Protection of Data from Discovery & Admission into Evidence

23 U.S.C. 148(h)(4) states “Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for any purpose relating to this section [HSIP], shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location identified or addressed in the reports, surveys, schedules, lists, or other data.”

23 U.S.C. 409 states “Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential accident sites, hazardous roadway conditions, or railway-highway crossings, pursuant to sections 130, 144, and 148 of this title or for the purpose of developing any highway safety construction improvement project which may be implemented utilizing Federal-aid highway funds shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data.”
Table of Contents

Disclaimer .. ii

Executive Summary ... 1

Introduction .. 6

Program Structure .. 6
 Program Administration ... 6
 Program Methodology .. 8

Progress in Implementing Projects ... 14
 Funds Programmed .. 14
 General Listing of Projects ... 17

Progress in Achieving Safety Performance Targets .. 24
 Overview of General Safety Trends .. 24
 Application of Special Rules .. 39

Assessment of the Effectiveness of the Improvements (Program Evaluation) ... 41
 SHSP Emphasis Areas ... 44
 Groups of similar project types ... 48
 Systemic Treatments ... 53

Project Evaluation ... 60

Glossary ... 62
Executive Summary

The Fixing America’s Surface Transportation Act (FAST Act) went into effect on December 4, 2015. The FAST Act continues the Highway Safety Improvement Program (HSIP) as a core Federal-aid program to achieve a significant reduction in traffic fatalities and serious injuries on all public roads, including non-State-owned public roads.

The FAST Act requires the development of a Strategic Highway Safety Plan (SHSP), a High Risk Rural Roads Program (HRRRP) and the Railway-Highway Crossings Program (RHXP). In order to obligate HSIP funds, states are required to (1) develop, implement and update a SHSP; (2) produce a program of projects or strategies to reduce identified safety problems; (3) evaluate the plan on a regular basis, and (4) submit an annual transparency report.

HSIP requires a data-driven, strategic approach to improving highway safety on all public roads that focuses on performance.

New Jersey has analyzed roadway safety performance as described in the table “Overview of General Safety Trends”. Over the five year period, 2011-2015, the New Jersey’s five-year rolling average for the fatalities as well as fatality rates dropped approximately 7% and 8% respectively. Similarly, for the number of serious injuries and serious injury rates, the five-year rolling average dropped approximately 29% and 30% respectively. However, over the same five-year period, the actual number of crashes resulting in fatalities and incapacitating injuries in each year has fluctuated.

NJDOT has a broad spectrum of safety programs designed to reduce the frequency and severity of crashes as follows:

• Intersection Improvement Program;
• Crash Reduction Program (Road Departure and Corridor Segment);
• Utility Pole Mitigation Program;
• Pedestrian Safety Improvement Program;
• Rail Highway Grade Crossing Program (State);
• Rail Highway Grade Crossing Program (Federal);
• High Risk Rural Roads Program; and the
• Local Safety Program

NJDOT continued to employ a data-driven systemic safety improvement approach that concentrated our resources and focused our energies on high risk roadway features that correlate with specific severe crash types. Using crash data, NJDOT screened New Jersey roadways for center line cross over, head-on crashes. A systemic Center Line Rumble Stripes Program was developed in 2014. At this time centerline
rumble stripes continue to be installed on all the state roads that meet the criteria to mitigate these head-on crashes. NJDOT also encourages and supports, the local partners for the installation of centerline rumble stripes on their roadways.

New Jersey continued to expand its use of systemic safety improvements with respect to roadway departure crashes. In 2015, New Jersey developed a pilot program to provide high friction surface treatment on roadway curves which experience high roadway departure crashes such as fixed object and overturn crashes. Two projects, Interstate Ramps Pilot Project and Land Service Roads Pilot Project, are currently in the design process. In addition, in late 2015, the systemic pilot program was developed for intersection improvements which has been identified by FHWA as a Focus Approach to Safety category and is an identified emphasis area for New Jersey. Under this program, counties and municipalities are encouraged to construct roundabouts, where feasible, as this is one of the FHWA proven countermeasures for intersections. This is also done to get the New Jersey residents familiar with the safety benefits of roundabout who are resistance to incorporating design with modern roundabout due to New Jersey's history with wide use of traffic circles. The program has been well received and NJDOT has already received eight applications for roundabout projects.

New Jersey has completed the first update to their Strategic Highway Safety Plan. As per the updated 2015 Strategic Highway Safety Plan, New Jersey has adopted the national vision for highway safety - Toward Zero Deaths: A National Strategy on Highway Safety (Toward Zero Deaths). This calls for a national goal of reducing the number of traffic fatalities by half by the year 2030. As a part of New Jersey's updated SHSP, New Jersey's crash reduction goal is to reduce serious injuries and fatalities by 2.5 percent annually with the support of all safety partners. The SHSP is linked to the New Jersey Highway Safety Plan, prepared by the New Jersey Division of Highway Traffic Safety (NJDHTS), and the New Jersey Comprehensive Statewide Freight Plan, prepared by the New Jersey Department of Transportation. Both agencies, in collaboration with their safety partners, are committed to implementing the SHSP. This is evidenced in the identified emphasis areas and strategies. The plan provides NJDOT Infrastructure related direction and focuses on lane departure, intersections, and pedestrians as a top priority.

New Jersey’s commitment to an effective data driven program is evidenced in fiscal goals established in the SHSP update. The update provides direction to focus approximately 40 percent of the annual HSIP funding on state highways and 60 percent on county and municipal network in line with the current distribution of serious injuries and fatalities. In the current reporting period, NJDOT has supported approximately $23 million out of approximate $42.5 million anticipated obligated funds for projects on the local system, which nearly aligns with the percentage of fatal and serious injury crashes on local roadways.

New Jersey continues to be proactive with respect to implementation and use of New Jersey’s updated SHSP. While a complete update to the SHSP is required every 4 years, NJDOT, along with the New Jersey Division of Highway Traffic Safety (NJDHTS) will review progress against the plan on an annual basis. To
aid in this task, NJDOT is in the process of developing a 5 year outlook HSIP Action Plan incorporating emphasis area, agency, strategy/action (project), performance objective, investment level and resource. Also, NJDOT is in the process of developing Safety Performance Targets for next year’s HSIP. NJDOT is coordinating with NJDHTS to help develop these Safety Performance Targets prior to next year’s submission of Highway Safety Plan (HSP).

The NJDOT’s vision is shared by safety stakeholders, involved State agencies, each of the three regional Metropolitan Planning Organizations (MPOs) covering New Jersey, counties and municipalities through their respective safety advisory committees. Also, New Jersey recognizes the benefits of collaboration in achieving overall safety. Over the last year, NJDOT has attended numerous peer exchanges to share and obtain knowledge to help better our program. FHWA resource center provides continued technical support to NJDOT and MPOs with the use and understanding of AASHTO’s Highway Safety Manual to perform project analyses. The NJDOT along with the MPOs have utilized these resources to provide the support to counties and municipalities. NJDOT has made design assistance funding available to all MPOs and has increased technical support provided to the MPOs with the performing/assisting of HSM analyses as well as other activities related to the HSIP program. NJDOT also provides support and encouragement to MPOs to use innovative techniques for intersection design under EDC-2 initiative and Data-Driven Safety Analysis (DDSA) and Road Diets under EDC-3. New Jersey was featured in an EDC-3 DDSA high level video (https://www.fhwa.dot.gov/innovation/everydaycounts/edc-3/ddsa.cfm) along with a New Jersey Case Study video (https://www.youtube.com/watch?v=cHv086TQ2LI) for its use of innovative approaches to solve safety issues. Going forward, NJDOT will assist the MPOs in the monitoring and investigation of evaluated projects that, at this time, did not meet expectations.

NJTPA

The North Jersey Transportation Planning Authority (NJTPA) is the MPO serving the 13-county northern New Jersey region. NJTPA continues to work with its federal partners, the New Jersey Department of Transportation (NJDOT), NJ TRANSIT, member counties and cities and other state and local agencies to make travel safer and more reliable for all users of the region's transportation system.

The NJTPA is proactive when it comes to safety, actively engaging in Safety Conscious Planning. While traditional safety planning is reactive—a problem is identified through crash data analysis and then the appropriate engineering, enforcement and/or education countermeasures are implemented—Safety Conscious Planning integrates safety into all phases of transportation improvement planning and development so that safety is an integral part of all decision-making.

FY 2016 marked the 11th year of the Local Safety Program (LSP) and 6th year of the High Risk Rural Roads Program (HRRRP). Prior to FY 2014, the NJTPA had an annual apportionment of $3 million for both programs combined. This apportionment was subsequently increased by NJDOT, and in FY 2014 $16.3 million was obligated followed, by $18.3 million in FY 2015. In January 2015, The NJTPA Board of
Trustees approved a FY 2016-2017 LSP/HRRRP program of over $32 Million. $10 million is anticipated to be obligated in FY 2016, with the balance anticipated to be authorized in FY 2017.

The NJTPA recognizes the need to assist member counties and cities in preparing plans, specs & estimates (PS&E) for construction authorization of projects in both programs. In FY2013, the NJTPA created the Local Safety Engineering Assistance Program (LSEAP). This annual program has grown from 38% of the projects in the program year requesting engineering assistance in FY 2013 to 75% requesting assistance in FY 2016. In another measure, the program has increased from one consultant and five design projects to four consultants and sixteen projects. This engineering assistance program has resulted in high levels of timely, high quality documentation submitted for authorization and has improved the state’s ability to successfully address safety issues on local roads, where 60% of crashes occur. For more information on the location safety program, visit the webpage: http://www.njtpa.org/local-safety.

Another recent NJTPA initiative, Street Smart NJ is a public education, awareness and behavioral change pedestrian safety campaign first piloted in 2013 by five New Jersey municipalities. The program has been expanded to run vigorous campaigns in 12 partner communities in 2016, as well as to encourage and support additional communities and the Transportation Management Associations (TMAs) to run their own campaigns. Street Smart NJ uses outdoor, transit and online advertising, along with grassroots public awareness efforts and law enforcement to address pedestrian safety. Street Smart NJ emphasizes educating drivers and pedestrians through mass media, as well as targeted enforcement. It complements, but doesn’t replace, other state and local efforts to build safer streets and sidewalks, enforce laws and train better roadway users. The Street Smart NJ program was expanded in 2016 to include six new partner communities — Elizabeth, Passaic, Toms River, Lakewood, Red Bank, Metuchen and Franklin Borough in Sussex County. Throughout March 2016, every partner — with the exception of Long Beach Island, which runs summer campaigns — participated in the Street Smart NJ program. In addition, several New Jersey shore communities (Asbury Park, Belmar, Bradley Beach, and Manasquan) conducted campaigns over the summer, reaching thousands of beach goers. For more information, visit the campaign website www.bestreetsmartnj.org.

In addition, the NJTPA worked with Newark to develop the City of Newark Pedestrian and Bicycle Safety Action Plan, which was completed in February 2016 and adopted by the City Council in May 2016. The plan’s intent is two-fold: to serve as a guide for city staff to prioritize locations of greatest concern and also to inform the public where the city intends to focus its efforts. The plan has identified specific treatments for high crash locations which will provide the city with the data needed for future HSIP project applications. For more information, visit the webpage: http://njtpa.org/planning/regional-studies/bicycle-pedestrian/newark-safety-action-plan.

DVRPC
The Delaware Valley Regional Planning Commission (DVRPC) is the MPO that serves four counties in central New Jersey: Burlington, Camden, Gloucester and Mercer.

DVRPC conducted a formal project application solicitation in January of 2016 for the Local Federal HSIP and HRRR Programs, offering design assistance (for completion of final PS&E packages by a consultant and paid for with HSIP) and construction funds. Though no completed applications were received, DVRPC worked with Camden, Gloucester and Burlington Counties on potential candidates. Progress was made in the advancement of two earlier applications. Specifically, the Mt Ephraim Avenue Corridor-wide Pedestrian Safety Improvements application was granted HSIP for Concept Development. Also advanced was preliminary engineering for the Mercer County Brunswick Circle Extension Roundabout. Consultant selection process was conducted in July and August for these two projects.

In addition, under the systemic pilot program for intersection improvements on local roadways, the Gloucester County roundabout, at the intersection of Auburn Road (CR 551) and High Hill Road (CR 662), was the first roundabout funded. Since, two more roundabouts have been identified as candidates for this program.

Lastly, DVRPC along with Burlington County was featured in the EDC-3 Data Driven Safety Analysis video (https://www.youtube.com/watch?v=cHv086TQ2LI) for its use of innovative intersections as well as data driven approaches to safety. Burlington County implemented a roundabout at a data-driven location which was the scene of a fatal crash earlier this decade. This project was paid for with HSIP and the HSM was used to measure the project benefit. DVRPC facilitated this collaborative effort which involved NJDOT and FHWA, with assistance from SJTPO.

SJTPO

The South Jersey Transportation Planning Organization (SJTPO) is the MPO serving four counties in southern New Jersey.

Building off activities to strengthen its Local Safety Program in recent years, SJTPO continues to engage their local partners in an effort to reduce the number of fatal injury crashes and fatalities. SJTPO utilizes a robust yet intuitive, project application, which guides applicants through a five-step process: selecting a location; identifying the problem; determining an appropriate safety improvement; measuring its effectiveness, and checking for barriers to implementation. This process ensures a well-supported, data-driven approach to project selection.

In working towards authorization of our FY 2016 projects, SJTPO continued to partner with NJDOT Traffic Data & Safety in the State to understand and incorporate the Highway Safety Manual (HSM) safety performance analysis. Together with benefit/cost analysis, these analyses were utilized to
evaluate the effectiveness of the proposed hot spot projects.

As New Jersey is a focus state for both intersection and pedestrian crashes, network screening lists developed for each of the MPO regions including both County and Municipal owned roadways, include a focus on “At Intersection”, pedestrian corridor, pedestrian spot crashes utilizing a weighted severity scale. These lists are shared with the local governments and guides hot spot project location selection. Additionally, SJTPO has worked closely with NJDOT staff, FHWA-NJ Division, and the other MPOs to develop two pilot projects for the installation of roundabouts and road diets. As both FHWA Proven Safety Countermeasures are not widely used in the State, the partners felt it was crucial to encourage their use. SJTPO staff is working with their subregions to select good candidate for both pilot projects and hopes to have several roundabouts installed in their region, which has been historically opposed to their installation because of their experience with traffic circles and the counterintuitive nature of road diets.

With our FY 2016 projects, SJTPO has worked to invest HSIP funding through a mix of hot spot locations and systemic installations of centerline rumble strips; installing approximately 165 miles of centerline rumble strip in both Cumberland and Salem Counties. Along with their State partners, SJTPO is excited to investigate other systemic applications addressing lane departure and pedestrian crashes in the upcoming year.

Introduction
The Highway Safety Improvement Program (HSIP) is a core Federal-aid program with the purpose of achieving a significant reduction in fatalities and serious injuries on all public roads. As per 23 U.S.C. 148(h) and 23 CFR 924.15, States are required to report annually on the progress being made to advance HSIP implementation and evaluation efforts. The format of this report is consistent with the HSIP MAP-21 Reporting Guidance dated February 13, 2013 and consists of four sections: program structure, progress in implementing HSIP projects, progress in achieving safety performance targets, and assessment of the effectiveness of the improvements.

Program Structure

Program Administration
How are Highway Safety Improvement Program funds allocated in a State?

Central
Describe how local roads are addressed as part of Highway Safety Improvement Program.

Local Roadways are eligible for HSIP improvements through application with the respective MPOs. All Local Roadways in New Jersey are covered by one of three MPOs – NJTPA, SJTPO, or DVRPC. NJDOT oversees the production of network screening lists for each of the MPO regions, including both County and Municipal owned roadways, which help the MPOs prioritize their projects. As New Jersey is a focus state for both intersection and pedestrian crashes, screening lists include a focus on Intersection, Pedestrian Corridor, High Risk Rural Roads, and Pedestrian Intersection crashes utilizing a weighted severity scale. These lists were shared with local roadway owners and government officials in order to help select regional priority locations to development HSIP funded projects, and better invest the increased local system funding efforts.

Identify which internal partners are involved with Highway Safety Improvement Program planning.

Design
Planning
Operations
Other-Project Management

Briefly describe coordination with internal partners.

NJDOT’s Bureau of Transportation Data and Safety, under the Assistant Commissioner of Capital Investment Planning and Grant Administration is responsible for crash data compilation, analysis and program development. The Division of Project Management under the Assistant Commissioner of Capital Program Management is responsible for final design and implementation of improvements. New Jersey's HSIP Manual identifies the process for coordination and delivery of HSIP projects for roadways under state jurisdiction. This manual has been recently updated. Regular meetings are conducted between Capital Investment Planning & Grant Administration and staff from Division of Program Management under Division of Project Management to monitor and assist as the projects move through project development to advertisement. NJDOT supports the advancement of projects under local jurisdiction by participating in the Technical Assistance Team for local safety projects. The Technical Assistance Team consist of NJDOT's Safety, Environmental, and Local Aid staff. NJDOT’s Division of Local Aid, under the Assistant Commissioner of Capital Investment Planning and Grant Administration is responsible for coordinating with the MPOs in the selection, authorization and oversight of projects implemented on the local road network.

Identify which external partners are involved with Highway Safety Improvement Program planning.

Metropolitan Planning Organizations
Identify any program administration practices used to implement the HSIP that have changed since the last reporting period.

Other-NJDOT continues to refine the transition to the revised program delivery process. NJDOT is additionally increasing the portfolio of projects identified using the systemic approach. Other-all projects whether under state or local jurisdiction now include a Highway Safety Manual evaluation to ensure that invested HSIP funds maximize the return on investment to improved safety performance.

Describe any other aspects of Highway Safety Improvement Program Administration on which you would like to elaborate.

The Assistant Commissioner of Capital Investment Planning and Grant Administration continues to conduct quarterly collaboration meetings with all three MPOs along with subject matter experts at the NJDOT. These meetings promote partnering with a focus on safety. NJDOT’s Division of Local Aid coordinates with the MPOs on regular basis to ensure advancement of Local Safety Projects.

Program Methodology
Select the programs that are administered under the HSIP.

Intersection
Pedestrian Safety
Other-Utility Pole Mitigation
Roadway Departure
Segments
Local Safety
Other-High Risk Rural Roads

Program:

Date of Program Methodology: 1/1/2015

What data types were used in the program methodology?
Crashes Exposure Roadway
What project identification methodology was used for this program?
Crash frequency
Equivalent property damage only (EPDO Crash frequency)

Are local roads (non-state owned and operated) included or addressed in this program?
No

How are highway safety improvement projects advanced for implementation?
Other-Sites identified based on methodology developed for systemic treatment for roadway departure crashes
Other-Using the ranking to identify priorities, NJDOT selects and implements projects.

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Cost Effectiveness 1
Rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

Ranking based on net benefit 1

Program: Local Safety
Date of Program Methodology: 9/16/2005

What data types were used in the program methodology?
Crashes Exposure Roadway
All crashes

What project identification methodology was used for this program?
Crash frequency
Equivalent property damage only (EPDO Crash frequency)

Are local roads (non-state owned and operated) included or addressed in this program?
Yes
If yes, are local road projects identified using the same methodology as state roads?
Yes

How are highway safety improvement projects advanced for implementation?
Competitive application process
selection committee
Other-Priority given to State's focus areas

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Available funding 20
Ranking based on net benefit 60
Project to address established safety problem as shown through crash history, risk-based (systemic) analysis and/or local roadway knowledge 20
Program: Pedestrian Safety
Date of Program Methodology: 9/16/2011

What data types were used in the program methodology?
- Crashes
- Exposure
- Roadway

What project identification methodology was used for this program?
- Crash frequency
- Equivalent property damage only (EPDO Crash frequency)
- Other-Pedestrian generators

Are local roads (non-state owned and operated) included or addressed in this program?
- No

How are highway safety improvement projects advanced for implementation?
- Other-Using the ranking to identify priorities, NJDOT selects and implements projects.

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration
- Ranking based on net benefit: 1
- FHWA Ped Focus State: 1

Program: Segments
Date of Program Methodology: 2/1/2016

What data types were used in the program methodology?
- Crashes
- Exposure
- Roadway
- All crashes
- Volume
- Lane miles

What project identification methodology was used for this program?
- Crash frequency
Equivalent property damage only (EPDO Crash frequency)
Other-Exposure is taken into consideration

Are local roads (non-state owned and operated) included or addressed in this program?
No

How are highway safety improvement projects advanced for implementation?
Other-Using the ranking to identify priorities, NJDOT selects and implement projects

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

| Cost Effectiveness | 1 |

Program: Other-High Risk Rural Roads
Date of Program Methodology: 9/16/2005

What data types were used in the program methodology?
Crashes Exposure Roadway
All crashes Functional classification Other-Rural

What project identification methodology was used for this program?
Equivalent property damage only (EPDO Crash frequency)
Crash rate

Are local roads (non-state owned and operated) included or addressed in this program?
Yes
If yes, are local road projects identified using the same methodology as state roads?
Yes

How are highway safety improvement projects advanced for implementation?
Competitive application process selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).
Relative Weight in Scoring

<table>
<thead>
<tr>
<th>Available funding</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranking based on net benefit</td>
<td>60</td>
</tr>
<tr>
<td>Project to address established safety problem as shown through crash history, risk-based (systemic) analysis and/or local roadway knowledge.</td>
<td>20</td>
</tr>
</tbody>
</table>

Program: Other-Utility Pole Mitigation

Date of Program Methodology: 10/1/2015

What data types were used in the program methodology?

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other-Fixed Object crashes</td>
<td>Roadside features</td>
<td></td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program?

Crash frequency
Equivalent property damage only (EPDO Crash frequency)

Are local roads (non-state owned and operated) included or addressed in this program?

No

How are highway safety improvement projects advanced for implementation?

Other-by ranking

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

| Field investigation | 1 |

What proportion of highway safety improvement program funds address systemic improvements?

29%
Highway safety improvement program funds are used to address which of the following systemic improvements?

- Rumble Strips
- Other-High Friction Surface Treatment
- Other-Local pilot roundabouts

What process is used to identify potential countermeasures?

- Engineering Study
- Road Safety Assessment
- Other-with alternatives Analysis utilizing the HSM

Identify any program methodology practices used to implement the HSIP that have changed since the last reporting period.

- Other-The Safe Corridor program has been eliminated
- Other-Corridor Segment program has been added
- Other-Utility Pole Mitigation program has been added
- Other-Systemic countermeasure treatments increased (HFST, Pilot Roundabouts)

Describe any other aspects of the Highway Safety Improvement Program methodology on which you would like to elaborate.

N/A

Progress in Implementing Projects

Funds Programmed

Reporting period for Highway Safety Improvement Program funding.

Federal Fiscal Year
Enter the programmed and obligated funding for each applicable funding category.

<table>
<thead>
<tr>
<th>Funding Category</th>
<th>Programmed*</th>
<th>Obligated</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSIP (Section 148)</td>
<td>$43,872,000.00</td>
<td>93 %</td>
</tr>
<tr>
<td>HRRRP (SAFETEA-LU)</td>
<td>$0.00</td>
<td>0 %</td>
</tr>
<tr>
<td>HRRR Special Rule</td>
<td>$3,300,000.00</td>
<td>7 %</td>
</tr>
<tr>
<td>Totals</td>
<td>$47,172,000.00</td>
<td>100%</td>
</tr>
</tbody>
</table>

How much funding is programmed to local (non-state owned and operated) safety projects?
$19,700,000.00

How much funding is obligated to local safety projects?
$23,056,214.00

How much funding is programmed to non-infrastructure safety projects?
$5,347,000.00

How much funding is obligated to non-infrastructure safety projects?
$7,659,000.00

How much funding was transferred in to the HSIP from other core program areas during the reporting period?
$0.00

How much funding was transferred out of the HSIP to other core program areas during the reporting period?

$0.00

Discuss impediments to obligating Highway Safety Improvement Program funds and plans to overcome this in the future.

N/A

Describe any other aspects of the general Highway Safety Improvement Program implementation progress on which you would like to elaborate.

N/A
General Listing of Projects

List each highway safety improvement project obligated during the reporting period.

<table>
<thead>
<tr>
<th>Project</th>
<th>Improvement Category</th>
<th>Output</th>
<th>HSIP Cost</th>
<th>Total Cost</th>
<th>Funding Category</th>
<th>Functional Classification</th>
<th>AA DT</th>
<th>Speed</th>
<th>Roadway Ownership</th>
<th>Relationship to SHSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016 Staff Work Program - Rail</td>
<td>Non-infrastructure Transportation safety planning</td>
<td>0</td>
<td>24980 00</td>
<td>24980 00</td>
<td>HSIP (Section 148)</td>
<td>Statewide</td>
<td>0</td>
<td>0</td>
<td>State Highway Agency</td>
<td>Planning</td>
</tr>
<tr>
<td>2016 Staff Work Program - Safety</td>
<td>Non-infrastructure Transportation safety planning</td>
<td>0</td>
<td>20990 00</td>
<td>20990 00</td>
<td>HSIP (Section 148)</td>
<td>Statewide</td>
<td>0</td>
<td>0</td>
<td>State Highway Agency</td>
<td>Planning</td>
</tr>
<tr>
<td>2016 Statewide Utility Pole Relocation/Replacement</td>
<td>Roadside Removal of roadside objects (trees, poles, etc.)</td>
<td>0</td>
<td>14500 00</td>
<td>14500 00</td>
<td>HSIP (Section 148)</td>
<td>Statewide</td>
<td>0</td>
<td>0</td>
<td>State Highway Agency</td>
<td>Relocation of utility pole</td>
</tr>
<tr>
<td>2016 Utility Pole Replacement (DVRPC)</td>
<td>Roadside Removal of roadside objects (trees, poles, etc.)</td>
<td>0</td>
<td>10000 00</td>
<td>10000 00</td>
<td>HSIP (Section 148)</td>
<td>DVRPC area</td>
<td>0</td>
<td>0</td>
<td>State Highway Agency</td>
<td>Relocation of utility pole</td>
</tr>
<tr>
<td>2016 Utility Pole Replacement (NJTPA)</td>
<td>Roadside Removal of roadside objects (trees, poles, etc.)</td>
<td>0</td>
<td>20000 00</td>
<td>20000 00</td>
<td>HSIP (Section 148)</td>
<td>NJTPA area</td>
<td>0</td>
<td>0</td>
<td>State Highway Agency</td>
<td>Relocation of utility pole</td>
</tr>
<tr>
<td>2016 Utility Pole Replacement</td>
<td>Roadside Removal of roadside objects (trees, poles, etc.)</td>
<td>0</td>
<td>16000 00</td>
<td>16000 00</td>
<td>HSIP (Section 148)</td>
<td>SJTP area</td>
<td>0</td>
<td>0</td>
<td>State Highway Agency</td>
<td>Relocation of utility pole</td>
</tr>
<tr>
<td>Project Description</td>
<td>Location</td>
<td>2016 Verifiers</td>
<td>Non-infrastructure Transportation safety planning</td>
<td>184</td>
<td>HSIP (Section 148)</td>
<td>0</td>
<td>0</td>
<td>State Highway Agency</td>
<td>Data</td>
<td>Staff work - verifies</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>-----</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td>------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Bergen St - Ped Safety Corridor Improvements - FD</td>
<td>Pedestrians and bicyclists Miscellaneous pedestrians and bicyclists</td>
<td>3 Numb</td>
<td>122000</td>
<td>0</td>
<td>0</td>
<td>122000</td>
<td>0</td>
<td>City of Municipal Highway Agency</td>
<td>Pedestrians</td>
<td>Provide crosswalk enhancement, including curb ext</td>
</tr>
<tr>
<td>Broad St (CR 11) & Bergen Place, Red Bank - FD</td>
<td>Intersection traffic control Modify traffic signal - modernization/replace ment</td>
<td>1 Numb</td>
<td>117000</td>
<td>0</td>
<td>0</td>
<td>117000</td>
<td>0</td>
<td>County Highway Agency</td>
<td>Intersections</td>
<td>D1-Improve visibility of signals</td>
</tr>
<tr>
<td>Byram-Kingwood Road (CR 651) from CR 519 to SR 29</td>
<td>Roadway Pavement surface - high friction surface</td>
<td>0</td>
<td>62000</td>
<td>0</td>
<td>0</td>
<td>62000</td>
<td>0</td>
<td>County Highway Departure</td>
<td>Roadway Pavement Departure</td>
<td>High friction treatment</td>
</tr>
<tr>
<td>CR 524 (Stage Coach Road) Improvements and Resurfa</td>
<td>Roadway Superelevation / cross slope</td>
<td>0</td>
<td>117000</td>
<td>0</td>
<td>0</td>
<td>117000</td>
<td>0</td>
<td>County Highway Departure</td>
<td>Roadway Departure</td>
<td>Superelevation improvement</td>
</tr>
<tr>
<td>Garden Road & Mill Road Traffic Signalization - FD</td>
<td>Intersection traffic control Intersection traffic control - other</td>
<td>1 Numb</td>
<td>10000</td>
<td>0</td>
<td>0</td>
<td>10000</td>
<td>0</td>
<td>City of Municipal Highway Agency</td>
<td>Intersections</td>
<td>Convert two-way stop control to traffic signal</td>
</tr>
<tr>
<td>HFST Pilot Program at Route</td>
<td>Roadway Pavement surface - high friction</td>
<td>3.27 Miles</td>
<td>257000</td>
<td>0</td>
<td>0</td>
<td>257000</td>
<td>0</td>
<td>State Highway Departure</td>
<td>Install High Friction</td>
<td></td>
</tr>
</tbody>
</table>

HFST Pilot Program at Route

2016
New Jersey
Highway Safety Improvement Program
<table>
<thead>
<tr>
<th>Project Description</th>
<th>Treatment</th>
<th>Agency</th>
<th>Numbers</th>
<th>Mls</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFST Pilot Program at Route I-80 Interchanges (25%)</td>
<td></td>
<td></td>
<td>3.27</td>
<td></td>
<td>Install High Friction Surface Treatment</td>
</tr>
<tr>
<td>Intersection Improvements at CR 551 (Auburn Rd.) a</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>Install roundabouts to control traffic and reduce conflicts</td>
</tr>
<tr>
<td>JFK Blvd E at Bergenline Improvements - FD</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>D1-Improve visibility of signals</td>
</tr>
<tr>
<td>Mercer Roundabout - PE</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>Install roundabouts to reduce conflicts</td>
</tr>
<tr>
<td>MLK Blvd - Ped Safety Corridor Improvements (Newark)</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>Provide crosswalk enhancements, including curb ext</td>
</tr>
<tr>
<td>MLK Blvd Intersection Improvements (Jersey City) -</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td>Upgrade traffic and pedestrian signals</td>
</tr>
<tr>
<td>Mt. Ephraim</td>
<td></td>
<td></td>
<td>1.4</td>
<td></td>
<td>Pedestrians lighting and</td>
</tr>
<tr>
<td>Avenue Safety Improvements - pedestrian</td>
<td>bicyclists Miscellaneous pedestrians and bicyclists</td>
<td>Miles</td>
<td>(Section 148)</td>
<td>Principal Arterial - Other</td>
<td>Highways Agency</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------</td>
<td>---------------</td>
<td>---------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>NJ 47 and Almond, Vineland - CON</td>
<td>Intersection traffic control Intersection traffic control - other</td>
<td>1 Numb 21000</td>
<td>21000</td>
<td>HSIP (Section 148)</td>
<td>Urban Minor Arterial</td>
</tr>
<tr>
<td>NJ 47 and Forest Grove, Vineland - CON</td>
<td>Intersection traffic control Intersection flashers - add miscellaneous/other/unspecified</td>
<td>1 Numb 32000</td>
<td>32000</td>
<td>HSIP (Section 148)</td>
<td>Urban Minor Arterial</td>
</tr>
<tr>
<td>Passaic CLRS - CON - Systemic</td>
<td>Roadway Rumble strips - center</td>
<td>0</td>
<td>80000 0</td>
<td>80000 0</td>
<td>HSIP (Section 148)</td>
</tr>
<tr>
<td>Passaic Horizontal Curve High Friction Surface Tre</td>
<td>Roadway Pavement surface - high friction surface</td>
<td>0</td>
<td>53760 00</td>
<td>53760 00</td>
<td>HSIP (Section 148)</td>
</tr>
<tr>
<td>Paterson Plank Rd (CR 681) at Webster Ave Improvement</td>
<td>Intersection traffic control Intersection traffic control - other</td>
<td>0</td>
<td>43439</td>
<td>43439</td>
<td>HSIP (Section 148)</td>
</tr>
<tr>
<td>Route 15 & Berkshire Valley Road (CR 699) - PE</td>
<td>Intersection traffic control Modify traffic signal timing - left-turn phasing (permissive to protected/permission)</td>
<td>2 Numb 80000 0</td>
<td>80000 0</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Other Freeways and Expressways</td>
</tr>
<tr>
<td>Project Description</td>
<td>Action Type</td>
<td>Location</td>
<td>Number of Modifications</td>
<td>Total Cost</td>
<td>Year</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------------------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>Stuyvesant Avenue (CR 619) & 18th Avenue, South Or</td>
<td>Intersection traffic control Modify traffic signal - modernization/replace</td>
<td>0</td>
<td>27210 00 27210 00</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Other</td>
</tr>
<tr>
<td>Summit Ave Intersection Improvement Phase III (Cha)</td>
<td>Pedestrians and bicyclists Modify existing crosswalk</td>
<td>12 Numb ers</td>
<td>45000 00 45000 00</td>
<td>HSIP (Section 148)</td>
<td>Urban Minor Arterial</td>
</tr>
<tr>
<td>US 130 and 30/38 (Airport Circle), Pennsauken - CO</td>
<td>Intersection traffic control Modify traffic signal - modernization/replace</td>
<td>3 Numb ers</td>
<td>31000 00 31000 00</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Other</td>
</tr>
<tr>
<td>US 130 and Union, Pennsauken - CON</td>
<td>Intersection traffic control Modify traffic signal - modernization/replace</td>
<td>1 Numb ers</td>
<td>34000 00 34000 00</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Other</td>
</tr>
<tr>
<td>US 206 Whitehorse Circle - CON</td>
<td>Intersection traffic control Modify control - modifications to roundabout</td>
<td>1 Numb ers</td>
<td>47060 00 47060 00</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Other</td>
</tr>
<tr>
<td>US 22 Westbound (Vauxhall to Bloy) - FD</td>
<td>Roadway Roadway widening - travel lanes</td>
<td>0.5 Miles</td>
<td>12550 00 12550 00</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Other</td>
</tr>
<tr>
<td>US 40/322 and Rt.9 and Decatur, Pleasantville - CO</td>
<td>Intersection traffic control Modify traffic signal - modernization/replace</td>
<td>1 Numb ers</td>
<td>78000 00 78000 00</td>
<td>HSIP (Section 148)</td>
<td>Urban Principal Arterial - Other</td>
</tr>
<tr>
<td>Project Description</td>
<td>Description</td>
<td>Cost</td>
<td>Cost</td>
<td>Agency</td>
<td>Intersections</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>W. Seventh St (CR 601) Intersection Improvements -</td>
<td>Intersection traffic control Modify traffic signal - modernization/replacement</td>
<td>3</td>
<td>82000</td>
<td>HSIP (Section 148)</td>
<td>0 35</td>
</tr>
<tr>
<td>Washington Avenue (CR 503) Phase I & II (Bergen) -</td>
<td>Roadway Roadway - other</td>
<td>1.36</td>
<td>30020</td>
<td>HSIP (Section 148)</td>
<td>200 40</td>
</tr>
<tr>
<td>2016 Safety Programs Consultant Services - CD</td>
<td>Non-infrastructure Transportation safety planning</td>
<td>0</td>
<td>75000</td>
<td>HSIP (Section 148)</td>
<td>0 0</td>
</tr>
<tr>
<td>Horizontal Curve Safety Treatment, Rt 47 and RT 5 -</td>
<td>Roadway Pavement surface - high friction surface</td>
<td>0</td>
<td>58900</td>
<td>HSIP (Section 148)</td>
<td>0 0</td>
</tr>
<tr>
<td>Lyons Avenue (CR 602) (different segment from FFY1) -</td>
<td>Intersection traffic control Modify traffic signal - modernization/replacement</td>
<td>0</td>
<td>33800</td>
<td>HSIP (Section 148)</td>
<td>0 25</td>
</tr>
<tr>
<td>Chancellor Avenue (CR 601) - (different segment fr</td>
<td>Intersection traffic control Modify traffic signal - modernization/replacement</td>
<td>0</td>
<td>31040</td>
<td>HSIP (Section 148)</td>
<td>0 25</td>
</tr>
<tr>
<td>Burlington County CLRS Local Pilot (Rural)</td>
<td>Roadway Rumble strips - center</td>
<td>94</td>
<td>10550</td>
<td>HRRR Special Rule</td>
<td>0 0</td>
</tr>
<tr>
<td>miles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Agency</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Progress in Achieving Safety Performance Targets

Overview of General Safety Trends

Present data showing the general highway safety trends in the state for the past five years.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of fatalities</td>
<td>616</td>
<td>589</td>
<td>580</td>
<td>574</td>
<td>575</td>
</tr>
<tr>
<td>Number of serious injuries</td>
<td>1709</td>
<td>1593</td>
<td>1468</td>
<td>1339</td>
<td>1218</td>
</tr>
<tr>
<td>Fatality rate (per HMVMT)</td>
<td>0.84</td>
<td>0.81</td>
<td>0.79</td>
<td>0.78</td>
<td>0.77</td>
</tr>
<tr>
<td>Serious injury rate (per HMVMT)</td>
<td>2.33</td>
<td>2.19</td>
<td>2.01</td>
<td>1.82</td>
<td>1.64</td>
</tr>
</tbody>
</table>

*Performance measure data is presented using a five-year rolling average.

Number of Fatalities for the Last Five Years
5-yr Average Measure Data
Rate of Serious Injuries for the Last Five Years
5-yr Average Measure Data

Years
2011 2012 2013 2014 2015
2.33 2.19 2.01 1.82 1.64

Y-axis: 1.4 1.6 1.8 2.0 2.2 2.4 2.6
To the maximum extent possible, present performance measure* data by functional classification and ownership.

Year - 2015

<table>
<thead>
<tr>
<th>Function Classification</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - INTERSTATE</td>
<td>6</td>
<td>3</td>
<td>0.53</td>
<td>0.23</td>
</tr>
<tr>
<td>RURAL PRINCIPAL ARTERIAL - OTHER</td>
<td>19</td>
<td>25</td>
<td>1.48</td>
<td>1.93</td>
</tr>
<tr>
<td>RURAL MINOR ARTERIAL</td>
<td>14</td>
<td>15</td>
<td>2.07</td>
<td>2.17</td>
</tr>
<tr>
<td>RURAL MINOR COLLECTOR</td>
<td>4</td>
<td>7</td>
<td>1.89</td>
<td>3.04</td>
</tr>
<tr>
<td>RURAL MAJOR COLLECTOR</td>
<td>17</td>
<td>30</td>
<td>1.87</td>
<td>3.31</td>
</tr>
<tr>
<td>RURAL LOCAL ROAD OR STREET</td>
<td>18</td>
<td>9</td>
<td>2.99</td>
<td>1.45</td>
</tr>
<tr>
<td>URBAN PRINCIPAL ARTERIAL - INTERSTATE</td>
<td>60</td>
<td>50</td>
<td>0.42</td>
<td>0.36</td>
</tr>
<tr>
<td>URBAN PRINCIPAL ARTERIAL - OTHER FREeways AND EXPRESSWAYS</td>
<td>49</td>
<td>47</td>
<td>0.4</td>
<td>0.38</td>
</tr>
<tr>
<td>Category</td>
<td>Count</td>
<td>Length</td>
<td>ADT</td>
<td>Speed</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>URBAN PRINCIPAL ARTERIAL - OTHER</td>
<td>154</td>
<td>287</td>
<td>0.94</td>
<td>1.76</td>
</tr>
<tr>
<td>URBAN MINOR ARTERIAL</td>
<td>120</td>
<td>252</td>
<td>1.08</td>
<td>2.27</td>
</tr>
<tr>
<td>URBAN LOCAL ROAD OR STREET</td>
<td>51</td>
<td>84</td>
<td>0.49</td>
<td>0.8</td>
</tr>
<tr>
<td>OTHER</td>
<td>23</td>
<td>315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>URBAN COLLECTOR - MAJOR AND MINOR</td>
<td>39</td>
<td>95</td>
<td>0.78</td>
<td>1.96</td>
</tr>
</tbody>
</table>
Fatalities by Roadway Functional Classification

5-yr Average Measure Data
Serious Injuries by Roadway Functional Classification
5-yr Average Measure Data

![Bar chart showing the number of serious injuries by roadway functional classification for each year from 2011 to 2015.](chart.png)
Fatality Rate by Roadway Functional Classification
5-yr Average Measure Data

![Fatality Rate by Roadway Functional Classification](image)
Year - 2015

<table>
<thead>
<tr>
<th>Roadway Ownership</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE HIGHWAY AGENCY</td>
<td>241</td>
<td>330</td>
<td>0.81</td>
<td>1.11</td>
</tr>
<tr>
<td>COUNTY HIGHWAY AGENCY</td>
<td>180</td>
<td>346</td>
<td>1.23</td>
<td>2.36</td>
</tr>
<tr>
<td>CITY OF MUNICIPAL HIGHWAY AGENCY</td>
<td>105</td>
<td>88</td>
<td>1.49</td>
<td>1.31</td>
</tr>
<tr>
<td>OTHER LOCAL AGENCY</td>
<td></td>
<td>1</td>
<td></td>
<td>0.52</td>
</tr>
<tr>
<td>STATE TOLL AUTHORITY</td>
<td>51</td>
<td>44</td>
<td>0.37</td>
<td>0.33</td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td>410</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Number of Fatalities by Roadway Ownership
5-yr Average Measure Data

Roadway Functional Classification
Number of Serious Injuries by Roadway Ownership
5-yr Average Measure Data

Roadway Functional Classification
Fatality Rate by Roadway Ownership
5-yr Average Measure Data

Roadway Functional Classification
Serious Injury Rate by Roadway Ownership
5-yr Average Measure Data

Roadway Functional Classification
Describe any other aspects of the general highway safety trends on which you would like to elaborate.

N/A

Application of Special Rules

Present the rate of traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65.

<table>
<thead>
<tr>
<th>Older Driver Performance Measures</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatality rate (per capita)</td>
<td>0.052</td>
<td>0.072</td>
<td>0.088</td>
<td>0.09</td>
<td>0.088</td>
</tr>
<tr>
<td>Serious injury rate (per capita)</td>
<td>0.084</td>
<td>0.104</td>
<td>0.13</td>
<td>0.118</td>
<td>0.108</td>
</tr>
<tr>
<td>Fatality and serious injury rate (per capita)</td>
<td>0.138</td>
<td>0.178</td>
<td>0.218</td>
<td>0.208</td>
<td>0.196</td>
</tr>
</tbody>
</table>

*Performance measure data is presented using a five-year rolling average.

NJ Population of 65 Years and Older (In Thousands)

<table>
<thead>
<tr>
<th>Year</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1150</td>
<td>1169</td>
<td>1191</td>
<td>1207</td>
<td>1250</td>
<td>1284</td>
<td>1312</td>
</tr>
</tbody>
</table>

As per: http://www.fhwa.dot.gov/map21/guidance/guideolder.cfm

NJ Census Estimates

<table>
<thead>
<tr>
<th>Year</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8,663,398</td>
<td>8,707,739</td>
<td>8,803,881</td>
<td>8,842,934</td>
<td>8,874,893</td>
<td>8,907,384</td>
<td>8,938,844</td>
</tr>
</tbody>
</table>

For Fatal Rate:
\[
\frac{[(F\ 2014\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2014\ Population\ Figure) + (F\ 2013\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2013\ Population\ Figure) + (F\ 2012\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2012\ Population\ Figure) + (F\ 2011\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2011\ Population\ Figure) + (F\ 2010\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2010\ Population\ Figure)]}{5} \\
\frac{[(103/1312) + (118/1248) + (96/1250) + (121/1207) + (113/1191)]}{5}
\]

For Serious Injury Rate:
\[
\frac{[(SI\ 2014\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2014\ Population\ Figure) + (SI\ 2013\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2013\ Population\ Figure) + (SI\ 2012\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2012\ Population\ Figure) + (SI\ 2011\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2011\ Population\ Figure) + (SI\ 2010\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2010\ Population\ Figure)]}{5} \\
\frac{[(118/1312) + (115/1248) + (159/1250) + (124/1207) + (155/1191)]}{5}
\]

For Fatality and Serious Injury Rate:
\[
\frac{[(F+SI\ 2014\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2014\ Population\ Figure) + (F+SI\ 2013\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2013\ Population\ Figure) + (F+SI\ 2012\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2012\ Population\ Figure) + (F+SI\ 2011\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2011\ Population\ Figure) + (F+SI\ 2010\ Drivers\ and\ Pedestrians\ 65\ years\ of\ age\ and\ older/2010\ Population\ Figure)]}{5} \\
\frac{[(221/1312) + (233/1248) + (255/1250) + (245/1207) + (268/1191)]}{5}
\]
Rate of Fatalities and Serious injuries for the Last Five Years
5-yr Average Measure Data

Does the older driver special rule apply to your state?
No

Assessment of the Effectiveness of the Improvements (Program Evaluation)
What indicators of success can you use to demonstrate effectiveness and success in the Highway Safety Improvement Program?

Benefit/cost

If 'benefit/cost', indicate the overall Highway Safety Improvement Program benefit/cost ratio.

Equal or greater than 1

Policy change

if 'policy change', list the policy changes made.

Including HSM on all local projects

Other-Continue to obligate more funds to MPOs as well as to State to target crashes on public roadways

What significant programmatic changes have occurred since the last reporting period?

Other-Implemented Corridor Segment List
Other-Aligned investments for Local and State based on Fatalities and Serious Injury crashes

Briefly describe significant program changes that have occurred since the last reporting period.

- Safe Corridor List has been eliminated
- Corridor Segment list has been initiated with new methodology
- Systemic HFST has been initiated
- New Jersey has developed a new software application for crash data analysis called NJ Voyager
- New Jersey has purchase the license for Safety Analyst and will be working towards developing Safety Management Lists
SHSP Emphasis Areas

For each SHSP emphasis area that relates to the HSIP, present trends in emphasis area performance measures.

Year - 2015

<table>
<thead>
<tr>
<th>HSIP-related SHSP Emphasis Areas</th>
<th>Target Crash Type</th>
<th>Number of Fatalities</th>
<th>Number of Serious Injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Departure</td>
<td>Run-off-road</td>
<td>307</td>
<td>615</td>
<td>0.41</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersections</td>
<td>Intersections</td>
<td>133</td>
<td>411</td>
<td>0.18</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Older Drivers</td>
<td>All</td>
<td>125</td>
<td>210</td>
<td>0.17</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorcyclists</td>
<td>All</td>
<td>66</td>
<td>132</td>
<td>0.09</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Zones</td>
<td>All</td>
<td>13</td>
<td>19</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduce Young Driver Crashes</td>
<td>All</td>
<td>56</td>
<td>139</td>
<td>0.08</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduce Impaired Driving</td>
<td>All</td>
<td>64</td>
<td>217</td>
<td>0.09</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drasy & Distracted</td>
<td>All</td>
<td>205</td>
<td>541</td>
<td>0.28</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggressive Driving</td>
<td>All</td>
<td>170</td>
<td>364</td>
<td>0.23</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ped. & Bike</td>
<td>Vehicle-ped</td>
<td>152</td>
<td>244</td>
<td>0.2</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unbelted</td>
<td>All</td>
<td>293</td>
<td>517</td>
<td>0.39</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy Vehicle</td>
<td>All</td>
<td>74</td>
<td>84</td>
<td>0.1</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unlicensed Drivers</td>
<td>All</td>
<td>20</td>
<td>64</td>
<td>0.03</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Railcar-Vehicle</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Number of Fatalities by SHSP Emphasis Area
5-yr Average Measure Data

Year 2011 to Year 2015

SHSP Emphasis Area
Number of Serious Injuries by SHSP Emphasis Area
5-yr Average Measure Data

Year 2011 to Year 2015

% of Serious Inj.

2011 2012 2013 2014 2015

SHSP Emphasis Area
Fatality Rate by SHSP Emphasis Area
5-yr Average Measure Data

Year 2011 to Year 2015

SHSP Emphasis Area
Serious Injury Rate by SHSP Emphasis Area
5-yr Average Measure Data

Year 2011 to Year 2015

Groups of similar project types
Present the overall effectiveness of groups of similar types of projects.

<table>
<thead>
<tr>
<th>HSIP Sub-program Types</th>
<th>Target Crash Type</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian Safety</td>
<td>Vehicle/pedestrian</td>
<td>152</td>
<td>219</td>
<td>0.2</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roadway Departure</td>
<td>Run-off-road</td>
<td>209</td>
<td>360</td>
<td>0.28</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Safety</td>
<td>All</td>
<td>271</td>
<td>741</td>
<td>1.37</td>
<td>3.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segments</td>
<td>Run-off-road</td>
<td>437</td>
<td>807</td>
<td>0.59</td>
<td>1.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other-High Risk Rural Roads</td>
<td>All</td>
<td>32</td>
<td>45</td>
<td>0.04</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection</td>
<td>Intersections</td>
<td>133</td>
<td>411</td>
<td>0.18</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fatalities by Target Crash Type for Groups of Similar Projects

5-yr Average Measure Data

Year 2011 to Year 2015

<table>
<thead>
<tr>
<th>Target Crash Type</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>200</td>
<td>150</td>
<td>200</td>
<td>180</td>
<td>200</td>
</tr>
<tr>
<td>Angle</td>
<td>100</td>
<td>150</td>
<td>120</td>
<td>130</td>
<td>150</td>
</tr>
<tr>
<td>Cross-median</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>90</td>
</tr>
<tr>
<td>Fixed object</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Sideswipe</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>35</td>
</tr>
<tr>
<td>Head-on</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>Left-turn</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Night-time</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>Intersections</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Non-intersection</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Rear-end</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Right-turn</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Run-off/Reckless</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Speed-related</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Vehicle/animal</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Vehicle/pedestrian</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Wet road</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
Fatality Rate by Target Crash Type for Groups of Similar Projects
5-yr Average Measure Data

Year 2011 to Year 2015
Systemic Treatments
Present the overall effectiveness of systemic treatments.

Year - 2015

<table>
<thead>
<tr>
<th>Systemic improvement</th>
<th>Target Crash Type</th>
<th>Number of fatalities</th>
<th>Number of serious injuries</th>
<th>Fatality rate (per HMVMT)</th>
<th>Serious injury rate (per HMVMT)</th>
<th>Other-1</th>
<th>Other-2</th>
<th>Other-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Cross Center Line Crashes</td>
<td>Head on</td>
<td>145</td>
<td>286</td>
<td>0.2</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fatalities by Target Crash Type for Systemic Safety Improvements

Year 2011 to Year 2015

of Fatalities

Target Crash Type

- All
- Angle
- Cross median
- Fixed object
- Sideswipe
- Head on
- Left turn
- Night-time
- Intersections
- Non-intersection
- Rear end
- Right turn
- Run-off-road
- Speed-related
- Truck-related
- Vehicle/animal
- Vehicle/bicycle
- Vehicle/pedestrian
- Wet road

2011: Blue
2012: Red
2013: Green
2014: Purple
2015: Orange
Serious Injuries by Target Crash Type for Systemic Safety Improvements

Year 2011 to Year 2015

Target Crash Type
Fatality Rate by Target Crash Type for Systemic Safety Improvements

Year 2011 to Year 2015
Serious Injury Rate by Target Crash Type for Systemic Safety Improvements

Year 2011 to Year 2015

Rate of Serious Injuries

Target Crash Type

- All
- Angle
- Cross median
- Fixed object
- Sideswipe
- Head on
- Left-turn
- Night-time
- Intersections
- Non-intersection
- Rear end
- Right-turn
- Run-off-road
- Speed-related
- Truck-related
- Vehicle/animal
- Vehicle/bicycle
- Vehicle/pedestrian
- Wet road
Describe any other aspects of the overall Highway Safety Improvement Program effectiveness on which you would like to elaborate.

N/A
Project Evaluation

Provide project evaluation data for completed projects (optional).

<table>
<thead>
<tr>
<th>Location</th>
<th>Functional Class</th>
<th>Improvement Category</th>
<th>Improvement Type</th>
<th>Bef-Fatal</th>
<th>Bef-Serious Injury</th>
<th>Bef-All Injuries</th>
<th>Bef-PDO</th>
<th>Bef-Total</th>
<th>Aft-Fatal</th>
<th>Aft-Serious Injury</th>
<th>Aft-All Injuries</th>
<th>Aft-PDO</th>
<th>Aft-Total</th>
<th>Evaluation Results (Benefit/ Cost Ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

see attached file
Optional Attachments

<table>
<thead>
<tr>
<th>Sections</th>
<th>Files Attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Structure: Program Administration</td>
<td>Project Evaluation.docx</td>
</tr>
<tr>
<td>Program Structure: Program Administration</td>
<td>2016 ASR General Notes.docx</td>
</tr>
</tbody>
</table>
Glossary

5 year rolling average means the average of five individual, consecutive annual points of data (e.g. annual fatality rate).

Emphasis area means a highway safety priority in a State’s SHSP, identified through a data-driven, collaborative process.

Highway safety improvement project means strategies, activities and projects on a public road that are consistent with a State strategic highway safety plan and corrects or improves a hazardous road location or feature or addresses a highway safety problem.

HMVMT means hundred million vehicle miles traveled.

Non-infrastructure projects are projects that do not result in construction. Examples of non-infrastructure projects include road safety audits, transportation safety planning activities, improvements in the collection and analysis of data, education and outreach, and enforcement activities.

Older driver special rule applies if traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65 in a State increases during the most recent 2-year period for which data are available, as defined in the Older Driver and Pedestrian Special Rule Interim Guidance dated February 13, 2013.

Performance measure means indicators that enable decision-makers and other stakeholders to monitor changes in system condition and performance against established visions, goals, and objectives.

Programmed funds mean those funds that have been programmed in the Statewide Transportation Improvement Program (STIP) to be expended on highway safety improvement projects.

Roadway Functional Classification means the process by which streets and highways are grouped into classes, or systems, according to the character of service they are intended to provide.

Strategic Highway Safety Plan (SHSP) means a comprehensive, multi-disciplinary plan, based on safety data developed by a State Department of Transportation in accordance with 23 U.S.C. 148.

Systematic refers to an approach where an agency deploys countermeasures at all locations across a system.

Systemic safety improvement means an improvement that is widely implemented based on high risk roadway features that are correlated with specific severe crash types.

Transfer means, in accordance with provisions of 23 U.S.C. 126, a State may transfer from an apportionment under section 104(b) not to exceed 50 percent of the amount apportioned for the fiscal year to any other apportionment of the State under that section.