rest areas
3. Educate roadway users and employers on the dangers of distracted and fatigued driving
4. Consider public and corporate policies regulating cell phone use and other electronic devices

Strategies – Aggressive Driving (e)

1. Develop common definition for aggressive driving in Ohio
2. Expand high visibility enforcement, such as Operation TRIAD (Targeting Reckless Intimidating and Aggressive Drivers), which uses aircraft and on-road target enforcement and media coverage to discourage unsafe driving behavior
3. Educate roadway users on the dangers of aggressive driving and the rules of the road
4. Expand use of speed monitoring and changeable message signs
5. Minimize work zone delays, which can lead to aggressive driving
6. Support legislative efforts to define aggressive driving and impose increasing penalties and fines on repeat offenders of aggressive driving laws
7. Add aggressive driving as a causative crash factor on Ohio’s crash reports (OH-1) once it is defined by law

Strategies – Older Driver – 65 or Older (f)

1. Expand use of Mature Driver Program and senior driver presentations that educate older drivers and their caregivers about driving risks associated with this age group
2. Expand number of facilities to test older drivers
3. Expand and maintain roadway features including larger signs and more visible pavement markings
4. Increase safety belt use among older drivers

Emphasis Area IV – Special Vehicles/Roadway Users

Targets

α. Commercial Vehicles
β. Motorcycles
χ. Bicycles
δ. Pedestrians

Strategies – Commercial Vehicles (a)
1. Enhance the electronic data capture software used to report commercial vehicle crashes to increase the accuracy and timeliness of data reported by local law enforcement (90-day requirement to report)

2. Expand use of Commercial Vehicle Information Systems and Networks program, which electronically collects and exchanges motor carrier safety, registration and other related information used for national roadside screening

3. Reduce the percentage of “at-fault” commercial vehicle drivers involved in work zone crashes by raising the awareness of the possibility of enforcement in work zones

4. Expand number of work zones targeted for increased enforcement, crash data and speed monitoring. Post “Target Zone Enforcement” signs to alert and deter unwanted behavior

5. Maintain and improve efforts to ensure only qualified drivers and properly maintained vehicles are used on Ohio highways. (Continue FMSCA audit of new carriers and compliance reviews on existing carriers)

6. Continue aggressive driver/vehicle inspections throughout Ohio

7. Identify high-crash corridors and initiate appropriate engineering and enforcement interventions

8. Coordinate efforts regarding hazardous moving violations by cars and trucks under the new SAFETEA-LU FMCSA authority

9. Educate roadway users, motor carriers and the agriculture community on commercial vehicle performance, visibility, and regulations including the Share the Road Program, hazardous materials, Highway Watch, etc.

10. Conduct analysis on commercial motor vehicle seat belt use in Ohio to better understand geographic locations and causes for nonuse.

11. Expand commercial motor vehicle seat belt outreach efforts

Strategies – Motorcycles (b)

1. Encourage the use of FMVSS 218 compliant helmets and other protective gear

2. Initiate a program to decrease the number of unendorsed motorcyclists

3. Expand Ohio motorcycle rider education programs through public and private sponsors and continue marketing campaigns to encourage training

4. Increase the awareness among motorcyclists of the dangers of riding impaired and enlist the support of motorcycle organizations to promote the separation between drinking and riding

5. Distribute NHTSA’s “Detection of DWI Motorcyclists” materials to law enforcement agencies

6. Increase the use of warning signs to alert motorcyclists when roadway surface conditions are changing significantly (metal bridge gratings, bumps, rain grooves, grating of roadway surface, etc.)

7. Provide training to law enforcement on OH-1 Failure to Control code relative to motorcycle crashes

8. Educate roadway users on motorcycle performance, visibility, sharing the roadway with motorcyclists, etc.
9. Establish a motorcycle liaison at OSHP facilities who can speak to groups about motorcycle safety and respond to related inquiries and issues.

10. Hold motorcycle awareness month to educate the public about motorcycle safety issues.

Strategies – Bicycles (c)

1. Increase enforcement, education and training in bicycle/pedestrian laws and safety through Ohio’s Safe Routes to Schools Program
2. Increase problem identification and infrastructure planning for bicycle and pedestrian facilities through Ohio’s Safe Routes to Schools Program
3. Conduct target enforcement of bicycle/pedestrian traffic laws in high crash zones
4. Strengthen penalties/enforcement for right of way, assured clear distance and marked lane violations that endanger bicyclists and pedestrians
5. Conduct law enforcement and judicial awareness seminars to educate these groups in the violations and penalties associated with bicycle/pedestrian related traffic violations.

Strategies – Pedestrians (d)

1. Improve pedestrian signs and road markings
2. Increase enforcement, education and training in bicycle/pedestrian laws and safety through Ohio’s Safe Routes to Schools Program
3. Increase problem identification and infrastructure planning for bicycle and pedestrian facilities through Ohio’s Safe Routes to Schools Program
4. Conduct target enforcement of bicycle/pedestrian traffic laws in high crash zones
5. Strengthen penalties/enforcement for right of way, assured clear distance and marked lane violations that endanger bicyclists and pedestrians.
6. Conduct law enforcement and judicial awareness seminars to educate these groups in the violations and penalties associated with bicycle/pedestrian related traffic violations.

Emphasis Area V – Incident and Congestion Related Crashes

Targets

α. Rear End Crashes
β. Work Zone Crashes

Strategies - Rear End Crashes (a)

1. Target congested highway segments for improvements, including adding roadway capacity and Intelligent Transportation Systems, as well as deploying access management techniques.
2. Continue to develop innovative practices designed to maintain traffic flow throughout construction
3. Develop pre-planned detours for closures on any link of the state freeway system to reduce the impact of lane closures due to spills, crashes etc.
4. Educate motorists to move minor crashes off the road
5. Educate law enforcement and fire departments on “Quick Clear” protocols
6. Work with law enforcement agencies to develop special enforcement programs that target congested, high-crash areas, such as Ohio Safe Commute
7. Educate motorists and EMS on the use of urban freeway reference markers so cellular telephone callers can accurately report crash locations
8. Deploy freeway service patrols to clear debris and minor incidents before they cause a major problem
9. Develop intelligent transportation systems (cameras, overhead message signs) to inform motorists of incidents, congestion and detours

Strategies - Work Zone Crashes (b)

1. Evaluate effectiveness of special enforcement and crash data collection effort in select work zones for possible expansion
2. Consider use of innovative technology in candidate work zones to supplement available law enforcement officers
3. Advertise (signs) work zones with increased law enforcement
4. Reduce the percentage of “at-fault” commercial vehicle drivers involved in work zone crashes by raising the awareness of the possibility of enforcement in work zones
5. Provide work zone training to ODOT, local agencies, law enforcement, contractors, and utility companies
6. Provide work zone information to the public
7. Update current state guidelines, policies, regulations and statutes pertaining to work zone safety including those of public safety and motor vehicles to adopt the FHWA final rule on Work Zone Safety and Mobility
8. Utilize new and innovative ITS technologies to obtain traffic count data, verify traffic queue lengths in order to deploy a reliable traffic alert system.
9. Require trucks to use lanes that don’t have conflicting merges/diverges due to ramps
10. Require paved shoulders of at least 2’ wherever practical and possible
11. Use rumble strips to alert motorists of construction work zones and changes in traffic patterns
General Listing of Projects

List each highway safety improvement project obligated during the reporting period.

<table>
<thead>
<tr>
<th>Project</th>
<th>Improvement Category</th>
<th>Output</th>
<th>HSIP Cost</th>
<th>Total Cost</th>
<th>Funding Category</th>
<th>Functional Classification</th>
<th>AADT</th>
<th>Speed</th>
<th>Roadway Ownership</th>
<th>Relationship to SHSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>87823 - FRA CR 14 5.41</td>
<td>Intersection geometry Auxiliary lanes - add left-turn lane</td>
<td>1</td>
<td>500000 0</td>
<td>5421959</td>
<td>HSIP (Section 148)</td>
<td>Urban Minor Arterial</td>
<td>19708</td>
<td>40</td>
<td>County Highway Agency</td>
<td>Intersections Constructing turn lanes to rear end and left turn crashes (II-b-2)</td>
</tr>
<tr>
<td>96444 - D08 Wet Crash Locations</td>
<td>Roadway Pavement surface - high friction surface</td>
<td>8.4</td>
<td>167000 0</td>
<td>1697113.21</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Interstate</td>
<td>20341</td>
<td>70</td>
<td>State Highway Agency</td>
<td>Roadway Departure Installing high friction surfaces to reduce the number of roadway departure and rear end crashes</td>
</tr>
<tr>
<td>Project Code</td>
<td>Location</td>
<td>Work Description</td>
<td>Length</td>
<td>Cost</td>
<td>Illinois Highway Safety Improvement Program</td>
<td>Agency</td>
<td>Intersections</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>------------------</td>
<td>--------</td>
<td>------</td>
<td>---</td>
<td>--------</td>
<td>--------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83078 - HAM US 27 18.32</td>
<td>Interchange design Interchange design - other</td>
<td>0.2 Miles</td>
<td>1580000</td>
<td>2086560.77</td>
<td>HSIP (Section 148)</td>
<td>Urban Minor Arterial</td>
<td>6831</td>
<td>40</td>
<td>City of Municipal Highway Agency</td>
<td>Constructing a new exit ramp to reduce angle and rear end crashes (V-a-1)</td>
</tr>
<tr>
<td>86797 - HAM US 127 15.16</td>
<td>Intersection geometry Auxiliary lanes - add two-way left-turn lane</td>
<td>0.15 Miles</td>
<td>802341</td>
<td>1264440.99</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Other</td>
<td>18060</td>
<td>40</td>
<td>City of Municipal Highway Agency</td>
<td>Constructing a Two Way Left Turn Lane to reduce the number of head-on, sideswipe meeting, rear end and turning-related crashes (II-b-2)</td>
</tr>
<tr>
<td>85678 - HIG CR 5/ CR 74</td>
<td>Intersection geometry Intersection geometry -</td>
<td>1 Numb</td>
<td>717000</td>
<td>1149446.12</td>
<td>HSIP (Section 148)</td>
<td>Rural Minor</td>
<td>264</td>
<td>55</td>
<td>County Highway</td>
<td>Improve sight</td>
</tr>
<tr>
<td>/ T192 Intersect</td>
<td>other</td>
<td>ers</td>
<td>n 148)</td>
<td>Collector</td>
<td>y Agency</td>
<td>distance to reduce rear end and angle crashes (II-b-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94564 - CHP US 68 3.45</td>
<td>Intersection geometry Auxiliary lanes - add left-turn lane</td>
<td>1</td>
<td>558279</td>
<td>616944.35</td>
<td>HSIP (Section 148)</td>
<td>Rural Principal Arterial - Other</td>
<td>16090</td>
<td>55</td>
<td>State Highway Agency</td>
<td>Constructing turn lanes to rear end and left turn crashes (II-b-2)</td>
</tr>
<tr>
<td>91596 - LUC Sylvania-Meta/Mitchaw Rndabt</td>
<td>Intersection traffic control Modify control - two-way stop to roundabout</td>
<td>1</td>
<td>5332949</td>
<td>895662.03</td>
<td>HSIP (Section 148)</td>
<td>Urban Major Collector</td>
<td>8237</td>
<td>50</td>
<td>County Highway Agency</td>
<td>Constructing a roundabout to reduce angle and left turn crashes (II-b-10)</td>
</tr>
<tr>
<td>89910 - CLE SR 125 4.12</td>
<td>Intersection geometry Auxiliary lanes - add right-turn lane</td>
<td>1</td>
<td>504084</td>
<td>404913.41</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Other</td>
<td>30738</td>
<td>50</td>
<td>State Highway Agency</td>
<td>Constructing turn lanes to rear end</td>
</tr>
<tr>
<td>Project ID</td>
<td>Activity Description</td>
<td>Location Details</td>
<td>Crash Type</td>
<td>Crash Count</td>
<td>Improvement Type</td>
<td>Agency</td>
<td>Roadway Department</td>
<td>Project Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--------------------------------------</td>
<td>-----------------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96902 - SCI CR VAR GR FY14 Phase 1</td>
<td>Roadside Barrier - metal</td>
<td>5.3 Miles</td>
<td>HSIP (Section 148)</td>
<td>0</td>
<td>Rural Local Road or Street</td>
<td>County Highway Agency</td>
<td>Roadway Departure</td>
<td>Installing guardrail to address issue of roadway departure crashes (II-a-7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96903 - SCI CR VAR GR FY14 Phase 2</td>
<td>Roadside Barrier - metal</td>
<td>4.86 Miles</td>
<td>HSIP (Section 148)</td>
<td>0</td>
<td>Rural Local Road or Street</td>
<td>County Highway Agency</td>
<td>Roadway Departure</td>
<td>Installing guardrail to address issue of roadway departure crashes (II-a-7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80680 - STA Paris Avenue (CR-44-9.34)</td>
<td>Intersection geometry - other</td>
<td>2 Numbers</td>
<td>HSIP (Section 148)</td>
<td>2761</td>
<td>Rural Major Collector</td>
<td>County Highway Agency</td>
<td>Intersections</td>
<td>Improving sight distance to reduce rear end and angle crashes (II-b-3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project ID</td>
<td>Description</td>
<td>Length</td>
<td>Cost (1,000)</td>
<td>Length (1,000)</td>
<td>Department</td>
<td>Agency</td>
<td>Goal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>-------------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93791 - HAM CR 163 4.69</td>
<td>Roadway Pavement surface - high friction surface</td>
<td>0.8</td>
<td>343440</td>
<td>2966371 55</td>
<td>HSIP (Section 148)</td>
<td>Urban Minor Arterial</td>
<td>Installing high friction surfaces to reduce the number of roadway departure and rear end crashes (II-a-10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93304 - MAH/POR TSG FY2014 (UPS)</td>
<td>Intersection traffic control Modify traffic signal - miscellaneous/other/unspecified</td>
<td>55</td>
<td>330000</td>
<td>348687.4 5</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Other</td>
<td>Installing battery backup units to reduce intersection related crashes during outages. (II-b-10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95225 - HOL VAR GR Phase 8</td>
<td>Roadside Barrier - metal</td>
<td>3.13</td>
<td>284782.63</td>
<td>299537.7 6</td>
<td>HSIP (Section 148)</td>
<td>Rural Minor Collector</td>
<td>Installing guardrail to address issue of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Code</td>
<td>Description</td>
<td>Length</td>
<td>Milepost</td>
<td>Agency</td>
<td>Roadway Departure</td>
<td>Crash Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>-------------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96785 - GAL CR 50 Var GR FY2014</td>
<td>Roadside Barrier- metal</td>
<td>2.84 Miles</td>
<td>278832.92</td>
<td>278832.92</td>
<td>HSIP (Section 148)</td>
<td>Rural Local Road or Street</td>
<td>0</td>
<td>55</td>
<td>County Highway Agency</td>
<td>Roadway Departure</td>
</tr>
<tr>
<td>95231 - COL VAR GR Phase 2</td>
<td>Roadside Barrier- metal</td>
<td>2.4 Miles</td>
<td>275096.26</td>
<td>302381.26</td>
<td>HSIP (Section 148)</td>
<td>Rural Minor Collector</td>
<td>0</td>
<td>55</td>
<td>City of Municipal Highway Agency</td>
<td>Roadway Departure</td>
</tr>
<tr>
<td>85681 - ROS CR 205 6.00 GR</td>
<td>Roadside Barrier- metal</td>
<td>2.55 Miles</td>
<td>272316.3</td>
<td>306424.3</td>
<td>HSIP (Section 148)</td>
<td>Rural Minor Collector</td>
<td>0</td>
<td>55</td>
<td>County Highway Agency</td>
<td>Roadway Departure</td>
</tr>
<tr>
<td>Project ID</td>
<td>Description</td>
<td>Miles</td>
<td>Cost 1</td>
<td>Cost 2</td>
<td>Sect 1</td>
<td>Sect 2</td>
<td>Agency</td>
<td>Department</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>96276 - MEG CR VAR GR FY2014</td>
<td>Roadside Barrier- metal</td>
<td>2.02</td>
<td>269590</td>
<td>273143.83</td>
<td>HSIP (Section 148)</td>
<td>Rural Local Road or Street</td>
<td>0</td>
<td>55</td>
<td>County Highway Agency</td>
<td>Roadway Departure</td>
</tr>
<tr>
<td>97021 - MAH County GR FY 2014</td>
<td>Roadside Barrier- metal</td>
<td>2.17</td>
<td>253475</td>
<td>236061.3</td>
<td>HSIP (Section 148)</td>
<td>Rural Local Road or Street</td>
<td>0</td>
<td>55</td>
<td>County Highway Agency</td>
<td>Roadway Departure</td>
</tr>
<tr>
<td>87838 - LAW CR 12/CR 18 Guardrail</td>
<td>Roadside Barrier- metal</td>
<td>1.53</td>
<td>231080.87</td>
<td>247989.88</td>
<td>HSIP (Section 148)</td>
<td>Rural Local Road or Street</td>
<td>0</td>
<td>55</td>
<td>County Highway Agency</td>
<td>Roadway Departure</td>
</tr>
<tr>
<td>91786 - ATB Guardrail FY</td>
<td>Roadside Barrier- metal</td>
<td>1.4</td>
<td>222117.</td>
<td>210245.2</td>
<td>HSIP (Section</td>
<td>Rural Local</td>
<td>0</td>
<td>55</td>
<td>County Highway</td>
<td>Roadway Departur</td>
</tr>
<tr>
<td>Project Number</td>
<td>Description</td>
<td>Type</td>
<td>Location</td>
<td>Designation</td>
<td>Road or Street</td>
<td>Agency</td>
<td>Mnemonic</td>
<td>Issue to Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83600 - TRU CR 0142 04.68</td>
<td>Intersection traffic control Modify traffic signal - modernization/replace ment</td>
<td>1 Numbers</td>
<td>5 9 n 148</td>
<td>HSIP Section 148</td>
<td>Urban Major Collector</td>
<td>City of Municipal Highway Agency</td>
<td>Improving signal operation and visibility to reduce intersection related crashes (II-b-2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86129 - FAI GR 2014</td>
<td>Roadside Barrier- metal</td>
<td>0.44 Miles</td>
<td>160000 162577.54</td>
<td>HSIP Section 148</td>
<td>Rural Major Collector</td>
<td>County Highway Agency</td>
<td>Roadway Departure</td>
<td>Installing guardrail to address issue of roadway departure crashes (II-a-7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96920 - RIC CR PM FY2014 (2)</td>
<td>Roadway delineation Longitudinal pavement markings - new</td>
<td>75.92 Miles</td>
<td>150000 150755.41</td>
<td>HSIP Section 148</td>
<td>Rural Local Road or</td>
<td>County Highway Agency</td>
<td>Roadway Departure</td>
<td>Adding pavement markings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Number</td>
<td>Street Agency</td>
<td>Interchange design</td>
<td>Description</td>
<td>Street Length</td>
<td>Agency</td>
<td>Roadway Departure</td>
<td>Crash Reduction Measure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------</td>
<td>-------------------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85288 - LUC IR 475 4.51</td>
<td>State Highway Agency</td>
<td>Interchange design - other</td>
<td>1 Numbers</td>
<td>87539.97</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Interstate</td>
<td>70428</td>
<td>65</td>
<td>Replacing pavement to improve superelevation to reduce roadway departure crashes (II-a-5)</td>
<td></td>
</tr>
<tr>
<td>92458 - FAI SR 256 00.00 Part 1 & 2</td>
<td>City of Municipal Highway Agency</td>
<td>Roadway widening - add lane(s) along segment</td>
<td>2 Miles</td>
<td>492930.36</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Other</td>
<td>35216</td>
<td>50</td>
<td>Constructing traveled lanes to reduce angle and rear end crashes (V-a-1)</td>
<td></td>
</tr>
<tr>
<td>90259 - LUC SR 246 2.00</td>
<td>City of Municipal Intersections</td>
<td>Intersection geometry</td>
<td>2 Numbers</td>
<td>403892.02</td>
<td>HSIP (Section)</td>
<td>Urban Principal</td>
<td>25478</td>
<td>40</td>
<td>Constructing turn</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>left-turn lane</td>
<td>Planners</td>
<td>n 148)</td>
<td>Arterial - Other</td>
<td>pal Highway Agency</td>
<td>Constructing turn lanes to rear end and left turn crashes (II-b-2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>----------</td>
<td>--------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85299 - STA 12th Street HSP</td>
<td>Intersection geometry, Auxiliary lanes - add left-turn lane</td>
<td>4 Numbers</td>
<td>388720 8</td>
<td>230831 4.65</td>
<td>Other Federal-aid Funds (i.e. STP, NHPP)</td>
<td>City of Municipal Highway Agency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84563 - SUM SR 8/82 20.27/0.14</td>
<td>Intersection geometry, Auxiliary lanes - add two-way left-turn lane</td>
<td>0.58 Miles</td>
<td>157950 0</td>
<td>3417457. 87</td>
<td>HSIP (Section 148)</td>
<td>Urban Minor Arterial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>City of Municipal Highway Agency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Constructing a Two Way Left Turn Lane to reduce the number of head-on, sideswipe meeting, rear end and turning-related</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Code</td>
<td>Description</td>
<td>Action</td>
<td>Numbers</td>
<td>Agency</td>
<td>Intersection Type</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>-------------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92691 - MED</td>
<td>Intersection traffic control Modify control - traffic signal to roundabout</td>
<td></td>
<td></td>
<td>State Highway Agency</td>
<td>Intersections</td>
<td>Constructing a roundabout to reduce angle and rear end crashes (II-b-10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 0057 17.67</td>
<td></td>
</tr>
<tr>
<td>88721 - MOT</td>
<td>Intersection traffic control Modify traffic signal - modernization/replacement</td>
<td></td>
<td></td>
<td>City of Municipal Highway Agency</td>
<td>Intersections</td>
<td>Improving signal operation and visibility to reduce intersection related crashes (II-b-2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 48 16.21</td>
<td></td>
</tr>
<tr>
<td>92381 - FRA</td>
<td>Interchange design Ramp metering</td>
<td></td>
<td></td>
<td>State Highway Agency</td>
<td>Intersections</td>
<td>Modernizing ramp metering equipment to reduce crashes (II-b-2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAMP METER UPGRADE</td>
<td></td>
</tr>
</tbody>
</table>

Numbers include: 157630-5, 2503934-26, HSIP (Section 148), Rural Minor Collector, 2380-55, Urban Principal Arterial - Other, 15892-45, HSIP (Section 148), Urban Principal Arterial - Interstate, 99458-65.
<table>
<thead>
<tr>
<th>Project Number</th>
<th>Location</th>
<th>Intersection Data</th>
<th>MUTCD Code</th>
<th>HSIP Section</th>
<th>Agency</th>
<th>Crash Type</th>
<th>Intersection Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>93601 - LAK
US 020
25.52
Intersection</td>
<td>Intersection geometry
Auxiliary lanes - add left-turn lane</td>
<td>1 Numbers</td>
<td>119454 1.95</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Other</td>
<td>1507 0 45</td>
<td>City of Municipal Highway Agency</td>
</tr>
<tr>
<td>96421 - HAM/BUT-75-17.22/0.00</td>
<td>Interchange design
Extend existing lane on ramp</td>
<td>0.38 Miles</td>
<td>113066 1</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Interstate</td>
<td>1089 82 65</td>
<td>State Highway Agency</td>
</tr>
<tr>
<td>97097 - TUS
US 250 5.16</td>
<td>Intersection traffic control
Modify traffic signal -</td>
<td>2 Numbers</td>
<td>103763 7.8</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial -</td>
<td>9995 55</td>
<td>City of Municipal Agency</td>
</tr>
<tr>
<td>Description</td>
<td>Length</td>
<td>Cost</td>
<td>Fund</td>
<td>Agency</td>
<td>Intersection Type</td>
<td>Details</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>---------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>------------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>modernization/replace ment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and visibility to reduce intersection related crashes (II-b-2)</td>
<td></td>
</tr>
<tr>
<td>97577 - GAL CR 35 2.440 [Intersection geometry]</td>
<td>1.77</td>
<td>880000</td>
<td>1352224.5</td>
<td>Rural Major Collector</td>
<td>County Highway Agency</td>
<td>Constructing turn lanes to rear end and left turn crashes (II-b-2)</td>
<td></td>
</tr>
<tr>
<td>Auxiliary lanes - add left-turn lane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88739 - ASD US 0042 07.75 [Interchange design]</td>
<td>1</td>
<td>855000</td>
<td>1004073.31</td>
<td>Urban Principal Arterial - Other</td>
<td>City of Municipal Highway Agency</td>
<td>Replacing existing interchange and ramps with an at-grade signal to reduce rear end and angle crashes</td>
<td></td>
</tr>
<tr>
<td>Project Number</td>
<td>Description</td>
<td>Improvement</td>
<td>City</td>
<td>Section</td>
<td>Reason</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>93565 - LUC US20A 5.56 Roundabt @ Eber</td>
<td>Intersection traffic control Modify control - two-way stop to roundabout</td>
<td>HSIP (Section 148)</td>
<td>City of Municipal Highway Agency</td>
<td>Intersections</td>
<td>Constructing a roundabout to reduce angle crashes (II-b-10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88043 - BEL SR 7 (20.84)(21.85)</td>
<td>Intersection geometry Auxiliary lanes - add right-turn lane</td>
<td>HSIP (Section 148)</td>
<td>City of Municipal Highway Agency</td>
<td>Intersections</td>
<td>Constructing turn lanes to rear end crashes (II-b-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92582 - OTT SR 53 4.90 Safety Improv</td>
<td>Intersection geometry Auxiliary lanes - add left-turn lane</td>
<td>HSIP (Section 148)</td>
<td>City of Municipal Highway Agency</td>
<td>Intersections</td>
<td>Constructing turn lanes to rear end and left turn crashes (II-b-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96890 - TRU SR 5/82 06.60/14.08</td>
<td>Roadside Barrier - cable</td>
<td>HSIP (Section 148)</td>
<td>City of Municipal Highway</td>
<td>Roadway Departure</td>
<td>Installing cable median barrier to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Number</td>
<td>Description</td>
<td>Benefit</td>
<td>Improvement Method</td>
<td>Timing</td>
<td>Agency</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>---------</td>
<td>--------------------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>97134 - HAM SR 562 0.65 Queue Detection</td>
<td>Advanced technology and ITS Congestion detection / traffic monitoring system</td>
<td>Freeways and Expressways</td>
<td>City of Municipal Highway Agency</td>
<td>Intersections</td>
<td>Providing advanced warning signage to reduce high speed rear end collisions (V-A-9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96221 - BUT US 127 0.00</td>
<td>Intersection geometry Auxiliary lanes - extend existing left-turn lane</td>
<td>Freeways and Expressways</td>
<td>City of Municipal Highway Agency</td>
<td>Intersections</td>
<td>Extending left turn lane to reduce sideswipe passing, left turn, angle, and rear end crashes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>492300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project ID</td>
<td>Description</td>
<td>Roadway Type</td>
<td>Miles</td>
<td>Cost</td>
<td>Agency</td>
<td>Project Type</td>
<td>Notes</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>90252 - ROS CR 1/60/92 VAR GR 2013</td>
<td>Roadside Barrier- metal</td>
<td>Roadway Departure</td>
<td>3.18 Miles</td>
<td>334400</td>
<td>Rural Major Collector</td>
<td>Installing guardrail to address issue of roadway departure crashes (II-a-7)</td>
<td></td>
</tr>
<tr>
<td>92897 - ASD SR 0096 06.21 (Signals)</td>
<td>Intersection traffic control Modify traffic signal - modernization/replacement</td>
<td>Regional Highway Agency</td>
<td>4 Numbers</td>
<td>330290</td>
<td>HSIP (Section 148)</td>
<td>Installing guardrail to address issue of roadway departure crashes (II-a-7)</td>
<td></td>
</tr>
<tr>
<td>87840 - ROS CR 235/240/241 VAR GR</td>
<td>Roadside Barrier- metal</td>
<td>Roadway Departure</td>
<td>1.94 Miles</td>
<td>303600</td>
<td>Rural Local Road or Street</td>
<td>Installing guardrail to address issue of roadway departure crashes (II-a-7)</td>
<td></td>
</tr>
<tr>
<td>Project ID</td>
<td>Location</td>
<td>Description</td>
<td>Length</td>
<td>Cost</td>
<td>Cost Est.</td>
<td>Agency</td>
<td>Roadway Departure</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
<td>------</td>
<td>-----------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>97426 - ASD CR GR FY2015</td>
<td>Roadside Barrier- metal</td>
<td>2.27 Miles</td>
<td>300000</td>
<td>388140</td>
<td>HSIP (Section 148)</td>
<td>Rural Local Road or Street</td>
<td>0</td>
</tr>
<tr>
<td>88312 - MRG CR 2/VAR-0.00/VAR-GR</td>
<td>Roadside Barrier- metal</td>
<td>2.58 Miles</td>
<td>288590</td>
<td>279404.75</td>
<td>HSIP (Section 148)</td>
<td>Rural Major Collector</td>
<td>0</td>
</tr>
<tr>
<td>96900 - ADA CR VAR Guardrail FY14</td>
<td>Roadside Barrier- metal</td>
<td>1.7 Miles</td>
<td>229796.58</td>
<td>220911.92</td>
<td>HSIP (Section 148)</td>
<td>Rural Minor Collector</td>
<td>0</td>
</tr>
<tr>
<td>91466 - HAM IR 275 32.20</td>
<td>Intersection geometry Auxiliary lanes - modify free-flow turn lane</td>
<td>1 Numbers</td>
<td>212508</td>
<td>236120</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial</td>
<td>93104</td>
</tr>
<tr>
<td>Project Number</td>
<td>Location</td>
<td>Description</td>
<td>Miles</td>
<td>Mile Post</td>
<td>Agency</td>
<td>Intersection Improvement</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>-------------</td>
<td>-------</td>
<td>-----------</td>
<td>--------</td>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>98768 - LUC US 24 21.47 Detroit@Glen</td>
<td>Intersection traffic control Modify traffic signal - modernization/replace ment</td>
<td>1 Numbers</td>
<td>152000</td>
<td>169778.45</td>
<td>HSIP (Section 148)</td>
<td>Urban Minor Arterial</td>
<td>13602</td>
</tr>
<tr>
<td>90254 - ROS CR Various PM 2015</td>
<td>Roadway delineation Longitudinal pavement markings - new</td>
<td>90.11 Miles</td>
<td>145960</td>
<td>153173.59</td>
<td>HSIP (Section 148)</td>
<td>Rural Local Road or Street</td>
<td>0</td>
</tr>
<tr>
<td>97490 - ATH CR VAR PM</td>
<td>Roadway delineation Longitudinal pavement</td>
<td>67.3 Miles</td>
<td>143600</td>
<td>137259.69</td>
<td>HSIP (Section)</td>
<td>Rural Local</td>
<td>0</td>
</tr>
<tr>
<td>Project ID</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96855 - CRA CR PM FY2014</td>
<td>Roadway delineation Longitudinal pavement markings - new</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92554 - GRE CR 36 0.27</td>
<td>Roadway delineation Longitudinal pavement markings - new</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96901 - ADA CR Various PM FY14</td>
<td>Roadway delineation Longitudinal pavement markings - new</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project No.</td>
<td>Description</td>
<td>Intersection Traffic Control</td>
<td>Traffic Signal Modifications</td>
<td>Numbers</td>
<td>Section</td>
<td>Geometry</td>
<td>Beyond</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>96567 - MED SR 0094 14.61 (I-271 Ramp)</td>
<td>Intersection traffic control Modify traffic signal - modernization/replace ment</td>
<td>1 Numbers</td>
<td>97070</td>
<td>142179.43</td>
<td>HSIP (Section 148)</td>
<td>Rural Minor Collector</td>
<td>1098</td>
</tr>
<tr>
<td>98818 - D06 Regional Signals</td>
<td>Intersection traffic control Modify traffic signal - add backplates with retroreflective borders</td>
<td>70 Numbers</td>
<td>882301</td>
<td>914601</td>
<td>HSIP (Section 148)</td>
<td>Rural Minor Arterial</td>
<td>1565</td>
</tr>
<tr>
<td>96463 - LIC TR 35 00.00</td>
<td>Roadway Pavement surface - high friction surface</td>
<td>2.45 Miles</td>
<td>226273</td>
<td>239139.9</td>
<td>HSIP (Section 148)</td>
<td>Rural Local Road or Street</td>
<td>2097</td>
</tr>
<tr>
<td>Agency</td>
<td>the number of roadway departure and rear end crashes (II-a-10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99042 - BEL SR 149 23.790</td>
<td>Intersection traffic control Modify traffic signal - modernization/replacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Numbers 344520 486722.86 HSIP (Section 148) Rural Minor Collector 7492 55 State Highway Agency Intersections Constructing a traffic signal and turn lanes to reduce angle and rear end crashes (II-b-10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93316 - MAR CR 221-A1</td>
<td>Roadway Roadway - other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.62 Miles 500000 3060278.4 State and Local Funds Urban Minor Arterial 6648 45 City of Municipal Highway Agency Intersections Constructing connector roadway to reduce angle and rear end crashes on adjacent facilities.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Number</td>
<td>Description</td>
<td>Improvement Type</td>
<td>Numbers</td>
<td>Other Federal-Aid Funds</td>
<td>Agency</td>
<td>Intersections</td>
<td>Constructing turn lanes to rear end and left turn crashes (II-b-2)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------</td>
<td>------------------------</td>
<td>--------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>82295 - HOC US 33 0.00</td>
<td>Intersection geometry Auxiliary lanes - add right-turn lane</td>
<td>1 Numbers</td>
<td>495153</td>
<td>2440790</td>
<td>Rural Principal Arterial - Other</td>
<td>2258</td>
<td>70</td>
</tr>
<tr>
<td>83912 - WAR US 22 4.20</td>
<td>Intersection geometry Auxiliary lanes - add left-turn lane</td>
<td>1 Numbers</td>
<td>339399.01</td>
<td>1556161.42</td>
<td>Urban Principal Arterial - Other</td>
<td>1615</td>
<td>45</td>
</tr>
<tr>
<td>97279 - WOO 75/795/Clark & 25/5Pts Int</td>
<td>Intersection geometry Auxiliary lanes - add left-turn lane</td>
<td>2 Numbers</td>
<td>45035.99</td>
<td>1987011.79</td>
<td>Urban Minor Arterial</td>
<td>8210</td>
<td>55</td>
</tr>
<tr>
<td>76938 - FAI US 33 05.60(Carrol</td>
<td>Interchange design Convert at-grade intersection to</td>
<td>1 Number</td>
<td>651771 9.94</td>
<td>4560458 4.57</td>
<td>State and Local</td>
<td>Rural Principal Arterial -</td>
<td>3833 5</td>
</tr>
</tbody>
</table>
2015 Ohio Highway Safety Improvement Program

<table>
<thead>
<tr>
<th>Area)</th>
<th>interchange</th>
<th>ers</th>
<th>Funds</th>
<th>Other Freeways and Expressways</th>
<th>Agency</th>
<th>e to high speed intersection crashes (V-a-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>88405 - FAI CR 71 00.93</td>
<td>Intersection geometry</td>
<td>1 Numbers</td>
<td>578150.77</td>
<td>587667.02</td>
<td>HRRRP (SAFETYA-LU)</td>
<td>Rural Local Road or Street</td>
</tr>
</tbody>
</table>

Funding contained in the project listing is total project cost. Larger projects are likely funded in multiple fiscal years. The total safety dollars shown in the project listing will not match the fiscal year expenditures.
Progress in Achieving Safety Performance Targets

Overview of General Safety Trends
Present data showing the general highway safety trends in the state for the past five years.

<table>
<thead>
<tr>
<th>Performance Measures*</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of fatalities</td>
<td>1158</td>
<td>1114</td>
<td>1087</td>
<td>1047</td>
<td>1044</td>
</tr>
<tr>
<td>Number of serious injuries</td>
<td>10249</td>
<td>10041</td>
<td>9902</td>
<td>9727</td>
<td>9529</td>
</tr>
<tr>
<td>Fatality rate (per HMVMT)</td>
<td>1.05</td>
<td>1.01</td>
<td>0.98</td>
<td>0.94</td>
<td>0.93</td>
</tr>
<tr>
<td>Serious injury rate (per HMVMT)</td>
<td>9.22</td>
<td>9.04</td>
<td>8.91</td>
<td>8.68</td>
<td>8.48</td>
</tr>
</tbody>
</table>

*Performance measure data is presented using a five-year rolling average.
Number of Fatalities and Serious injuries for the Last Five Years

Years

Serious Injuries

Fatalities

2010 2011 2012 2013 2014

1158

1144

1087

1047

1044

0 2000 4000 6000 8000 10000 12000

0 1040 1060 1080 1100 1120 1140 1160 1180
Rate of Fatalities and Serious injuries for the Last Five Years

![Chart showing the rate of fatalities and serious injuries from 2010 to 2014. The chart includes bars for serious injuries rate per HMVMT and a line chart for fatality rate per HMVMT. The fatality rate decreases from 1.05 in 2010 to 0.93 in 2014, while the serious injuries rate remains relatively stable.]
To the maximum extent possible, present performance measure* data by functional classification and ownership.

Year - 2014

<table>
<thead>
<tr>
<th>Function Classification</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - INTERSTATE</td>
<td>27</td>
<td>149</td>
<td>0.32</td>
<td>1.78</td>
</tr>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXPRESSWAYS</td>
<td>5</td>
<td>35</td>
<td>0.29</td>
<td>2.08</td>
</tr>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - OTHER</td>
<td>51</td>
<td>321</td>
<td>1.2</td>
<td>7.52</td>
</tr>
<tr>
<td>RURAL MINOR ARTERIAL</td>
<td>77</td>
<td>499</td>
<td>1.81</td>
<td>11.81</td>
</tr>
<tr>
<td>RURAL MINOR COLLECTOR</td>
<td>42</td>
<td>286</td>
<td>2.57</td>
<td>17.5</td>
</tr>
<tr>
<td>RURAL MAJOR COLLECTOR</td>
<td>171</td>
<td>1187</td>
<td>2.2</td>
<td>15.3</td>
</tr>
<tr>
<td>RURAL LOCAL ROAD OR STREET</td>
<td>114</td>
<td>754</td>
<td>2.07</td>
<td>13.78</td>
</tr>
<tr>
<td>URBAN PRINCIPAL</td>
<td>76</td>
<td>729</td>
<td>0.32</td>
<td>3.14</td>
</tr>
<tr>
<td>ARTERIAL - INTERSTATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>URBAN PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXPRESSWAYS</td>
<td>23</td>
<td>212</td>
<td>0.36</td>
<td>3.33</td>
</tr>
<tr>
<td>URBAN PRINCIPAL ARTERIAL - OTHER</td>
<td>134</td>
<td>1622</td>
<td>0.99</td>
<td>12.5</td>
</tr>
<tr>
<td>URBAN MINOR ARTERIAL</td>
<td>138</td>
<td>1671</td>
<td>1.02</td>
<td>12.34</td>
</tr>
<tr>
<td>URBAN MINOR COLLECTOR</td>
<td>3</td>
<td>26</td>
<td>0.68</td>
<td>6.19</td>
</tr>
<tr>
<td>URBAN MAJOR COLLECTOR</td>
<td>99</td>
<td>1000</td>
<td>1</td>
<td>10.07</td>
</tr>
<tr>
<td>URBAN LOCAL ROAD OR STREET</td>
<td>37</td>
<td>364</td>
<td>0.29</td>
<td>2.91</td>
</tr>
</tbody>
</table>
Fatalities by Roadway Functional Classification

![Bar chart showing fatalities by roadway functional classification for 2010, 2011, 2012, 2013, and 2014 in Ohio. The x-axis represents different types of roadways, and the y-axis shows the number of fatalities. Each bar is color-coded for each year, with a legend indicating the years from 2010 to 2014.]
Serious Injuries by Roadway Functional Classification

![Bar chart showing the number of serious injuries by roadway functional classification for 2010 to 2014.](image)

- **Roadway Functional Classification:**
 - Major Collector (U)
 - Principal Arterial (R)
 - Local Road or Street (R)
 - Principal Arterial - Other Freeways and Expressways (U)
 - Principal Arterial - Interstate (R)
 - Principal Arterial - Other (R)
 - Minor Arterial - Other (U)
 - Minor Collector (U)
 - Minor Arterial (R)

- **Y-axis:** Number of Serious Injuries
- **X-axis:** Roadway Functional Classification
Fatality Rate by Roadway Functional Classification

Roadway Functional Classification
Serious Injury Rate by Roadway Functional Classification

Roadway Functional Classification

- Major Collector (U)
- Major Collector (R)
- Minor Collector (R)
- Local Road or Street (R)
- Principal Arterial (R)
- Principal Arterial - Other (R)
- Principal Arterial - Other Freeways and Expressways (R)
- Principal Arterial - Interstate (R)
- Principal Arterial - Interstate (U)
- Minor Arterial - Other (U)
- Minor Arterial (U)
- Major Collector - Other (U)

Years:
- 2010
- 2011
- 2012
- 2013
- 2014
Year - 2014

<table>
<thead>
<tr>
<th>Roadway Ownership</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE HIGHWAY AGENCY</td>
<td>273</td>
<td>2676</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>COUNTY HIGHWAY AGENCY</td>
<td>132</td>
<td>930</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOWN OR TOWNSHIP HIGHWAY AGENCY</td>
<td>54</td>
<td>358</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CITY OF MUNICIPAL HIGHWAY AGENCY</td>
<td>464</td>
<td>5316</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STATE PARK, FOREST, OR RESERVATION AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LOCAL PARK, FOREST OR RESERVATION AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER STATE AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER LOCAL AGENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRIVATE (OTHER THAN RAILROAD)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAILROAD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STATE TOLL AUTHORITY</td>
<td>7</td>
<td>53</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LOCAL TOLL AUTHORITY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER PUBLIC INSTRUMENTALITY (E.G. AIRPORT, SCHOOL, UNIVERSITY)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER</td>
<td>16</td>
<td>199</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Number of Fatalities by Roadway Ownership

- 2010
- 2011
- 2012
- 2013
- 2014

of Fatalities

Roadway Functional Classification

- State
- County
- Town
- City
- Local Park
- Other State
- Other Private
- Railroad
- State Toll
- Local Toll
- Other

2015 Ohio Highway Safety Improvement Program
Number of Serious Injuries by Roadway Ownership

Roadway Functional Classification

of Serious Injuries

- 2010
- 2011
- 2012
- 2013
- 2014
Serious Injury Rate by Roadway Ownership

2010 2011 2012 2013 2014

Roadway Functional Classification

Serious Injury Rate (per HMVT)
Note: Data for 2014 SHOULD NOT be compared to earlier data. In 2014, the functional class system was updated to new codes (1-7) from the legacy codes (1-19). Additionally, the functional class designation was updated based on the 2010 census.
Describe any other aspects of the general highway safety trends on which you would like to elaborate.

Note: Data for 2014 SHOULD NOT be compared to earlier data. In 2014, the functional class system was updated to new codes (1-7) from the legacy codes (1-19). Additionally, the functional class designation was updated based on the 2010 census.

The Functional Class conversion should have little to no impacted on the Special Rule for High Risk Rural Roads. However, when looking at the Special Rule for High Risk Rural Road, crash rates were impacted as well due to changing of the urban and rural boundary limits.

Application of Special Rules

Present the rate of traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65.

<table>
<thead>
<tr>
<th>Older Driver Performance Measures</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatality rate (per capita)</td>
<td>1.09</td>
<td>1.05</td>
<td>1.02</td>
<td>1.04</td>
<td>1.01</td>
</tr>
<tr>
<td>Serious injury rate (per capita)</td>
<td>5.164</td>
<td>5.198</td>
<td>5.192</td>
<td>5.186</td>
<td>5.12</td>
</tr>
<tr>
<td>Fatality and serious injury rate (per capita)</td>
<td>6.26</td>
<td>6.25</td>
<td>6.21</td>
<td>6.22</td>
<td>6.12</td>
</tr>
</tbody>
</table>

*Performance measure data is presented using a five-year rolling average.

Example calculation for 2009:

$$\frac{\left(\left(\text{F+SI 2009 Drivers and Pedestrians 65 years of age and older}/\text{2009 Population Figure}\right) + \left(\text{F+SI 2008 Drivers and Pedestrians 65 years of age and older}/\text{2008 Population Figure}\right) + \left(\text{F+SI 2007 Drivers and Pedestrians 65 years of age and older}/\text{2007 Population Figure}\right) + \left(\text{F+SI 2006 Drivers and Pedestrians 65 years of age and older}/\text{2006 Population Figure}\right) + \left(\text{F+SI 2005 Drivers and Pedestrians 65 years of age and over}/\text{2005 Population Figure}\right)\right)}{5}$$
Rate of Fatalities and Serious injuries for the Last Five Years

Does the older driver special rule apply to your state?

No
Assessment of the Effectiveness of the Improvements (Program Evaluation)

What indicators of success can you use to demonstrate effectiveness and success in the Highway Safety Improvement Program?

[] None

[] Benefit/cost

[] Policy change

[] Other:

Ohio routinely evaluates crash trends, quarterly and annually, to determine the effectiveness of its Highway Safety Improvement Program.

The safety benefits are calculated by using the total number of crashes by year and severity in order to determine a 5-year average. Crash cost where calculated for 2014 based on the Highway Safety Manual methodologies. For each year, the crash severity was multiplied by its associated cost and then summed for all severity levels. A five-year rolling average was calculated for 2013 (2009-2013) and 2014 (2010-2014). The difference between these two values equates to the safety benefits between the two years and is equal to $94 million. ODOT receives a total of $82 million in Federal HSIP dollars annually on safety projects. The ratio of the safety benefits and program cost equates to a benefit-cost ratio of 1.16.

We also track our statewide progress in implementing systematic safety treatments that target serious crash types and roadway features that can potentially increase the likelihood of crashes. This program element has been successful in reducing crashes based on the naïve before-and-after results for the different systematic treatments. In addition, we have increased our efforts to complete systematic projects on locally maintained roads by working with MPOs, County Engineers and LTAP to provide technical assistance and funding for local road safety improvements.

What significant programmatic changes have occurred since the last reporting period?
Briefly describe significant program changes that have occurred since the last reporting period.

ODOT has made changes in the safety program based on past experiences and new research. We strive to increase our systematic safety programs (median barrier, LED signals & backplates, rumble stripes, guardrail upgrades, curve signing, etc) to continue to reduce crashes. ODOT has also increased outreach efforts to other state, federal, and local agencies as a result of the SHSP. ODOT has also worked closely with MPOs and county engineers on local roadways as a result of the HSIP.

ODOT and the Mid-Ohio Regional Planning Commission have launched an MPO-led pilot program to advance low-cost systemic safety improvements on locally maintained roads. The two-year, $2 million program will be funded with HSIP and MPO-allocated federal funds, and it will be used to develop a template for other MPO regions across the state.

Because local roadway inventory data is incomplete, ODOT and MORPC are using a modified systemic safety process that identifies serious crash types and high-risk roadway features; selects low-cost safety improvements; then screens and prioritizes locations for improvements.
SHSP Emphasis Areas
For each SHSP emphasis area that relates to the HSIP, present trends in emphasis area performance measures.

Year - 2014

<table>
<thead>
<tr>
<th>HSIP-related SHSP Emphasis Areas</th>
<th>Target Crash Type</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway Departure</td>
<td>Roadway Departure</td>
<td>607</td>
<td>3884</td>
<td>0.54</td>
<td>3.46</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intersections</td>
<td>Intersections</td>
<td>286</td>
<td>3970</td>
<td>0.26</td>
<td>3.53</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pedestrians</td>
<td>Vehicle/pedestrian</td>
<td>101</td>
<td>535</td>
<td>0.09</td>
<td>0.48</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bicyclists</td>
<td>Vehicle/bicycle</td>
<td>16</td>
<td>215</td>
<td>0.02</td>
<td>0.19</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Motorcyclists</td>
<td>Motorcycle Involved</td>
<td>154</td>
<td>1072</td>
<td>0.14</td>
<td>0.96</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Work Zones</td>
<td>Work Zone Related</td>
<td>17</td>
<td>148</td>
<td>0.02</td>
<td>0.14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Number of Fatalities by SHSP Emphasis Area

Year 2010 to Year 2014

<table>
<thead>
<tr>
<th>SHSP Emphasis Area</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway Departure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedestrians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bicyclists</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Older Drivers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorcyclists</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Zones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Number of Serious Injuries by SHSP Emphasis Area

Year 2010 to Year 2014

of Serious Injuries

SHSP Emphasis Area
Fatality Rate by SHSP Emphasis Area

Year 2010 to Year 2014

<table>
<thead>
<tr>
<th>SHSP Emphasis Area</th>
<th>2010</th>
<th>2012</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway Departure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedestrians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bicyclists</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Older Drivers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorcyclists</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Zones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Serious Injury Rate by SHSP Emphasis Area

Year 2010 to Year 2014

SHSP Emphasis Area
Groups of similar project types
Present the overall effectiveness of groups of similar types of projects.

Year - 2014

<table>
<thead>
<tr>
<th>HSIP Sub-program Types</th>
<th>Target Crash Type</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other-State High Risk Rural Road</td>
<td>Serious Rural Crashes</td>
<td>383</td>
<td>2752</td>
<td>2.41</td>
<td>17.3</td>
<td>19460</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other-State HSIP Program</td>
<td>All</td>
<td>1044</td>
<td>9529</td>
<td>0.93</td>
<td>8.48</td>
<td>104583</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other-CEAO HSIP Program</td>
<td>All</td>
<td>188</td>
<td>1445</td>
<td>3.34</td>
<td>25.73</td>
<td>12555</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Fatalities by Target Crash Type for Groups of Similar Projects

Year 2010 to Year 2014

<table>
<thead>
<tr>
<th>Target Crash Type</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>1500</td>
<td>1400</td>
<td>1300</td>
<td>1200</td>
<td>1100</td>
</tr>
<tr>
<td>Angle</td>
<td>1200</td>
<td>1100</td>
<td>1000</td>
<td>900</td>
<td>800</td>
</tr>
<tr>
<td>Cross median</td>
<td>900</td>
<td>800</td>
<td>700</td>
<td>600</td>
<td>500</td>
</tr>
<tr>
<td>Fixed object</td>
<td>600</td>
<td>500</td>
<td>400</td>
<td>300</td>
<td>200</td>
</tr>
<tr>
<td>Sideswipe</td>
<td>400</td>
<td>300</td>
<td>200</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Head-on</td>
<td>200</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Left-turn</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Night-time</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intersections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Non-intersection</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rear-end</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Right-turn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Run-off-road</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Speed-related</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Truck-related</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vehicle/animal</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vehicle/bicycle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wet road</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Target Crash Type
Serious Injuries by Target Crash Type for Groups of Similar Projects

Year 2010 to Year 2014

- 2010
- 2011
- 2012
- 2013
- 2014

Target Crash Type

- All
- Angle
- Cross median
- Fixed object
- Head on
- Left-turn
- Night-time
- Intersections
- Non-intersection
- Rear-end
- Right-turn
- Run-off-road
- Speed-related
- Truck-related
- Vehicle/animal
- Vehicle/bicycle
- Vehicle/pedestrian
- Wet road

of Serious Injuries

- 0
- 2000
- 4000
- 6000
- 8000
- 10000
- 12000
- 14000
Fatality Rate by Target Crash Type for Groups of Similar Projects

Year 2010 to Year 2014

Target Crash Type
Serious Injury Rate by Target Crash Type for Groups of Similar Projects

Year 2010 to Year 2014

Target Crash Type

Rate of Serious Injuries
Systemic Treatments
Present the overall effectiveness of systemic treatments.

Year - 2014

<table>
<thead>
<tr>
<th>Systemic improvement</th>
<th>Target Crash Type</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other-CEAO - Upgrade / Install Curve Signage</td>
<td></td>
<td>64</td>
<td>369</td>
<td>1.14</td>
<td>6.56</td>
<td>2505</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other-CEAO - Upgrade / Install Guardrail</td>
<td></td>
<td>116</td>
<td>788</td>
<td>2.07</td>
<td>14.02</td>
<td>5246</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other-CEAO - Upgrade / Install RPMs</td>
<td></td>
<td>125</td>
<td>786</td>
<td>2.22</td>
<td>13.99</td>
<td>5114</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other-ODOT - Wet Pavement Locations</td>
<td></td>
<td>57</td>
<td>480</td>
<td>0.06</td>
<td>0.43</td>
<td>4338</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other-ODOT - Roadway Departure</td>
<td></td>
<td>269</td>
<td>1553</td>
<td>1.05</td>
<td>6.04</td>
<td>10065</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Add/Upgrade/Modify/Remove Traffic Signal</td>
<td></td>
<td>76</td>
<td>1485</td>
<td>0.07</td>
<td>1.32</td>
<td>24724</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cable Median Barriers</td>
<td></td>
<td>132</td>
<td>1144</td>
<td>0.13</td>
<td>1.1</td>
<td>13864</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other-CEAO - Upgrade Pavement Markings</td>
<td></td>
<td>125</td>
<td>786</td>
<td>2.22</td>
<td>13.99</td>
<td>5114</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Upgrade Guard Rails</td>
<td></td>
<td>205</td>
<td>1291</td>
<td>0.8</td>
<td>5.02</td>
<td>7979</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
2015 Ohio Highway Safety Improvement Program

<table>
<thead>
<tr>
<th>Other-ODOT - Intersection Signage</th>
<th>86</th>
<th>796</th>
<th>0.34</th>
<th>3.09</th>
<th>6396</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
</table>

Fatalities by Target Crash Type for Systemic Safety Improvements

Year 2010 to Year 2014

![Graph showing fatalities by target crash type from 2010 to 2014](image)
Serious Injuries by Target Crash Type for Systemic Safety Improvements

Year 2010 to Year 2014

<table>
<thead>
<tr>
<th>Target Crash Type</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed object</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side swipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left-turn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Night-time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-intersection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear-end</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right-turn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run-off-road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed-related</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck-related</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle/animal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle/ocycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle/pedestrian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

of Serious Injuries
Fatality Rate by Target Crash Type for Systemic Safety Improvements

Year 2010 to Year 2014

Target Crash Type
Serious Injury Rate by Target Crash Type for Systemic Safety Improvements

Year 2010 to Year 2014

2010 2011 2012 2013 2014

Rate of Serious Injury

Target Crash Type
Describe any other aspects of the overall Highway Safety Improvement Program effectiveness on which you would like to elaborate.

Cable Barrier
Since 2003 – 350+ miles installed

Edge Line Rumble Stripes
Since 2010 - Installed 1590 miles of edge line rumble stripes

Curve and Intersection Upgrade
2010 - Upgraded 904 intersections with LED signal heads, backplates, and battery backups were applicable.
2011 - 576 curves investigated and improvements programmed
2012 - 800 intersections to be investigated
2013/2014 - 840 (672) curves investigated and improvements implemented

Wet Pavement Locations
2012 – 216 projects implemented to reduce wet pavement related crashes
2013/2014 – 20 sites investigated annually as part of ODOT systematic program

Pedestrian Improvements
2013/2014 – 19 locations investigated and identified improvements

Moved to a two year cycle for 2013 and 2014. The 2015/2016 is currently being developed.
Project Evaluation

Provide project evaluation data for completed projects (optional).

<table>
<thead>
<tr>
<th>Location</th>
<th>Functional Class</th>
<th>Improvement Category</th>
<th>Improvement Type</th>
<th>Bef-Fatal</th>
<th>Bef-Serious Injury</th>
<th>Bef-All Injuries</th>
<th>Bef-PDO</th>
<th>Bef-Total</th>
<th>Aft-Fatal</th>
<th>Aft-Serious Injury</th>
<th>Aft-All Injuries</th>
<th>Aft-PDO</th>
<th>Aft-Total</th>
<th>Evaluation Results (Benefit/Cost Ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Completed</td>
<td></td>
</tr>
</tbody>
</table>
Optional Attachments

<table>
<thead>
<tr>
<th>Sections</th>
<th>Files Attached</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Glossary

5 year rolling average means the average of five individual, consecutive annual points of data (e.g. annual fatality rate).

Emphasis area means a highway safety priority in a State’s SHSP, identified through a data-driven, collaborative process.

Highway safety improvement project means strategies, activities and projects on a public road that are consistent with a State strategic highway safety plan and corrects or improves a hazardous road location or feature or addresses a highway safety problem.

HMVMT means hundred million vehicle miles traveled.

Non-infrastructure projects are projects that do not result in construction. Examples of non-infrastructure projects include road safety audits, transportation safety planning activities, improvements in the collection and analysis of data, education and outreach, and enforcement activities.

Older driver special rule applies if traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65 in a State increases during the most recent 2-year period for which data are available, as defined in the Older Driver and Pedestrian Special Rule Interim Guidance dated February 13, 2013.

Performance measure means indicators that enable decision-makers and other stakeholders to monitor changes in system condition and performance against established visions, goals, and objectives.

Programmed funds mean those funds that have been programmed in the Statewide Transportation Improvement Program (STIP) to be expended on highway safety improvement projects.

Roadway Functional Classification means the process by which streets and highways are grouped into classes, or systems, according to the character of service they are intended to provide.

Strategic Highway Safety Plan (SHSP) means a comprehensive, multi-disciplinary plan, based on safety data developed by a State Department of Transportation in accordance with 23 U.S.C. 148.

Systemic safety improvement means an improvement that is widely implemented based on high risk roadway features that are correlated with specific severe crash types.

Transfer means, in accordance with provisions of 23 U.S.C. 126, a State may transfer from an apportionment under section 104(b) not to exceed 50 percent of the amount apportioned for the fiscal year to any other apportionment of the State under that section.