Table of Contents

Table of Contents .. 2
Disclaimer ... 3
Executive Summary .. 4
Introduction ... 7
Program Structure ... 7
 Program Administration .. 7
 Program Methodology .. 11
Project Implementation ... 25
 Funds Programmed ... 25
 General Listing of Projects ... 27
Safety Performance ... 38
 General Highway Safety Trends ... 38
 Safety Performance Targets .. 44
 Applicability of Special Rules .. 45
Evaluation ... 47
 Program Effectiveness .. 47
 Effectiveness of Groupings or Similar Types of Improvements .. 47
 Project Effectiveness ... 52
Compliance Assessment ... 53
Protection of Data from Discovery Admission into Evidence

23 U.S.C. 148(h)(4) states “Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for any purpose relating to this section [HSIP], shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location identified or addressed in the reports, surveys, schedules, lists, or other data.”

23 U.S.C. 409 states “Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential accident sites, hazardous roadway conditions, or railway-highway crossings, pursuant to sections 130, 144, and 148 of this title or for the purpose of developing any highway safety construction improvement project which may be implemented utilizing Federal-aid highway funds shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data.”
Executive Summary

The Alabama Department of Transportation (ALDOT) through the Design Bureau, Traffic Design Division, and Traffic & Safety Operations Section (TSOS) is responsible for the administration of the Highway Safety Improvement Program (HSIP). The goal for the TSOS is to provide the tools, processes and guidance necessary to promote highway safety efforts that lead to a reduction in the number and severity of crashes on all public roads in Alabama.

The HSIP projects are consistent with the Alabama Strategic Highway Safety Plan (SHSP) 2nd Edition, version 2012. The SHSP was updated in July 2017. The 3rd Edition of the of the Alabama SHSP will focus on implementing regional SHSPs following the Rural/Regional Planning Organizations (RPOs) as the geographical boundaries for each region. Specific emphasis areas will be identified by local stakeholders to develop performance measures with proven countermeasures. Four regions were selected to represent various geographical areas of the state and ensure a mix of urban and rural traffic and safety challenges. Regional coalitions were established to convene a diverse group of stakeholder participants representing all facets of the 4 "E"s (Engineering, Enforcement, Education, and Emergency Response) ranging from industry to community civic groups. The Alabama SHSP, 3rd Edition included four Regional Safety Coalitions Planned Emphasis Areas and Strategies. The other eight Regional Safety Coalitions not represented in the 3rd Edition are currently being developed and will be completed 2018.

The current focus of Alabama’s SHSP is the “Toward Zero Deaths” initiative. Additionally, Alabama has adopted the goal of reducing fatalities by 50% within a 20-year time period. Fatal crashes had dropped significantly over the past decade from 2003 to 2012. Alabama had seen a steady decline in the number of fatalities and the fatality rate during this same period, but has recently seen an uptick in fatalities over the past couple of years.

The SHSP has five key focus areas: Driver Behavior, Infrastructure Countermeasures, Legislative Initiatives, Traffic Safety Information Systems and Safety Stakeholders Community. The SHSP was developed in conjunction with the Alabama Department of Economic and Communities Affairs (ADECA) and multiple agencies and organizations. ADECA is responsible for the implementation of the National Highway Traffic Safety Administration (NHTSA) programs. The human behavioral aspects of the SHSP incorporate ADECA’S Statewide Highway Safety Plan which addresses the safety program behavioral elements related to occupant restraint use, impaired driving, distracted driving, speed, young drivers, motorcycles, and pedestrians.

HSIP projects have focused on (3) three areas: Infrastructure Countermeasures (construction/supportive programs), Driver Behavior (safety outreach campaigns and overtime enforcement efforts), and Traffic Safety Information Systems (crash data analysis).

HSIP Infrastructure projects are developed through safety and operational analysis using crash data statistics, crash patterns, and benefit-cost engineering analysis. The projects have been more systemic in recent years and target more specific needs identified through data analysis such as Interstate Median Barrier, Shoulder Widening Program, Rumble Strips, and Horizontal Curve Safety Programs.

HSIP Infrastructure Projects/Tool Development

The Interstate Median Barrier program and the Shoulder Widening Program are safety programs which were established in 2002 and 2006, respectively. The Interstate Median Barrier program addresses
2017 Alabama Highway Safety Improvement Program
2016 Alabama Highway Safety Improvement Program median cross over crashes by installing median cable along selected sections of interstate with a high pattern of median cross over crashes. The shoulder widening program addresses the addition of two (2) feet of shoulder during maintenance resurfacing along state routes (where feasible).

In 2015, the Horizontal Curve Safety Program (HCSP) was the next systemic HSIP project developed and implemented. This program is evaluating horizontal curves on state maintained roads and is developing recommendations for traffic signing and pavement marking in accordance with the MUTCD 2009. In addition, high crash sites and roadway departure locations are undergoing road safety assessments (RSAs) to determine appropriate safety enhancements and countermeasures.

TSOS collaborates with various University Research Centers to identify and develop data and analytical tools and manuals such as ALSAFE: Development of an Alabama Specific Planning Level Safety Tool, and the Alabama Roundabout Guide.

ALSAFE will be a safety forecasting tool for analysis at the Traffic Analysis Zone level which is a common metric used by planners. ALSAFE will be a statewide planning level safety software tool which will aid ALDOT, Metropolitan Planning Organizations (MPOs), and Regional Planning Organizations (RPOs). These tools will be vital in the planning and selection process of addressing potential safety problems and countermeasures for human factors or needs that are identified.

In the past few years, Alabama has been implementing conceptual designs for roundabouts. In order to maintain design consistency and to provide guidance, there was a need for the development of guidance for Alabama roundabouts. The Alabama Roundabout Guide will serve as a guide to the planning, design, construction, operation, and maintenance of roundabouts in Alabama.

Alabama is developing a process and procedures to implement the Highway Safety Manual (HSM) to provide a tool to assist in selecting and evaluating safety projects. The Center for Advanced Public Safety (CAPS) is contracted to develop Safety Performance Factors (SPF) for state route segments and intersections while the University of South Alabama has a project to develop SPFs for rural roads. The SPFs will be specific for Alabama by applying Highway Safety Manual (HSM) methodology during their development. By using these tools, the project selection and evaluation process will be enhanced.

Local Roads
Local roads safety programs are included in the HSIP program of projects. The Alabama Local Technical Assistance Program (LTAP) through Auburn University provides both training and practical application of safety principles to educate local entities. Other tools and equipment, such as the HSIP Manual provides guidance on how to apply for HSIP funds.

TSOS in conjunction with FHWA also hosted the first annual Rural Road Safety Conference in 2014, with the 3rd conference completed in October, 2017. The Conference focuses on local safety issues and provided training on various roadway safety topics.

Non-Infrastructure Safety Efforts
Non-Infrastructure Safety Efforts of Driver Behavior and Traffic Safety Information Systems areas of Alabama’s current SHSP are managed by the Design Bureau, Traffic Design Division, Safety Management Section (SMS).
2017 Alabama Highway Safety Improvement Program

Law enforcement agencies are invited to participate in HSIP development committees such as the development of the Speed Management Manual and Road Safety Assessments (RSA) Manual. Their perspective and experience plays an important role in targeting effective countermeasures for the safety of the traveling public.

Safety outreach initiatives are coordinated with the ALDOT's Media and Community Relations Bureau, the Alabama State Law Enforcement Agency (formerly the Alabama Department of Public Safety), and ADECA. “Driver Sober or Get Pulled Over”, “Click It or Ticket it” and “Work Zone Safety” are examples of the safety campaigns implemented annually. This partnership is effective in providing safety information to the public. Its focus is to reduce the number of fatalities and serious injuries that occur, especially during various holiday seasons.

ALDOT Media and Community Relations conducted a safety public education and awareness program that addressed the behavioral safety elements related to seatbelts, speeding, impaired and distracted driving, work zones, rail crossings and motorcycles. Working with the Governor’s Office, May was proclaimed Motorcycle Safety Awareness Month, and July was proclaimed Distracted Driving Awareness Month by Alabama Governor Robert Bentley. Using varied communication channels and events, the ALDOT public education programs reached across the state of Alabama and generated news articles, advertisements and other marketing pieces that were viewed by our target audiences more than 35 million times.

Alabama crash data is maintained and accessed through the Critical Analysis Reporting Environment (CARE) software and its supporting data is maintained by the Center for Advanced Public Safety (CAPS) at the University of Alabama. This interface is used for crash analysis by both ALDOT and local agencies. This data system is used to assist in the preparation of this report as well as the SHSP. The CARE program is critical in the development of the HSIP for assessing safety information.

ALDOT has made great strides to develop and implement safety programs and provide public awareness but more efforts are needed to continue the efforts to meet the “Toward Zero Death” Initiatives. This is a corporative effort through partnerships with other agencies and addressing safety elements through the SHSP to reduce fatalities and serious injuries throughout the state of Alabama.
Introduction

The Highway Safety Improvement Program (HSIP) is a core Federal-aid program with the purpose of achieving a significant reduction in fatalities and serious injuries on all public roads. As per 23 U.S.C. 148(h) and 23 CFR 924.15, States are required to report annually on the progress being made to advance HSIP implementation and evaluation efforts. The format of this report is consistent with the HSIP Reporting Guidance dated December 29, 2016 and consists of five sections: program structure, progress in implementing highway safety improvement projects, progress in achieving safety outcomes and performance targets, effectiveness of the improvements and compliance assessment.

Program Structure

Program Administration

Describe the general structure of the HSIP in the State.

The Alabama Department of Transportation's Traffic & Safety Operations Section (TSOS) is responsible for monitoring the availability and use of all federal HSIP funding available to our state. In order to make HSIP funding decisions, the TSOS has the responsibility of developing a prioritized list of proposed HSIP projects for funding consideration. All HSIP project funding decisions are based on a safety cost-effectiveness using a benefit/cost ratio.

Potential HSIP projects may come from a variety of sources, including the analysis by ALDOT of crash data, field observations by ALDOT and/or local governments, law enforcement agencies, emergency response organizations, and others. These proposed projects must address a stated goal(s) of the Alabama Strategic Highway Safety Plan, including the reduction of crashes, fatalities, injuries or property damage in support of the State's established safety performance measures. There must also be a documented description of the safety issue(s) along with supporting data and quantitative and/or qualitative information on the proposed safety countermeasures. The TSOS will then review and/or approve the HSIP project application if it is confirmed that the project is eligible for funding, is consistent with SHSP and its focus areas, is based on sound technical engineering analyses, and has non-federal matching funds available for the project.

Once a project is approved for funding the TSOS will work with the project sponsor on how best to proceed with the project including (1) confirming the project schedule and letting date; (2) confirming the project budget; (3) confirming the either systemic or non-systemic safety improvement(s) to be implemented; (4) complying with plan preparation requirements; and (5) complying with project delivery requirements. The TSOS will also serve as a technical advisor to ALDOT Regional Offices and other project sponsors on HSIP program requirements, and will approve/disapprove requests for HSIP project schedule revisions in coordination with the Region Offices. A project's status will be continually monitored by the TSOS. If there are significant project delays it will be determined whether to cancel an HSIP project, require the project sponsor to take corrective actions, and/or reprogram the HSIP funding to other eligible project(s).

Where is HSIP staff located within the State DOT?

Design
How are HSIP funds allocated in a State?

Central Office via Statewide Competitive Application Process
SHSP Emphasis Area Data

Describe how local and tribal roads are addressed as part of HSIP.

Local Roads are addressed through the HSIP by using crash data analysis and safety and operations analysis. Alabama is proactive in the development of safety tools and manuals for use of the analysis of local roads.

ALDOT has updated the HSIP Manual which provides an overview of the HSIP program. This manual provides aid for local agencies, MPOs/RPOs, and local ALDOT Region Personnel with a focus on the eligibility and funding requirements for HSIP projects. HSIP funds are available to local agencies for low cost safety improvements such as striping, markings, signage, traffic signal upgrades, etc. Project selections are based upon a benefit to cost analysis. Training has been provided on the HSIP manual and HSIP application process.

Other local tools under development are the United States Road Assessment Program (usRAP). usRAP is intended to encourage highway agencies to make safety decisions in the management of road networks based on national assessment of risk as well as to develop roadway Star Ratings and Safer Road Investment Plans. usRAP can be used for risk mapping of crashes, safety performance tracking, and provides a star rating (based on inspection of roads to examine how well they protect users from involvement in crashes and from deaths and serious injuries when crashes occur.)

The development of Safety Performance Functions (SPFs) for rural two-lane roads of the HSM will assist in the analysis process for local roads. ALDOT developed a Road Safety Assessments (RSAs) program. A RSA is a formal safety performance examination of existing and proposed roadways by an independent and multi-disciplinary team. This program will be available to both state and local government projects.

ALDOT's Safety Management Section (SMS) provides cities, counties and other municipalities with annual crash data summaries, high crash information locations, individual crash reports, and other crash-related information as needed. This crash data provides information to help identify immediate or potential safety needs. This data is also helpful in the selection process for safety program funding.

State and local agency personnel are presented opportunities to receive crash analysis training for the Critical Analysis Reporting Environment (CARE) program. CARE provides an analytical process to assess crash data for trends and use as needed. CARE training is provided several times during the year.

In September 2014, ALDOT in cooperation with FHWA and LTAP hosted its first annual Local Rural Road Safety Workshop and Conference. Subsequent to this first conference, we have had two additional conferences that have emphasized the implementation of the safety process through all stages of roadway planning, design and operations through practical guidance specifically geared to local/rural roads. The 4th Annual Local Rural
2017 Alabama Highway Safety Improvement Program
Road Safety Workshop and Conference is scheduled for October 2017. We have averaged 125 participants per conference who have learned from various subject matter experts including the Road Safety 365 workshop, which was a one-day training session designed to provide local and rural agencies with practical and effective ways to implement safety solutions into their day-to-day activities and project development process. Participants also learned how to use the CARE system, to develop countermeasures for Stop-Controlled Intersections, Work Zone Safety for Local Roads, etc. The workshop and conference was very successful.

Identify which internal partners (e.g., State departments of transportation (DOTs) Bureaus, Divisions) are involved with HSIP planning.

Traffic Engineering/Safety
Design
Planning
Maintenance
Districts/Regions
Local Aid Programs Office/Division
Other-ALDOT County Transportation

Enter additional comments here to clarify your response for this question or add supporting information.

Describe coordination with internal partners.

Traffic & Safety Operations Section (TSOS) has several safety program partnerships with the ALDOT Maintenance Bureau. The initial safety program was developed between the TSOS and ALDOT’s Maintenance Bureau to implement the statewide shoulder widening projects on resurfacing projects. The program addresses road departure crashes along rural state routes. This program coordinates with the state’s resurfacing program and provides two (2’) foot shoulders along routes with shoulder scoring, where feasible. HSIP funds are utilized to implement the improvements. The ALDOT Maintenance Bureau administers the program and assists TSOS in the identification of state routes that are being widened.

Additionally, ALDOT’s Maintenance Bureau has been given the task of upgrading signage to meet the current MUTCD (Manual on Uniform Traffic Control Devices). As an effort to improve safety, TSOS is collaborating by identifying high crash horizontal curve locations for enhanced signage upgrades. HSIP funding will be used to implement this portion of the overall program.

In 2012, TSOS initiated a pilot project for a potential statewide inventory of traffic control devices at signalized intersections. The pilot provided a mixture of urban and rural collections of traffic data inventory. The purpose of this study would be to collect data at each location for both the TSOS and the ALDOT Maintenance Bureau. TSOS is using this database to develop Safety Performance Functions (SPFs) for use with the Highway Safety Manual. Additionally, the Maintenance Bureau will be using the data to advance maintenance, operations, and financial management of the State's Traffic Signal Inventory. The project has now expanded statewide and ALDOT Computer Services will develop a database for the use of ALDOT Region personnel also. To date, approximately 1/3 of the signalized intersections along the state-maintained system have been inventoried.

TSOS has had other similar partnerships with ALDOT’s County Transportation Bureau. This partnership was initially developed with the High Risk Rural Roads Program (HRRRP) and has expanded. Now ALDOT’s County Transportation Bureau is active in the HSIP review committee of county applications and provides valid
input on the development of other efforts to educate locals on safety issues. For instance, ALDOT’s County Transportation Bureau assisted and participated in the Local Rural Roads Conference which was held in September 2014 and has been actively involved in subsequent conferences. This "hands on" approach has been successful in addressing Alabama's local roads safety needs and is beneficial in obligating HRRR and HSIP funds.

Another essential partnership is with the ALDOT’s development of an Enterprise GIS (EGIS) system. ALDOT’s Enterprise GIS (EGIS) is comprised of a Linear Referencing System for all the roads in the state of Alabama and its associated data attributes. EGIS’s primary function has been to help process inventory data required for FHWA’s Highway Performance Monitoring System’s (HPMS) submittal. TSOS has a representative on the EGIS committee who gives a perspective on Safety Data related needs. TSOS has submitted an extensive list of Model Inventory of Roadway Elements (MIRE) data elements to the committee for consideration in the ALDOT’s Light Detection and Ranging (LIDAR) data collection process.

Also, ALDOT is converting its current Link-Node system to GPS coordinates. Theses coordinates will be put into the CARE system and will allow past crash reports to have a GPS coordinate. The University of Alabama is leading this project and were initially tasked with translating ALDOT’s digital copies of the Link Node maps drawn in MicroStation into a GIS format. Now that ALDOT’s Enterprise GIS (EGIS) Linear Referencing System (LRS) has come into being, the university has been tasked with conflating the Link Node data to the new LRS system. Four counties have been selected for the development of the conflation process and then the university will then complete the final 63 counties. Lastly, the university has also been charged with developing an interactive Viewer/Editing program for the Links and Nodes and future changes to the data.

Identify which external partners are involved with HSIP planning.

Regional Planning Organizations (e.g. MPOs, RPOs, COGs)
Governors Highway Safety Office
Local Technical Assistance Program
Academia/University
FHWA
Other-County and Local Govt
Other-Ala Dept of Public Health
Other-Ala Dept of Public Safety
Other-Ala Dept of Education
Other-Alabama Department of Economic and Community Affairs

Enter additional comments here to clarify your response for this question or add supporting information.

Describe coordination with external partners.

ALDOT maintains a close relationship with its safety partners, including (1) Academia/University, (2) FHWA, (3) Alabama Governors Highway Safety Office, (4) Alabama Local Technical Assistance Program, (5) Regional Planning Organizations (MPOs, RPOs, & COGs), (6) County and Local Governments, (7) Alabama Department of Public Health, (8) Alabama Department of Public Safety (aka ALEA), (9) Alabama Department of Education, and (10) Alabama Department of Economic and Community Affairs (ADECA).

The universities and the Alabama LTAP help advance the implementation of the HSIP through valuable research, data management, and data collection, and by providing training and support to ALDOT and its partners in the areas
2017 Alabama Highway Safety Improvement Program

of roadway safety. The Planning Organizations, and the county/local government agencies apply and receive funding for safety projects through the HSIP. Although not directly funding through HSIP efforts, ALDOT maintains a close working relationship with Public Health, Public Safety, Education, and ADECA to advance safety throughout the state through a 4-E approach.

Have any program administration practices used to implement the HSIP changed since the last reporting period?

No

Are there any other aspects of HSIP Administration on which the State would like to elaborate?

Yes

Describe other aspects of HSIP Administration on which the State would like to elaborate.

Traffic & Safety Operations Section's vision is to develop and provide tools, processes, and guidance necessary to focus on reducing the number and severity of crashes for all public roads in Alabama. TSOS provides infrastructure road safety initiatives and strategies and provides rapid review, response, and resolution to roadway safety concerns.

TSOS administers the HSIP program by developing innovative and progressive programs consistent with the Alabama Strategic Highway Safety Plan (SHSP). The programs are planned by fiscal year with available HSIP funding. TSOS works closely with the FHWA Division Office Safety personnel to expedite obligating HSIP funds in a timely manner.

Implementing a proactive approach in administration, planning and coordinating HSIP projects, TSOS manages HSIP funds in a more progressive manner.

Program Methodology

Does the State have an HSIP manual or similar that clearly describes HSIP planning, implementation and evaluation processes?

Yes

To upload a copy of the State processes, attach files below.

Select the programs that are administered under the HSIP.

Median Barrier
Intersection
Horizontal Curve
Bicycle Safety
Roadway Departure
Sign Replacement And Improvement
Program: Bicycle Safety

Date of Program Methodology: 1/1/2014

What is the justification for this program? [Check all that apply]
- Addresses SHSP priority or emphasis area

What is the funding approach for this program? [Check one]
-Competes with all projects

What data types were used in the program methodology? [Check all that apply]
- Crashes
- Exposure
 - Traffic
 - Volume
- Roadway
 - Roadside features

What project identification methodology was used for this program? [Check all that apply]
- Crash frequency

Are local roads (non-state owned and operated) included or addressed in this program?
- Yes

Are local road projects identified using the same methodology as state roads?
- No

Describe the methodology used to identify local road projects as part of this program.
Local projects are identified but are not addressed in this program.

How are projects under this program advanced for implementation?

Other-Recently authorization project for Vulnerable Users Handbook
Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

Ranking based on B/C : 2
Available funding : 1

Enter additional comments here to clarify your response for this question or add supporting information.

Program: Horizontal Curve

Date of Program Methodology: 1/2/2012

What is the justification for this program? [Check all that apply]

Addresses SHSP priority or emphasis area

What is the funding approach for this program? [Check one]

Competes with all projects

What data types were used in the program methodology? [Check all that apply]

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury crashes only</td>
<td>Volume</td>
<td>Functional classification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roadside features</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program? [Check all that apply]

Crash frequency

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads?

Yes

Describe the methodology used to identify local road projects as part of this program.
Local projects are identified but are not addressed in this program.

How are projects under this program advanced for implementation?

Other-B/C Analysis

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Available funding : 50
Ranking based on net benefit : 50

Total Relative Weight : 100

Enter additional comments here to clarify your response for this question or add supporting information.

Program:

HRRR

Date of Program Methodology:

8/1/2005

What is the justification for this program? [Check all that apply]

Addresses SHSP priority or emphasis area

What is the funding approach for this program? [Check one]

Competes with all projects

What data types were used in the program methodology? [Check all that apply]

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td></td>
<td>Volume</td>
<td>Functional classification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roadside features</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program? [Check all that apply]

Crash frequency

Are local roads (non-state owned and operated) included or addressed in this program?
Yes

Are local road projects identified using the same methodology as state roads?

No

Describe the methodology used to identify local road projects as part of this program.
State roads are ineligible.

How are projects under this program advanced for implementation?

selection committee

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Enter additional comments here to clarify your response for this question or add supporting information.

Program: Intersection

Date of Program Methodology: 1/2/2000

What is the justification for this program? [Check all that apply]

Addresses SHSP priority or emphasis area

What is the funding approach for this program? [Check one]

Competes with all projects

What data types were used in the program methodology? [Check all that apply]

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Functional classification</td>
</tr>
<tr>
<td>Fatal and serious injury</td>
<td>Volume</td>
<td>Roadside features</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program? [Check all that apply]

Crash frequency
Are local roads (non-state owned and operated) included or addressed in this program?
Yes

Are local road projects identified using the same methodology as state roads?
Yes

Describe the methodology used to identify local road projects as part of this program.
State roads are ineligible.

How are projects under this program advanced for implementation?
Other-Safety and Operations Analysis
Other-ALDOT Region selection of Candidates

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

Ranking based on B/C : 1
Available funding : 2

Enter additional comments here to clarify your response for this question or add supporting information.

Program: Median Barrier

Date of Program Methodology: 7/29/2003

What is the justification for this program? [Check all that apply]
Addresses SHSP priority or emphasis area

What is the funding approach for this program? [Check one]
Competes with all projects

What data types were used in the program methodology? [Check all that apply]

Crashes Exposure Roadway
What project identification methodology was used for this program? [Check all that apply]

Crash frequency
Probability of specific crash types

Are local roads (non-state owned and operated) included or addressed in this program?
No

Are local road projects identified using the same methodology as state roads?
Yes

Describe the methodology used to identify local road projects as part of this program.
State roads are ineligible.

How are projects under this program advanced for implementation?
Other-Crash Analysis

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

Available funding : 50
Other-Projects are ranked by priority : 50

Enter additional comments here to clarify your response for this question or add supporting information.

Program: Pedestrian Safety
Date of Program Methodology: 1/1/2014
What is the justification for this program? [Check all that apply]
Addresses SHSP priority or emphasis area

What is the funding approach for this program? [Check one]
What data types were used in the program methodology? [Check all that apply]

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Functional classification</td>
</tr>
<tr>
<td></td>
<td>Volume</td>
<td></td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program? [Check all that apply]

Crash frequency

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads?

Yes

Describe the methodology used to identify local road projects as part of this program.
State roads are ineligible.

How are projects under this program advanced for implementation?

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

Enter additional comments here to clarify your response for this question or add supporting information.

Program: Roadway Departure

Date of Program Methodology: 1/2/2006

What is the justification for this program? [Check all that apply]

Addresses SHSP priority or emphasis area
What is the funding approach for this program? [Check one]

Competes with all projects

What data types were used in the program methodology? [Check all that apply]

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury crashes only</td>
<td>Volume</td>
<td>Roadside features</td>
</tr>
<tr>
<td></td>
<td>Lane miles</td>
<td>Other-Existing Shoulder if applicable</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program? [Check all that apply]

Crash frequency

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads?

Yes

Describe the methodology used to identify local road projects as part of this program.

State roads are ineligible.

How are projects under this program advanced for implementation?

Other-In conjunction with Resurfacing Maintenance Program
Other-Crash Analysis, Road Safety Assessments, HSM Methodologies

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Available funding : 50
Cost Effectiveness : 50

Total Relative Weight : 100

Enter additional comments here to clarify your response for this question or add supporting information.
Program: Shoulder Improvement

Date of Program Methodology: 1/2/2006

What is the justification for this program? [Check all that apply]

Addresses SHSP priority or emphasis area

What is the funding approach for this program? [Check one]

Competes with all projects

What data types were used in the program methodology? [Check all that apply]

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td>Fatal and serious injury crashes only</td>
<td>Volume</td>
<td>Roadside features</td>
</tr>
<tr>
<td></td>
<td>Lane miles</td>
<td></td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program? [Check all that apply]

Crash frequency

Are local roads (non-state owned and operated) included or addressed in this program? Yes

Are local road projects identified using the same methodology as state roads? Yes

Describe the methodology used to identify local road projects as part of this program. State roads are ineligible.

How are projects under this program advanced for implementation?

Other-Crash Analysis, Road Safety Assessments, HSM Methodologies

Other-In conjunction with Resurfacing Maintenance Program

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).
Enter additional comments here to clarify your response for this question or add supporting information.

Program: Sign Replacement And Improvement

Date of Program Methodology: 1/1/2006

What is the justification for this program? [Check all that apply]

Addresses SHSP priority or emphasis area

What is the funding approach for this program? [Check one]

Competes with all projects

What data types were used in the program methodology? [Check all that apply]

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>Traffic Volume</td>
<td>Horizontal curvature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Functional classification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roadside features</td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program? [Check all that apply]

Crash frequency

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads?

Yes

Describe the methodology used to identify local road projects as part of this program.
State roads are ineligible.

How are projects under this program advanced for implementation?

Other-HRRRP
Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration

- Available funding : 1
- Cost Effectiveness : 2

Enter additional comments here to clarify your response for this question or add supporting information.

Program: Wrong Way Driving

Date of Program Methodology: 5/1/2014

What is the justification for this program? [Check all that apply]

- Addresses SHSP priority or emphasis area

What is the funding approach for this program? [Check one]

- Competes with all projects

What data types were used in the program methodology? [Check all that apply]

<table>
<thead>
<tr>
<th>Crashes</th>
<th>Exposure</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other-Wrong Way Crashes</td>
<td>Functional classification</td>
<td>Functional classification</td>
</tr>
<tr>
<td>Other-Interchange Form</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What project identification methodology was used for this program? [Check all that apply]

- Crash frequency
- Other-HSM Methodologies

Are local roads (non-state owned and operated) included or addressed in this program?

- No

Are local road projects identified using the same methodology as state roads?

- Yes
Describe the methodology used to identify local road projects as part of this program. State roads are ineligible.

How are projects under this program advanced for implementation?

Other-Crash Analysis

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Enter additional comments here to clarify your response for this question or add supporting information.

What percentage of HSIP funds address systemic improvements?

50

HSIP funds are used to address which of the following systemic improvements? Please check all that apply.

- Cable Median Barriers
- Rumble Strips
- Pavement/Shoulder Widening
- Install/Improve Signing
- Clear Zone Improvements
- Horizontal curve signs
- High friction surface treatment
- Wrong way driving treatments
- Other-Horizontal Curve Signing and Marking Program

Enter additional comments here to clarify your response for this question or add supporting information.

What process is used to identify potential countermeasures? [Check all that apply]

- Engineering Study
- Road Safety Assessment
- Crash data analysis
- Data-driven safety analysis tools (HSM, CMF Clearinghouse, SafetyAnalyst, usRAP)
- Stakeholder input

Enter additional comments here to clarify your response for this question or add supporting information.
Does the State HSIP consider connected vehicles and ITS technologies?
No

Enter additional comments here to clarify your response for this question or add supporting information.

Does the State use the Highway Safety Manual to support HSIP efforts?
Yes

Please describe how the State uses the HSM to support HSIP efforts.

The HSM is currently used in Design Exception analyses and occasionally in the evaluation of alternative analyses for new or reconstructed roadways on an as needed or requested by the Office of Safety Operations. The HSM, and in particular Part A, B & D are used in the evaluation of individual projects for HSIP funding, as well as, the overall management of the Safety Programs within the department.

Have any program methodology practices used to implement the HSIP changed since the last reporting period?
No

Are there any other aspects of the HSIP methodology on which the State would like to elaborate?
No
Project Implementation

Funds Programmed

Reporting period for HSIP funding.

Federal Fiscal Year

Enter additional comments here to clarify your response for this question or add supporting information.

Enter the programmed and obligated funding for each applicable funding category.

<table>
<thead>
<tr>
<th>FUNDING CATEGORY</th>
<th>PROGRAMMED</th>
<th>OBLIGATED</th>
<th>% OBLIGATED/PROGRAMMED</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSIP (23 U.S.C. 148)</td>
<td>$31,930,101</td>
<td>$18,051,525</td>
<td>56.53%</td>
</tr>
<tr>
<td>HRRR Special Rule (23 U.S.C. 148(g)(1))</td>
<td>$0</td>
<td>$0</td>
<td>0%</td>
</tr>
<tr>
<td>Penalty Funds (23 U.S.C. 154)</td>
<td>$0</td>
<td>$0</td>
<td>0%</td>
</tr>
<tr>
<td>Penalty Funds (23 U.S.C. 164)</td>
<td>$0</td>
<td>$0</td>
<td>0%</td>
</tr>
<tr>
<td>RHCP (for HSIP purposes) (23 U.S.C. 130(e)(2))</td>
<td>$6,442,461</td>
<td>$2,126</td>
<td>0.03%</td>
</tr>
<tr>
<td>Other Federal-aid Funds (i.e. STBG, NHPP)</td>
<td>$0</td>
<td>$0</td>
<td>0%</td>
</tr>
<tr>
<td>State and Local Funds</td>
<td>$0</td>
<td>$0</td>
<td>0%</td>
</tr>
<tr>
<td>Totals</td>
<td>$38,372,562</td>
<td>$18,053,651</td>
<td>47.05%</td>
</tr>
</tbody>
</table>

Enter additional comments here to clarify your response for this question or add supporting information.

How much funding is programmed to local (non-state owned and operated) or tribal safety projects?

5%

How much funding is obligated to local or tribal safety projects?

5%

Enter additional comments here to clarify your response for this question or add supporting information.

How much funding is programmed to non-infrastructure safety projects?
5%

How much funding is obligated to non-infrastructure safety projects?

5%

Enter additional comments here to clarify your response for this question or add supporting information.

How much funding was transferred in to the HSIP from other core program areas during the reporting period under 23 U.S.C. 126?

$0

How much funding was transferred out of the HSIP to other core program areas during the reporting period under 23 U.S.C. 126?

$10,000,000

Enter additional comments here to clarify your response for this question or add supporting information.

Discuss impediments to obligating HSIP funds and plans to overcome this challenge in the future.

Identification and prioritization of project sites through network screening has been an issue, thus impacting the ability to obligate HSIP funds. ALDOT is taking a proactive approach to improve our internal business practices, data collection and management, and crash databases to reduce this impediment to obligating HSIP funds.

Does the State want to elaborate on any other aspects of it’s progress in implementing HSIP projects?

No
General Listing of Projects

List the projects obligated using HSIP funds for the reporting period.

<table>
<thead>
<tr>
<th>PROJECT NAME</th>
<th>IMPROVEMENT CATEGORY</th>
<th>SUBCATEGORY</th>
<th>OUTPUTS</th>
<th>OUTPUT TYPE</th>
<th>HSIP PROJECT COST($)</th>
<th>TOTAL PROJECT COST($)</th>
<th>FUNDING CATEGORY</th>
<th>FUNCTIONAL CLASSIFICATION</th>
<th>AADT</th>
<th>SPEED</th>
<th>OWNERSHIP</th>
<th>METHOD FOR SITE SELECTION</th>
<th>EMPHASIS AREA</th>
<th>STRATEGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVELOPMENT OF ALSAFE: PHASE II CONTINUED PROGRAM DEVELOPMENT FOR SAFETY PLANNING TOOLS FOR MPOS ON A STATEWIDE BASIS</td>
<td>Non-infrastructure</td>
<td>Transportation safety planning</td>
<td></td>
<td></td>
<td>$252500</td>
<td>$252500</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>0</td>
<td></td>
<td>State Highway Agency</td>
<td>Systemic</td>
<td>Data</td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>DEVELOPMENT OF USRAP (PHASE III) COVERING THE STATE</td>
<td>Non-infrastructure</td>
<td>Road safety audits</td>
<td></td>
<td></td>
<td>$375965</td>
<td>$375965</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>0</td>
<td></td>
<td>State Highway Agency</td>
<td>Systemic</td>
<td>Data</td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>STOP CONTROLLED INTERSECTION SAFETY REVIEW PILOT PROJECT INCLUDES EVALUATION OF 49 STOP CONTROLLED INTERSECTIONS IN THE ALDOT NORTH REGION</td>
<td>Intersection traffic control</td>
<td>Systemic improvements - stop-controlled</td>
<td>47 Intersections</td>
<td></td>
<td>$71769</td>
<td>$71769</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>0</td>
<td></td>
<td>State Highway Agency</td>
<td>Spot</td>
<td>Intersections</td>
<td>Intersections</td>
<td></td>
</tr>
<tr>
<td>ROUNDABOUT CONVERSION STUDY: OLD MONROIVA ROAD AND PROVIDENCE MAIN STREET</td>
<td>Intersection geometry</td>
<td>Intersection geometrics - miscellaneous/other/unspecified</td>
<td>1 Intersections</td>
<td></td>
<td>$29347</td>
<td>$29347</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Urban Minor Arterial</td>
<td>8,530</td>
<td></td>
<td>City of Municipal Highway Agency</td>
<td>Spot</td>
<td>Intersections</td>
<td>Intersections</td>
</tr>
<tr>
<td>PROJECT NAME</td>
<td>IMPROVEMENT CATEGORY</td>
<td>SUBCATEGORY</td>
<td>OUTPUTS</td>
<td>OUTPUT TYPE</td>
<td>HSIP PROJECT COST($)</td>
<td>TOTAL PROJECT COST($)</td>
<td>FUNDING CATEGORY</td>
<td>FUNCTIONAL CLASSIFICATION</td>
<td>AADT</td>
<td>SPEED</td>
<td>OWNERSHIP</td>
<td>METHOD FOR SITE SELECTION</td>
<td>EMPHASIS AREA</td>
<td>STRATEGY</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>ADDITION OF LEFT TURN LANE ON SR-69 AT CR-1546(GOLDRIDGE ROAD)</td>
<td>Intersection geometry</td>
<td>Auxiliary lanes - add left-turn lane</td>
<td>1</td>
<td>Intersections</td>
<td>$75000</td>
<td>$75000</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Urban Minor Arterial</td>
<td>10,180</td>
<td>State Highway Agency</td>
<td>Spot</td>
<td>Intersections</td>
<td>Intersections</td>
<td></td>
</tr>
<tr>
<td>RESURFACE AND SAFETY IMPROVEMENTS ON SR-74 (US-278) FROM JUST WEST OF I-65 TO SR-3 (US-31) IN CULLMAN</td>
<td>Access management</td>
<td>Change in access - close or restrict existing access</td>
<td>2.29</td>
<td>Miles</td>
<td>$294120</td>
<td>$1554695</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Urban Principal Arterial - Other</td>
<td>16,150</td>
<td>State Highway Agency</td>
<td>Spot</td>
<td>Intersections</td>
<td>Intersections</td>
<td></td>
</tr>
<tr>
<td>INTERSECTION MODIFICATION ON SR-251 AT CR-83 (LINDSAY LANE) TO INSTALL ROUNDABOUT</td>
<td>Intersection geometry</td>
<td>Intersection geometries - miscellaneous/other/unspecified</td>
<td>1</td>
<td>Intersections</td>
<td>$110000</td>
<td>$110000</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Urban Principal Arterial - Other</td>
<td>7,540</td>
<td>State Highway Agency</td>
<td>Spot</td>
<td>Intersections</td>
<td>Intersections</td>
<td></td>
</tr>
<tr>
<td>MEDIAN CROSSOVER PROTECTION ON I-65 FROM NORFOLK SOUTHERN RAILWAY OVERPASS (MP 341.40) TO 0.1 MILE SOUTH SR-3 (US-31) (MP 354.1) AND FROM 1.3 MILES NORTH SR-63</td>
<td>Roadside</td>
<td>Barrier - cable</td>
<td>24.9</td>
<td>Miles</td>
<td>$1164199</td>
<td>$1164199</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Rural Principal Arterial - Interstate</td>
<td>32,680</td>
<td>State Highway Agency</td>
<td>Systemic</td>
<td>Roadway Departure</td>
<td>Roadway Departure</td>
<td></td>
</tr>
<tr>
<td>PROJECT NAME</td>
<td>IMPROVEMENT CATEGORY</td>
<td>SUBCATEGORY</td>
<td>OUTPUTS</td>
<td>OUTPUT TYPE</td>
<td>HSIP PROJECT COST($)</td>
<td>TOTAL PROJECT COST($)</td>
<td>FUNDING CATEGORY</td>
<td>FUNCTIONAL CLASSIFICATION</td>
<td>AADT</td>
<td>SPEED</td>
<td>OWNERSHIP</td>
<td>METHOD FOR SITE SELECTION</td>
<td>EMPHASIS AREA</td>
<td>STRATEGY</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>UNDERPASS (MP 366.20) TO TENNESSEE STATE LINE (MP 366.30) LIMESTONE COUNTY</td>
<td>Underpass</td>
<td>Barrier - cable</td>
<td>13.2</td>
<td>Miles</td>
<td>$866486</td>
<td>$866486</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Rural Principal Arterial - Interstate</td>
<td>58,750</td>
<td>58,750</td>
<td>State Highway Agency</td>
<td>Systemic</td>
<td>Roadway Departure</td>
<td>Roadway Departure</td>
</tr>
<tr>
<td>MEDIAN CROSSOVER PROTECTION ON I-565 FROM SPRING BRANCH (MP 0.10) TO CR-1036 (MADISON BOULEVARD OVERPASS) (MP 13.30) LIMESTONE AND MADISON COUNTIES</td>
<td>Median</td>
<td>Roadside</td>
<td>1</td>
<td>Intersection</td>
<td>$75000</td>
<td>$75000</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Urban Major Collector</td>
<td>5,120</td>
<td>5,120</td>
<td>County Highway Agency</td>
<td>Spot</td>
<td>Intersections</td>
<td>Intersections</td>
</tr>
<tr>
<td>INTERSECTION MODIFICATION ON CR-106 (EAST LIMESTONE ROAD) AND CR-36 (CAPSHAW ROAD) TO INSTALL ROUNDABOUT</td>
<td>Intersection</td>
<td>Intersection geometry - miscellaneous/other/unspecified</td>
<td>1</td>
<td>Intersections</td>
<td>$116523</td>
<td>$600000</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Rural Major Collector</td>
<td>4,000</td>
<td>4,000</td>
<td>Town or Township Highway Agency</td>
<td>Spot</td>
<td>Intersections</td>
<td>Intersections</td>
</tr>
<tr>
<td>PROJECT NAME</td>
<td>IMPROVEMENT CATEGORY</td>
<td>SUBCATEGORY</td>
<td>OUTPUTS</td>
<td>OUTPUT TYPE</td>
<td>HSIP PROJECT COST($)</td>
<td>TOTAL PROJECT COST($)</td>
<td>FUNCTIONAL CATEGORY</td>
<td>FUNCTIONAL CLASSIFICATION</td>
<td>AADT</td>
<td>SPEED</td>
<td>OWNERSHIP</td>
<td>METHOD FOR SITE SELECTION</td>
<td>EMPHASIS AREA</td>
<td>STRATEGY</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>------</td>
<td>-------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>ROUNDABOUT CONSTRUCTION AT SR-79 AND SR-160 INTERSECTION</td>
<td>Intersection geometry</td>
<td>Intersection geometrics - miscellaneous/other/unspecified</td>
<td>1</td>
<td>Intersections</td>
<td>$46020</td>
<td>$46020</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Rural Principal Arterial - Other</td>
<td>5,230</td>
<td>State Highway Agency</td>
<td>Spot</td>
<td>Intersections</td>
<td>Intersections</td>
<td></td>
</tr>
<tr>
<td>TRAFFIC SIGNAL UPGRADE AT SR-63 AND MAIN STREET IN ALEXANDER CITY, AT NORFOLK SOUTHERN RAILROAD/CENTRAL OF GEORGIA RAILROAD COMPANY CROSSING DOT# 728-229W</td>
<td>Intersection traffic control</td>
<td>Modify traffic signal - add railroad preemption</td>
<td>1</td>
<td>Intersections</td>
<td>$259326</td>
<td>$299326</td>
<td>RHCP (for HSIP purposes) (23 U.S.C. 130(e)(2))</td>
<td>Urban Major Collector</td>
<td>3,390</td>
<td>State Highway Agency</td>
<td>Spot</td>
<td>Intersections</td>
<td>Intersections</td>
<td></td>
</tr>
<tr>
<td>PROJECT NAME</td>
<td>IMPROVEMENT CATEGORY</td>
<td>SUBCATEGORY</td>
<td>OUTPUTS</td>
<td>OUTPUT TYPE</td>
<td>HSIP PROJECT COST($)</td>
<td>TOTAL PROJECT COST($)</td>
<td>FUNDING CATEGORY</td>
<td>FUNCTIONAL CLASSIFICATION</td>
<td>AADT</td>
<td>SPEED</td>
<td>OWNERSHIP</td>
<td>METHOD FOR SITE SELECTION</td>
<td>EMPHASIS AREA</td>
<td>STRATEGY</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>------</td>
<td>-------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>I-25/59 INTERSTATE MEDIAN BARRIER FROM MISSISSIPPI STATE LINE TO TOMBIEGEE RIVER DUAL BRIDGES</td>
<td>Roadway</td>
<td>Roadway - other</td>
<td>5.55</td>
<td>Miles</td>
<td>$527583</td>
<td>$2637915</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Rural Major</td>
<td>Collector</td>
<td>1,200</td>
<td>State Highway Agency</td>
<td>Systemic</td>
<td>Roadway Departure</td>
<td></td>
</tr>
<tr>
<td>PROJECT NAME</td>
<td>IMPROVEMENT CATEGORY</td>
<td>SUBCATEGORY</td>
<td>OUTPUTS</td>
<td>OUTPUT TYPE</td>
<td>HSIP PROJECT COST($)</td>
<td>TOTAL PROJECT COST($)</td>
<td>FUNDING CATEGORY</td>
<td>FUNCTIONAL CLASSIFICATION</td>
<td>AADT</td>
<td>SPEED</td>
<td>OWNERSHIP</td>
<td>METHOD FOR SITE SELECTION</td>
<td>EMPHASIS AREA</td>
<td>STRATEGY</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>SAFETY IMPROVEMENTS ON SR-6 (US-80) AT SR-28 AND CR-29</td>
<td>Intersection geometry</td>
<td>Intersection geometrics - modify skew angle</td>
<td>1</td>
<td>Intersections</td>
<td>$250000</td>
<td>$250000</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Rural Principal Arterial - Other</td>
<td>5,600</td>
<td></td>
<td>State Highway Agency</td>
<td>Spot</td>
<td>Intersections</td>
<td>Intersections</td>
</tr>
<tr>
<td>PROJECT NAME</td>
<td>IMPROVEMENT CATEGORY</td>
<td>SUBCATEGORY</td>
<td>OUTPUTS</td>
<td>OUTPUT TYPE</td>
<td>HSIP PROJECT COST($)</td>
<td>TOTAL PROJECT COST($)</td>
<td>FUNDING CATEGORY</td>
<td>FUNCTIONAL CLASSIFICATION</td>
<td>AADT</td>
<td>SPEED</td>
<td>OWNERSHIP</td>
<td>METHOD FOR SITE SELECTION</td>
<td>EMPHASIS AREA</td>
<td>STRATEGY</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>------</td>
<td>------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>GUIDE RAIL INSTALLATION ON I-65 FROM 0.5 MILE NORTH OF CR-28 TO CATOMA CREEK</td>
<td>Roadside</td>
<td>Barrier - cable</td>
<td>48.2</td>
<td>Miles</td>
<td>$30000</td>
<td>$30000</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Rural Principal Arterial - Interstate</td>
<td>69,930</td>
<td>State Highway Agency</td>
<td>Systemic</td>
<td>Roadway Departure</td>
<td>Roadway Departure</td>
<td></td>
</tr>
<tr>
<td>GUIDE RAIL INSTALLATION ON I-65 FROM THE CONECUH CL TO 0.5 MILE NORTH OF CR-28</td>
<td>Roadside</td>
<td>Barrier - cable</td>
<td>8.5</td>
<td>Miles</td>
<td>$15000</td>
<td>$15000</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Rural Principal Arterial - Interstate</td>
<td>0</td>
<td>State Highway Agency</td>
<td>Systemic</td>
<td>Roadway Departure</td>
<td>Roadway Departure</td>
<td></td>
</tr>
<tr>
<td>PROJECT NAME</td>
<td>IMPROVEMENT CATEGORY</td>
<td>SUBCATEGORY</td>
<td>OUTPUTS</td>
<td>OUTPUT TYPE</td>
<td>HSIP PROJECT COST($)</td>
<td>TOTAL PROJECT COST($)</td>
<td>FUNDING CATEGORY</td>
<td>FUNCTIONAL CLASSIFICATION</td>
<td>AADT</td>
<td>SPEED</td>
<td>OWNERSHIP</td>
<td>METHOD FOR SITE SELECTION</td>
<td>EMPHASIS AREA</td>
<td>STRATEGY</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>------</td>
<td>-------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>PROJECT NAME</td>
<td>IMPROVEMENT CATEGORY</td>
<td>SUBCATEGORY</td>
<td>OUTPUTS</td>
<td>OUTPUT TYPE</td>
<td>HSIP PROJECT COST($)</td>
<td>TOTAL PROJECT COST($)</td>
<td>FUNDING CATEGORY</td>
<td>FUNCTIONAL CLASSIFICATION</td>
<td>AADT</td>
<td>SPEED</td>
<td>OWNERSHIP</td>
<td>METHOD FOR SITE SELECTION</td>
<td>EMPHASIS AREA</td>
<td>STRATEGY</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>------</td>
<td>-------</td>
<td>-----------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>2' SAFETY WIDENING AND RESURFACING ON SR-6 FROM MOCCASIN CREEK TO 0.32 MILES NORTH OF SR-10</td>
<td>Roadway</td>
<td>Roadway - other</td>
<td>1.987 Miles</td>
<td>$154170</td>
<td>$1027801</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Rural Principal Arterial - Other</td>
<td>3,410</td>
<td>State Highway Agency</td>
<td>Systemic</td>
<td>Roadway Departure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 FT SAFETY WIDENING AND RESURFACING ON SR-5 FROM MOCCASIN CREEK TO 0.78 MILE NORTH OF SR-10 TO SOUTH OF CR-30</td>
<td>Roadway</td>
<td>Roadway - other</td>
<td>3.633 Miles</td>
<td>$336066</td>
<td>$1120220</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Rural Principal Arterial - Other</td>
<td>3,410</td>
<td>State Highway Agency</td>
<td>Systemic</td>
<td>Roadway Departure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2' SAFETY WIDENING AND RESURFACING SR-41 FROM 0.130 MI SOUTH CR-230 TO 0.160 MI SOUTH OF CR-17</td>
<td>Roadway</td>
<td>Roadway - other</td>
<td>2.5 Miles</td>
<td>$201000</td>
<td>$913636</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Rural Minor Arterial</td>
<td>540</td>
<td>State Highway Agency</td>
<td>Systemic</td>
<td>Roadway Departure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROJECT NAME</td>
<td>IMPROVEMENT CATEGORY</td>
<td>SUBCATEGORY</td>
<td>OUTPUTS</td>
<td>OUTPUT TYPE</td>
<td>HSIP PROJECT COST($)</td>
<td>TOTAL PROJECT COST($)</td>
<td>FUNDING CATEGORY</td>
<td>FUNCTIONAL CLASSIFICATION</td>
<td>AADT</td>
<td>SPEED</td>
<td>OWNERSHIP</td>
<td>METHOD FOR SITE SELECTION</td>
<td>EMPHASIS AREA</td>
<td>STRATEGY</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SR-13 (US-43) RESURFACING AND SAFETY WIDENING AND IMPROVEMENTS FROM NEAR CR-10/WALKER SPRINGS RD TO 0.2 MILE NORTH CR-3</td>
<td>Roadway</td>
<td>Roadway widening - add lane(s) along segment</td>
<td>2.363</td>
<td>Lanes</td>
<td>$2783594</td>
<td>$4093520</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Rural Principal Arterial - Other</td>
<td>12,900</td>
<td></td>
<td>State Highway Agency</td>
<td>Spot</td>
<td>Add Lanes</td>
<td>Other</td>
</tr>
<tr>
<td>CONSTRUCT OFFSET LEFT TURN LANE(S) AND A WEST BOUND RIGHT TURN ON SR-42 (US-90) AT THE INTERSECTION OF McCARY ROAD (CR-27)</td>
<td>Intersection</td>
<td>Auxiliary lanes - modify left turn lane offset</td>
<td>1</td>
<td>Intersections</td>
<td>$750000</td>
<td>$750000</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Urban Principal Arterial - Other</td>
<td>17,600</td>
<td></td>
<td>State Highway Agency</td>
<td>Spot</td>
<td>Intersections</td>
<td>Intersections</td>
</tr>
<tr>
<td>INTERSECTION IMPROVEMENT ON TANNER WILLIAMS ROAD (CR-70) AT ELIZA JORDAN ROAD (CR-92) TO INCLUDE ADDITIONAL LANES AND UTILITIES RELOCATIONS GRADE, DRAIN BASE, AND PAVE</td>
<td>Intersection</td>
<td>Auxiliary lanes - add left-turn lane</td>
<td>1</td>
<td>Intersections</td>
<td>$750892</td>
<td>$750892</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Urban Major Collector</td>
<td>8,530</td>
<td></td>
<td>County Highway Agency</td>
<td>Spot</td>
<td>Intersections</td>
<td>Intersections</td>
</tr>
<tr>
<td>SAFETY IMPROVEMENTS ON SR-5 FROM 20TH AVENUE EAST TO JUST WEST OF 1ST STREET NORTH EAST</td>
<td>Intersection</td>
<td>Auxiliary lanes - add acceleration lane</td>
<td>0.24</td>
<td>Miles</td>
<td>$70000</td>
<td>$70000</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Urban Principal Arterial - Other</td>
<td>27,170</td>
<td></td>
<td>State Highway Agency</td>
<td>Spot</td>
<td>Intersections</td>
<td>Intersections</td>
</tr>
<tr>
<td>GUIDE RAIL INSTALLATION ON I-59 FROM JUST NORTH OF SUMTER COUNTY LINE AT MP 27.282 TO</td>
<td>Roadside</td>
<td>Barrier - cable</td>
<td>28.06</td>
<td>Miles</td>
<td>$1827217</td>
<td>$1827217</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Rural Principal Arterial - Interstate</td>
<td>27,900</td>
<td></td>
<td>State Highway Agency</td>
<td>Systemic</td>
<td>Roadway Departure</td>
<td>Roadway Departure</td>
</tr>
<tr>
<td>PROJECT NAME</td>
<td>IMPROVEMENT CATEGORY</td>
<td>SUBCATEGORY</td>
<td>OUTPUTS</td>
<td>OUTPUT TYPE</td>
<td>HSIP PROJECT COST($)</td>
<td>TOTAL PROJECT COST($)</td>
<td>FUNDING CATEGORY</td>
<td>FUNCTIONAL CLASSIFICATION</td>
<td>AADT</td>
<td>SPEED</td>
<td>OWNERSHIP</td>
<td>METHOD FOR SITE SELECTION</td>
<td>EMPHASIS AREA</td>
<td>STRATEGY</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>------</td>
<td>-------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>TUSCALOOSA COUNTY LINE AT MP 55.352</td>
<td>Resurfacing and 2' Safety Widening on SR-7 from the end of the curb and gutter section at MP 44.654 to just south of CR-208 at MP 49.011</td>
<td>Shoulder treatments</td>
<td>Widen shoulder - paved or other</td>
<td>4.357</td>
<td>Miles</td>
<td>$444682</td>
<td>$2964544</td>
<td>HSIP (23 U.S.C. 148)</td>
<td>Rural Major Collector</td>
<td>7,620</td>
<td>State Highway Agency</td>
<td>Systemic</td>
<td>Roadway Departure</td>
<td>Roadway Departure</td>
</tr>
</tbody>
</table>

Enter additional comments here to clarify your response for this question or add supporting information.

The Alabama Department of Transportation currently does not have a complete and accurate database that stores its state highway's speeds. Three safety planning non-infrastructure projects are referenced above which we have shown to have an AADT of zero. In addition, ALDOT's Transportation Planning Section was unable to provide AADT information on two projects which are also listed to have an AADT of zero.
Safety Performance

General Highway Safety Trends

Present data showing the general highway safety trends in the State for the past five years.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatalities</td>
<td>964</td>
<td>848</td>
<td>862</td>
<td>899</td>
<td>865</td>
<td>852</td>
<td>820</td>
<td>849</td>
<td>1,088</td>
</tr>
<tr>
<td>Serious Injuries</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9,266</td>
<td>8,564</td>
<td>7,960</td>
<td>8,540</td>
<td>8,152</td>
</tr>
<tr>
<td>Fatality rate (per HMVMT)</td>
<td>1.630</td>
<td>1.380</td>
<td>1.340</td>
<td>1.380</td>
<td>1.330</td>
<td>1.310</td>
<td>1.250</td>
<td>1.240</td>
<td>1.600</td>
</tr>
<tr>
<td>Serious injury rate (per HMVMT)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>14.250</td>
<td>13.170</td>
<td>12.140</td>
<td>13.020</td>
<td>12.000</td>
</tr>
<tr>
<td>Number non-motorized fatalities</td>
<td>76</td>
<td>71</td>
<td>68</td>
<td>89</td>
<td>86</td>
<td>64</td>
<td>103</td>
<td>105</td>
<td>127</td>
</tr>
<tr>
<td>Number of non-motorized serious injuries</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>331</td>
<td>322</td>
<td>264</td>
<td>274</td>
<td>258</td>
</tr>
</tbody>
</table>
Enter additional comments here to clarify your response for this question or add supporting information.

Definition for Serious Injury changed in the CARE database for 2009 and forward, so the Five Year Average is incorrect. Data for Fatality Rate and non-motorized fatalities taken from Alabama Crash Facts Book. Serious injury rates and number for non-motorized serious injuries is unavailable for this reporting year.

Describe fatality data source.

FARS

Enter additional comments here to clarify your response for this question or add supporting information.

To the maximum extent possible, present this data by functional classification and ownership.

Year 2011

<table>
<thead>
<tr>
<th>Functional Classification</th>
<th>Number of Fatalities (5-yr avg)</th>
<th>Number of Serious Injuries (5-yr avg)</th>
<th>Fatality Rate (per HMVMT) (5-yr avg)</th>
<th>Serious Injury Rate (per HMVMT) (5-yr avg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural Principal Arterial - Interstate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural Principal Arterial - Other Freeways and Expressways</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional Classification</td>
<td>Number of Fatalities (5-yr avg)</td>
<td>Number of Serious Injuries (5-yr avg)</td>
<td>Fatality Rate (per HMOVMT) (5-yr avg)</td>
<td>Serious Injury Rate (per HMOVMT) (5-yr avg)</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------------------------</td>
<td>--------------------------------------</td>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Rural Principal Arterial - Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural Minor Arterial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural Minor Collector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural Major Collector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural Local Road or Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Principal Arterial - Interstate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Principal Arterial - Other Freeways and Expressways</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Principal Arterial - Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Minor Arterial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Minor Collector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Minor Collector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Major Collector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Local Road or Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Enter additional comments here to clarify your response for this question or add supporting information.

The breakdown of fatalities and serious injuries by Roadway Functional Class is not possible given the current crash database (CARE) structure. Due to personnel turnover, it is unknown how the previous numbers were derived. We further question the accuracy of the previous values provided and are working to resolve the issue for future report submittals. As the CARE database is improved, the ability to summarize crashes by functional class may be accessible in future years.

Are there any other aspects of the general highway safety trends on which the State would like to elaborate?

No
Calendar Year 2018 Targets *

Number of Fatalities 1010.0

Describe the basis for established target, including how it supports SHSP goals.

Performance targets were determined through an analysis of Alabama employment, unemployment, economic activity, and younger individual employment rates to determine trends that effect the occurrence of fatal, serious injury, and non-motorized crashes. The targets support the SHSP by helping Alabama focus its strategy, or direction, and making decisions on allocating its resources to reduce long-term crash trends.

Number of Serious Injuries 8369.0

Describe the basis for established target, including how it supports SHSP goals.

Performance targets were determined through an analysis of Alabama employment, unemployment, economic activity, and younger individual employment rates to determine trends that effect the occurrence of fatal, serious injury, and non-motorized crashes. The targets support the SHSP by helping Alabama focus its strategy, or direction, and making decisions on allocating its resources to reduce long-term crash trends.

Fatality Rate 1.490

Describe the basis for established target, including how it supports SHSP goals.

Performance targets were determined through an analysis of Alabama employment, unemployment, economic activity, and younger individual employment rates to determine trends that effect the occurrence of fatal, serious injury, and non-motorized crashes. The targets support the SHSP by helping Alabama focus its strategy, or direction, and making decisions on allocating its resources to reduce long-term crash trends.

Serious Injury Rate 12.420

Describe the basis for established target, including how it supports SHSP goals.

Performance targets were determined through an analysis of Alabama employment, unemployment, economic activity, and younger individual employment rates to determine trends that effect the occurrence of fatal, serious injury, and non-motorized crashes. The targets support the SHSP by helping Alabama focus its strategy, or
direction, and making decisions on allocating its resources to reduce long-term crash trends.

Total Number of Non-Motorized Fatalities and Serious Injuries 390.0

Describe the basis for established target, including how it supports SHSP goals.

Performance targets were determined through an analysis of Alabama employment, unemployment, economic activity, and younger individual employment rates to determine trends that effect the occurrence of fatal, serious injury, and non-motorized crashes. The targets support the SHSP by helping Alabama focus its strategy, or direction, and making decisions on allocating its resources to reduce long-term crash trends.

Enter additional comments here to clarify your response for this question or add supporting information.

Describe efforts to coordinate with other stakeholders (e.g. MPOs, SHSO) to establish safety performance targets.

The Safety Performance Targets were developed through a complex series of negotiations with the SHSO. MPOs have been involved through training and workshops. Additionally, ALDOT staff has attended some MPO meetings with others to follow. Final targets will be sent to the MPOs, to include, estimates of what their targets would be, if they chose to develop their own set of safety performance targets.

Does the State want to report additional optional targets?

No

Enter additional comments here to clarify your response for this question or add supporting information.

Applicability of Special Rules

Does the HRRR special rule apply to the State for this reporting period?

No

Enter additional comments here to clarify your response for this question or add supporting information.

Provide the number of older driver and pedestrian fatalities and serious injuries for the past seven years.
--- | --- | --- | --- | --- | --- | --- | ---
Number of Older Driver and Pedestrian Fatalities | 106 | 89 | 109 | 111 | 71 | 109 | 94
Number of Older Driver and Pedestrian Serious Injuries | 961 | 652 | 650 | 595 | 629 | 576 | 609

Number of Older Driver and Pedestrian Fatalities and Serious Injuries by Year.

Enter additional comments here to clarify your response for this question or add supporting information.
Evaluation

Program Effectiveness

How does the State measure effectiveness of the HSIP?

Change in fatalities and serious injuries
Benefit/Cost Ratio

Enter additional comments here to clarify your response for this question or add supporting information.

Based on the measures of effectiveness selected previously, describe the results of the State's program level evaluations.

Fatal crashes are up year over year, as with most states. We are refocusing our efforts based on previous years crash type trends to implement countermeasures to reduce the long-term trend for fatalities. Serious Injury crashes are trending downward and we anticipate that this trend will continue of start to flatten over the coming years.

What other indicators of success does the State use to demonstrate effectiveness and success of the Highway Safety Improvement Program?

miles improved by HSIP
More systemic programs
RSAs completed
Policy change
Organizational change
Increased focus on local road safety

Enter additional comments here to clarify your response for this question or add supporting information.

Are there any significant programmatic changes that have occurred since the last reporting period?

No

Effectiveness of Groupings or Similar Types of Improvements

Present and describe trends in SHSP emphasis area performance measures.

Year 2016
<table>
<thead>
<tr>
<th>SHSP Emphasis Area</th>
<th>Targeted Crash Type</th>
<th>Number of Fatalities (5-yr avg)</th>
<th>Number of Serious Injuries (5-yr avg)</th>
<th>Fatality Rate (per HMVMT) (5-yr avg)</th>
<th>Serious Injury Rate (per HMVMT) (5-yr avg)</th>
<th>Other 1</th>
<th>Other 2</th>
<th>Other 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway Departure</td>
<td>Run-off-road</td>
<td>499</td>
<td>2,708</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersections</td>
<td>Intersections</td>
<td>287</td>
<td>2,556</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Has the State completed any countermeasure effectiveness evaluations during the reporting period?

Enter additional comments here to clarify your response for this question or add supporting information.
No

Enter additional comments here to clarify your response for this question or add supporting information.
Project Effectiveness

Provide the following information for previously implemented projects that the State evaluated this reporting period.

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>FUNCTIONAL CLASS</th>
<th>IMPROVEMENT CATEGORY</th>
<th>IMPROVEMENT TYPE</th>
<th>PDO BEFORE</th>
<th>PDO AFTER</th>
<th>FATALITY BEFORE</th>
<th>FATALITY AFTER</th>
<th>SERIOUS INJURY BEFORE</th>
<th>SERIOUS INJURY AFTER</th>
<th>ALL INJURY BEFORE</th>
<th>ALL INJURY AFTER</th>
<th>TOTAL BEFORE</th>
<th>TOTAL AFTER</th>
<th>EVALUATION RESULTS (BENEFIT/COST RATIO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Enter additional comments here to clarify your response for this question or add supporting information.

Are there any other aspects of the overall HSIP effectiveness on which the State would like to elaborate?

No
Compliance Assessment

What date was the State’s current SHSP approved by the Governor or designated State representative?

07/18/2017

What are the years being covered by the current SHSP?

From: 2017 To: 2022

When does the State anticipate completing it’s next SHSP update?

2022

Enter additional comments here to clarify your response for this question or add supporting information.

Provide the current status (percent complete) of MIRE fundamental data elements collection efforts using the table below.

<table>
<thead>
<tr>
<th>ROADWAY SEGMENT</th>
<th>NON LOCAL PAVED ROADS - SEGMENT</th>
<th>NON LOCAL PAVED ROADS - INTERSECTION</th>
<th>NON LOCAL PAVED ROADS - RAMPS</th>
<th>LOCAL PAVED ROADS</th>
<th>UNPAVED ROADS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIRE NAME (MIRE NO.)</td>
<td>STATE</td>
<td>NON-STATE</td>
<td>STATE</td>
<td>NON-STATE</td>
<td>STATE</td>
</tr>
<tr>
<td>Segment Identifier (12)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route Number (8)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route/Street Name (9)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal Aid/Route Type (21)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural/Urban Designation (20)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Type (23)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Begin Point Segment Descriptor (10)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Point Segment Descriptor (11)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segment Length (13)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direction of Inventory (18)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional Class (19)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Type (54)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIRE NAME (MIRE NO.)</td>
<td>NON LOCAL PAVED ROADS - SEGMENT</td>
<td>NON LOCAL PAVED ROADS - INTERSECTION</td>
<td>NON LOCAL PAVED ROADS - RAMPS</td>
<td>LOCAL PAVED ROADS</td>
<td>UNPAVED ROADS</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>STATE</td>
<td>NON-STATE</td>
<td>STATE</td>
<td>NON-STATE</td>
<td>STATE</td>
</tr>
<tr>
<td>Access Control (22)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One/Two Way Operations (91)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Through Lanes (21)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Annual Daily Traffic (79)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AADT Year (80)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of Governmental Ownership (4)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INTERSECTION

Unique Junction Identifier (120)	0	0									
Location Identifier for Road 1 Crossing Point (122)	0	0									
Location Identifier for Road 2 Crossing Point (123)	0	0									
Intersection/Junction Geometry (126)	0	0									
Intersection/Junction Traffic Control (131)	0	0									
AADT for Each Intersecting Road (79)	0	0									
AADT Year (80)	0	0									
Unique Approach Identifier (139)	0	0									

INTERCHANGE/RAMP

Unique Interchange Identifier (178)	0	0									
Location Identifier for Roadway at Beginning of Ramp Terminal (197)	0	0									
Location Identifier for Roadway at Ending Ramp Terminal (201)	0	0									
Ramp Length (187)	0	0									
Roadway Type at Beginning of Ramp Terminal (165)	0	0									
Enter additional comments here to clarify your response for this question or add supporting information.

The Alabama Department of Transportation is in the process of collecting the MIRE fundamental data elements for all National Highway System (NHS) routes in our state, but this data is incomplete at this time. The department has not committed to any future projects that would collect this data on any non NHS routes.

Describe actions the State will take moving forward to meet the requirement to have complete access to the MIRE fundamental data elements on all public roads by September 30, 2026.

Another essential partnership is with the ALDOT’s development of an Enterprise GIS (EGIS) system. ALDOT’s Enterprise GIS (EGIS) is comprised of a Linear Referencing System for all the roads in the state of Alabama and its associated data attributes. EGIS’s primary function has been to help process inventory data required for FHWA’s Highway Performance Monitoring System’s (HPMS) submittal. TSOS has a representative on the EGIS committee who gives a perspective on Safety Data related needs. TSOS has submitted an extensive list of Model Inventory of Roadway Elements (MIRE) data elements to the committee for consideration in the ALDOT’s Light Detection and Ranging (LIDAR) data collection process.

Provide the suspected serious injury identifier, definition and attributes used by the State for both the crash report form and the crash database using the table below. Please also indicate whether or not these elements are compliant with the MMUCC 4th edition criteria for data element P5. Injury Status, suspected serious injury.

Please describe the actions the State is taking to become compliant by April 15, 2019.

The Alabama Law Enforcement Agency is working with the Traffic Records Coordinating Committee to modify the appropriate forms, manuals, databases, and data dictionaries to have the identifier name changed to Serious Injury, as appropriate.

Enter additional comments here to clarify your response for this question or add supporting information.
Alabama defines a Serious Injury as an Incapacitating Injury. This means that the victim must be carried or otherwise helped from the scene of a crash, e.g., severe laceration resulting in exposure of underlying tissues/muscle/organs or resulting in significant loss of blood; broken or distorted extremity (arm or leg); crush injuries; suspected skull, chest or abdominal injury other than bruises or minor lacerations; significant burns (second and third degree burns over 10% or more of the body); unconsciousness when taken from the crash scene; or paralysis.

Did the State conduct an HSIP program assessment during the reporting period?
No

When does the State plan to complete its next HSIP program assessment.
2018

Enter additional comments here to clarify your response for this question or add supporting information.

The Alabama Department of Transportation's Traffic and Safety Operations Section (TSOS) and the Federal Highway Administration (FHWA) are in the process of partnering to complete two program/process reviews which are being conducted at this time. These will not be completed by the time of the filing of this report.
Optional Attachments

Program Structure:

[ALDOT HSIP Program Management Manual_02 03 16.pdf]

Project Implementation:

Safety Performance:

Evaluation:

Compliance Assessment:
Glossary

<table>
<thead>
<tr>
<th>5 year rolling average</th>
<th>means the average of five individuals, consecutive annual points of data (e.g. annual fatality rate).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emphasis area</td>
<td>means a highway safety priority in a State’s SHSP, identified through a data-driven, collaborative process.</td>
</tr>
<tr>
<td>Highway safety improvement project</td>
<td>means strategies, activities and projects on a public road that are consistent with a State strategic highway safety plan and corrects or improves a hazardous road location or feature or addresses a highway safety problem.</td>
</tr>
<tr>
<td>HMVMT</td>
<td>means hundred million vehicle miles traveled.</td>
</tr>
<tr>
<td>Non-infrastructure projects</td>
<td>are projects that do not result in construction. Examples of non-infrastructure projects include road safety audits, transportation safety planning activities, improvements in the collection and analysis of data, education and outreach, and enforcement activities.</td>
</tr>
<tr>
<td>Older driver special rule</td>
<td>applies if traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65 in a State increases during the most recent 2-year period for which data are available, as defined in the Older Driver and Pedestrian Special Rule Interim Guidance dated February 13, 2013.</td>
</tr>
<tr>
<td>Performance measure</td>
<td>means indicators that enable decision-makers and other stakeholders to monitor changes in system condition and performance against established visions, goals, and objectives.</td>
</tr>
<tr>
<td>Programmed funds</td>
<td>mean those funds that have been programmed in the Statewide Transportation Improvement Program (STIP) to be expended on highway safety improvement projects.</td>
</tr>
<tr>
<td>Roadway Functional Classification</td>
<td>means the process by which streets and highways are grouped into classes, or systems, according to the character of service they are intended to provide.</td>
</tr>
<tr>
<td>Strategic Highway Safety Plan (SHSP)</td>
<td>means a comprehensive, multi-disciplinary plan, based on safety data developed by a State Department of Transportation in accordance with 23 U.S.C. 148.</td>
</tr>
<tr>
<td>Systematic</td>
<td>refers to an approach where an agency deploys countermeasures at all locations across a system.</td>
</tr>
<tr>
<td>Systemic safety improvement</td>
<td>means an improvement that is widely implemented based on high risk roadway features that are correlated with specific severe crash types.</td>
</tr>
<tr>
<td>Transfer</td>
<td>means, in accordance with provisions of 23 U.S.C. 126, a State may transfer from an apportionment under section 104(b) not to exceed 50 percent of the amount apportioned for the fiscal year to any other apportionment of the State under that section.</td>
</tr>
</tbody>
</table>