URBAN INTERSECTION DESIGN GUIDE: VOLUME 1 – GUIDELINES

This document is presented in two volumes:
- Volume 1 – Guidelines and
- Volume 2 – Applications.

This project is designed to provide TxDOT and other interested parties with useful and practical information on operations and design for intersections.
DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the Federal Highway Administration (FHWA) or the Texas Department of Transportation (TxDOT). This report does not constitute a standard, specification, or regulation. The engineer in charge was Kay Fitzpatrick, P.E. (TX-86762).
ACKNOWLEDGMENTS

This project was conducted in cooperation with TxDOT and FHWA.

The authors thank the members of TxDOT’s Project Monitoring Committee:
Rick Collins, P.E., Project Coordinator, TxDOT, Traffic Operations Division
Elizabeth Hilton, P.E., Project Director, TxDOT, Design Division
John Terry, P.E., Project Advisor, TxDOT, Ft. Worth District
Clay Smith, P.E., Project Advisor, TxDOT, San Antonio District
Duane Browning, P.E., Project Advisor, TxDOT, Beaumont District
Larry Colclasure, P.E., Project Advisor, TxDOT, Waco District
Jim Cline, P.E., Project Advisor, City of Irving

Special thanks go to Elizabeth Hilton for her guidance on the project, Angelia Parham for work on the earlier versions of the document, and Ivan Lorenz and Denise Robledo for patiently making the numerous graphics and typing changes.
TABLE OF CONTENTS

Chapter 1: Intersection Function... 1-1

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Section 1: Intersection Planning & Development</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Design Considerations and Objectives</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>The Intersection Development Process</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>Policy and Procedures</td>
<td>1-6</td>
</tr>
<tr>
<td></td>
<td>Design Exceptions, Variances, and Waivers</td>
<td>1-7</td>
</tr>
<tr>
<td></td>
<td>Ultimate Design</td>
<td>1-7</td>
</tr>
<tr>
<td></td>
<td>Arterial to Arterial Intersection Design</td>
<td>1-8</td>
</tr>
</tbody>
</table>

Section 2: Types of Intersections... 1-13

<table>
<thead>
<tr>
<th>Overview</th>
<th>1-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-13</td>
<td>Types of Intersections</td>
</tr>
<tr>
<td>1-16</td>
<td>Innovative Designs</td>
</tr>
</tbody>
</table>

Section 3: Components of an Intersection... 1-17

<table>
<thead>
<tr>
<th>Overview</th>
<th>1-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-17</td>
<td>Principles of Intersection Design</td>
</tr>
<tr>
<td>1-17</td>
<td>Right-of-Way Needs</td>
</tr>
<tr>
<td>1-17</td>
<td>Right-of-Way Acquisition</td>
</tr>
<tr>
<td>1-18</td>
<td>Intersection Area</td>
</tr>
</tbody>
</table>

Section 4: Utility Accommodation.. 1-21

<table>
<thead>
<tr>
<th>Overview</th>
<th>1-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-21</td>
<td>Growing Demand for Utility Accommodation</td>
</tr>
<tr>
<td>1-21</td>
<td>Alternative Installation Methods</td>
</tr>
<tr>
<td>1-22</td>
<td>Subsurface Utility Engineering</td>
</tr>
<tr>
<td>1-22</td>
<td>Inclusion of Utility Relocation in Construction Contract</td>
</tr>
<tr>
<td>1-22</td>
<td>Potential Impacts on Intersection Design</td>
</tr>
</tbody>
</table>

Section 5: References .. 1-25

Chapter 2: Design Control and Criteria ... 2-1

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>Section 1: Modes of Travel</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td>Motorized Vehicles</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td>Transit and Light Rail</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>Bicycles</td>
<td>2-7</td>
</tr>
<tr>
<td></td>
<td>Pedestrians</td>
<td>2-7</td>
</tr>
</tbody>
</table>

Section 2: Users ... 2-9

<table>
<thead>
<tr>
<th>Overview</th>
<th>2-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-9</td>
<td>Driving Task</td>
</tr>
<tr>
<td>2-10</td>
<td>Older Drivers</td>
</tr>
<tr>
<td>2-12</td>
<td>Pedestrian</td>
</tr>
<tr>
<td>2-13</td>
<td>Disabled Users</td>
</tr>
<tr>
<td>2-15</td>
<td>Bicyclist Characteristics</td>
</tr>
</tbody>
</table>

Section 3: Intersection Characteristics.. 2-17

<table>
<thead>
<tr>
<th>Title</th>
<th>2-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic</td>
<td>2-17</td>
</tr>
<tr>
<td>Community</td>
<td>2-17</td>
</tr>
<tr>
<td>Capacity</td>
<td>2-17</td>
</tr>
</tbody>
</table>
Section 8: Utilities ... 5-39
 Overview ... 5-39
 General Location Guidelines ... 5-39
 Typical Features .. 5-39
 Overhead Utilities .. 5-40
 Poles .. 5-40
 Guy Wires .. 5-42
 Underground Utilities .. 5-42
 Manholes or Access Covers ... 5-42
 Markers ... 5-45
 Vents ... 5-45
 Pedestals, Structures, and Housings ... 5-46

Section 9: References ... 5-49

Chapter 6: Drainage ... 6-1

Section 1: Drainage Objectives .. 6-3
 Overview ... 6-3

Section 2: Cross Slope ... 6-5
 Overview ... 6-5
 Sidewalks .. 6-5
 Pavement Cross Slopes ... 6-5
 Crossover ... 6-6

Section 3: Profile .. 6-7
 Overview ... 6-7
 Minor Roadway Grades Warped to Fit Major Roadway 6-7
 “Table Top” Design: Centerline Grades Matched and Flow Lines Adapted 6-9
 Matched Cross Sections ... 6-10

Section 4: Curb and Gutter ... 6-13
 Overview ... 6-13
 Curb Type .. 6-13
 Ponding ... 6-13
 Raised Medians and Islands .. 6-13
 Storm Drain Systems .. 6-14
 Drainage Structures Near Railroad Tracks .. 6-18

Section 5: Ditches .. 6-19
 Overview ... 6-19
 Horizontal Clearance .. 6-19
 Ditches .. 6-19

Section 6: Relationship to Pedestrian Facilities ... 6-21
 Overview ... 6-21
 Sidewalk Characteristics .. 6-21
 Curb Ramps and Crosswalks ... 6-21
 Metal Grates ... 6-22

Section 7: References .. 6-23

Chapter 7: Street Crossing ... 7-1

Section 1: Curb Ramps and Blended Transitions ... 7-3
 Overview ... 7-3
 Where Required .. 7-3
 Curb Ramp Components ... 7-4
Chapter 10: Signs

Section 1: General

Overview

Section 2: Street Name Signs

Overview

Section 3: Pedestrian Signs

Overview

Section 4: Regulatory Signs for Intersections

Overview

Section 5: Warning Signs for Intersections

Overview

Section 5: Raised Pavement Markers

Overview

Section 6: References

Chapter 10: Signs
Crossing Signs... 10-30

Section 6: Guide Signs for Intersections ... 10-31
 Overview... 10-31
 Types of Guide Signs... 10-31

Section 7: References .. 10-33

Chapter 11: Influences from Other Intersections.. 11-1

Section 1: Influences from Other Intersections .. 11-3
 Overview... 11-3
 Queuing... 11-3
 Crossing Movements... 11-3
 Signal Coordination.. 11-4

Section 2: Highway Railroad Grade Crossing.. 11-5
 Overview... 11-5
 Grades... 11-5
 Potential for Vehicles to Strike Railroad Tracks.. 11-6
 Clearance Distance... 11-7
 Signs... 11-7
 Signal Preemption.. 11-9
 Channelization.. 11-9
 Illumination.. 11-10
 Pedestrians.. 11-11
 Bicyclists.. 11-11
 Other Issues... 11-11

Section 3: Driveways... 11-13
 Overview... 11-13
 Adverse Impacts.. 11-14
 Access Spacing Criteria.. 11-15

Section 4: Midblock Median Treatment ... 11-17
 Overview... 11-17
 U-Turns... 11-17
 Left Turns.. 11-17

Section 5: Signal Interconnection.. 11-19
 Grouping Intersections... 11-19
 Signal Spacing.. 11-19
 Signal Coordination.. 11-20
 Methods of Interconnection.. 11-21
 Preemption and Priority Control... 11-21

Section 6: References .. 11-23
LIST OF FIGURES

Figure 1-1. The Intersection Development Process ... 1-5
Figure 1-2. Right-of-Way Widths to Accommodate Intersection Needs 1-9
Figure 1-3. Typical Three-Leg Intersection ... 1-14
Figure 1-4. Aerial Photograph of a Channelized T-Intersection ... 1-14
Figure 1-5. Typical Four-Leg Intersections ... 1-15
Figure 1-6. Aerial Photographs of Four-Leg Intersections ... 1-15
Figure 1-7. Functional Area of an Intersection .. 1-19
Figure 1-8. Elements of the Functional Area of an Intersection ... 1-19
Figure 2-1. Levels of the Driving Task .. 2-9
Figure 2-2. 1997 United States Disability Prevalence by Age (Percent with Specified Level of Disability) ... 2-14
Figure 2-3. Bicyclist Operating Space (Based on Data in the AASHTO Guide for the Development of the Bicycle Facilities) ... 2-14
Figure 2-4. Percentage of Injuries and Fatalities at Intersections or Intersection Related for Drivers and Pedestrians (1998–2000 Texas Urban Data) 2-23
Figure 2-5. Pedestrian and Bicyclist Accident Severity (Texas Urban On- and Off-System Roadways 1998–2000) ... 2-26
Figure 2-6. Pedestrian and Bicyclist Crashes versus All Crashes (1998–2000 Texas Urban On- and Off-System Roadways by Time of Day) ... 2-27
Figure 2-7. Pedestrian and Bicyclist Crashes versus All Crashes (1998–2000 Texas Urban On- and Off-System Roadways by Month) .. 2-28
Figure 3-1. Intersection Sight Triangles ... 3-5
Figure 3-2. Sight Triangle for Left Turn from Major Roadway .. 3-8
Figure 3-3. Sight Triangles at Skewed Intersections .. 3-10
Figure 3-4. Realignment of Tangent Roadway at Intersection .. 3-11
Figure 3-5. Realigning Multileg Intersections .. 3-12
Figure 3-6. Effect of Curb Return Radius on Right Turning Paths (R=15 ft [4.6 m] and R=40 ft [12.2 m]) ... 3-17
Figure 3-7. Added Crosswalk Distance with Increased Radius (Illustrated Using a 26-ft [7.9 m] Roadway, 5-ft [1.5 m] Sidewalk, and 6-ft [1.8 m] Planting Strip for the Setback Sidewalk) ... 3-20
Figure 3-8. Effective Radius with Parking Restriction .. 3-21
Figure 3-9. Example of Angle of Intersection (Minor Leg Skewed to the Right) 3-23
Figure 3-10. Realignment Options at Intersections ... 3-24
Figure 3-11. Coordination of Vertical Alignments on Horizontal Tangent 3-27
Figure 3-12. Coordination of Vertical Alignments on Horizontal Curves 3-28
Figure 4-1. Lane Drops ... 4-4
Figure 4-2. Left-Turn Lanes on Urban Streets ... 4-6
Figure 4-3. Dual Left-Turn Lane .. 4-6
Figure 4-4. Negative and Positive Offsets of Left-Turn Lanes .. 4-8
Figure 4-5. Example of an Offset Left-Turn Lane .. 4-9
Figure 4-6. Parallel and Tapered Offset Left-Turn Lane .. 4-11
Figure 4-7. Right-Turn Lane Examples .. 4-13
Figure 4-8. Example of Right-Turn Lane .. 4-14
Figure 4-9. Minimum Turning Roadway Design to Accommodate WB-50 [WB-15] with Corner Island at Urban Locations ... 4-15
Figure 4-10. Channelized Left-Turn Lanes and Exit Legs ... 4-20
Figure 4-11. Channelized Right Turns ... 4-20
Figure 4-12. Reduction of Pedestrian Exposure with Raised Islands 4-21
Figure 4-13. Raised Median Channelization ... 4-21
Figure 4-14. Traffic Islands ... 4-22
Figure 4-15. Raised Traffic Islands ... 4-22
Figure 4-16. Examples of Island Types .. 4-23
Figure 4-17. Details of Corner Island Designs for Turning Roadways (Urban Locations).... 4-25
Figure 4-18. Suggested Design for Right-Turn Lane with Island 4-26
Figure 4-19. Layouts for Addition of Divisional Islands at Intersections 4-28
Figure 4-20. Example of Median Nose ... 4-29
Figure 4-21. Example of Squared Bullet Nose Median End .. 4-30
Figure 4-22. Ramped Down Median Nose .. 4-30
Figure 4-23. Minimum Design of Median Openings (WB-50 [WB-15], Control Radius of 40 ft [12 m]) .. 4-31
Figure 4-24. Typical Layout of Curb Ramps at a Channelizing Island 4-32
Figure 4-25. Curb Ramp at Median Islands .. 4-32
Figure 4-26. Cut through at Raised Median .. 4-33
Figure 4-27. Bicycle Lane Marking Examples ... 4-36
Figure 4-28. Example of Bicycle Lane Marking at T-Intersections 4-37
Figure 4-29. Typical Bicycle and Motor Vehicle Paths at Major Intersections 4-38
Figure 4-30. Illustration of Bicycle Lane Treatments at Location with Right-Turn Lane. 4-39
Figure 4-31. Bicycle Route Signing ... 4-41
Figure 4-32. Parking Lane Transition .. 4-44
Figure 5-1. Sidewalks Zones ... 5-4
Figure 5-2. Discontinuous Sidewalk to Bus Stop ... 5-8
Figure 5-3. Discontinuous Sidewalk to Mailbox .. 5-8
Figure 5-4. Examples of Street Appurtenances Located within the Sidewalk 5-8
Figure 5-5. Protruding Controller Equipment ... 5-10
Figure 5-6. Post-Mounted Objects (Post-Mounted Objects Seen in Elevation, Dimensioned to Indicate 4 inch [101 mm] Maximum Protrusion) 5-10
Figure 5-7. Exposure of Vehicle to Utility Pole Downstream of Lane Drop 5-11
Figure 5-8. Placement of Pole Downstream of Roadway Narrowing 5-11
Figure 5-9. Inappropriate Location of Poles within a Traffic Island or Median 5-12
Figure 5-10. Intersection Zones Having Highest Exposure to Secondary Collisions 5-12
Figure 5-11. Example of Landscaping along a Major Street 5-15
Figure 5-12. Example of Continuous Landscaping to Encourage Lower Operating Speeds ... 5-15
Figure 5-13. Example of an Entrance Treatment to a Development 5-16
Figure 5-14. Example of Landscaping at a Bus Stop That Provides Shade 5-16

xvii
Figure 5-15. Plant Use in Intersection Areas Must Be Limited to Low-Growing Varieties to Provide for a Clear Sight Triangle. ... 5-17
Figure 5-16. Example of Landscaping Near Sign... 5-17
Figure 5-17. Example of Street Furniture. ... 5-19
Figure 5-18. Example of Artwork in Downtown Area (Seattle, WA). 5-19
Figure 5-19. Example of Several Planters at an Intersection... 5-20
Figure 5-20. Example of a Planter at an Intersection.. 5-20
Figure 5-21. Example of a Curb Extension. ... 5-23
Figure 5-22. Example of a Curb Extension with Landscaping and a Bench............................ 5-23
Figure 5-23. Example of Bus Bulb. ... 5-24
Figure 5-24. Typical Bus Bulb Dimensions. .. 5-25
Figure 5-25. Typical Types of and Dimensions for On-Street Bus Stops. 5-29
Figure 5-26. Examples of Light Pole behind Sidewalk. ... 5-41
Figure 5-27. Examples of Light Pole between Sidewalk and Street....................................... 5-41
Figure 5-28. Guy Wire to Accommodate Pedestrian Movement. .. 5-43
Figure 5-29. Guy Wire Parallel to Sidewalk.. 5-43
Figure 5-30. Example of Manhole in Sidewalk at Intersection... 5-44
Figure 5-31. Example of Manhole Outside Pedestrian Access Route. 5-44
Figure 5-32. Example of Utility Marker at Intersection... 5-45
Figure 5-33. Example of Utility Vent at Intersection... 5-46
Figure 5-34. Example of Utility Pedestals and Structures at Intersection............................. 5-47
Figure 5-35. Example of Equipment Housing at Intersection... 5-47
Figure 6-1. Crossover Points between Lanes and Shoulder.. 6-6
Figure 6-2. Water Flow across Street at Intersection... 6-7
Figure 6-3. Minor Street Intersecting Major Street... 6-8
Figure 6-4. Normal Crown on Major Roadway, Stop Condition on Minor Roadway............. 6-8
Figure 6-5. Superelevated Major Roadway, Stop Condition on Minor Roadway..................... 6-9
Figure 6-6. “Table Top” Design... 6-10
Figure 6-7. Cross Section Held Constant on Both Roadways, Technique Not Recommended Because It Results in an Uncomfortable Ride on Both Roadways... 6-11
Figure 6-8. Median with Inlet Placed to Avoid Trapping Water... 6-14
Figure 6-9. Depression at Curb Opening Inlet.. 6-15
Figure 6-10. Curb Opening Inlet... 6-16
Figure 6-11. Grate Inlet... 6-16
Figure 6-12. Tilted Vane (or “Bar”) and Curved Vane Grate Inlets.. 6-17
Figure 6-13. Example of Combination Inlet.. 6-17
Figure 6-14. Slotted Drain ... 6-18
Figure 6-15. Diagram Showing Area Requiring Consideration for Railroad Loading............. 6-18
Figure 6-16. Ditch Elements.. 6-19
Figure 6-17. Ponding at Curb Ramp (Older, Non-Compliant Curb Ramp)............................. 6-21
Figure 7-1. Components of a Curb Ramp... 7-4
Figure 7-2. Perpendicular Curb Ramp.. 7-5
Figure 7-3. Photo of Perpendicular Curb Ramps... 7-6
Figure 7-4. Parallel Curb Ramps... 7-6
Figure 7-5. Photo of Parallel Curb Ramp... 7-7
Figure 7-6. Examples of Combination Curb Ramps... 7-8
Figure 7-7. Diagonal Curb Ramp.. 7-9
Figure 7-8. Example of a Blended Transition... 7-9
Figure 7-9. Sidewalks at Driveway Aprons.. 7-12
Figure 7-10. Types of Crosswalks. ... 7-15
Figure 7-11. Examples of Crosswalk Markings.. 7-17
Figure 8-1. Components of a Three-Section Traffic Signal Head..................................... 8-7
Figure 8-2. Federal MUTCD Horizontal Location of Signal Faces..................................... 8-10
Figure 8-3. Example of Signal Backplates. ... 8-12
Figure 8-4. Post-Mounted Signals.. 8-14
Figure 8-5. Potential Sign Conspicuity Problems with Side-Mounted Signals.............. 8-14
Figure 8-6. Span Wire Mounting: Two-Pole Simple Span... 8-16
Figure 8-7. Span Wire Mounting: Box Span.. 8-16
Figure 8-8. Span Wire Mounting: Cable Box... 8-17
Figure 8-9. Typical Mast Arm Mounting.. 8-17
Figure 8-10. Mast Arm Mounting with Post-Mounted Signals.. 8-18
Figure 8-11. Types of Controller Cabinet Mountings... 8-23
Figure 8-12. Detection Barrier for Vertical Clearance < 80 inches [2032 mm].............. 8-24
Figure 8-13. Recommended Placement for Pedestrian Push Buttons — Integrated APS in New Construction... 8-28
Figure 8-14. Signalized Intersection Sensitive to Bicycles (Based on Oregon Bicycle and Pedestrian Plan). ... 8-37
Figure 9-1. Example of Longitudinal Pavement Markings.. 9-4
Figure 9-2. Example of Transverse Pavement Markings (Arrow and Crosswalk)........... 9-5
Figure 9-3. Light Reflection Characteristics... 9-6
Figure 9-4. Typical Pavement Marking with Offset Lane Lines Continued through the Intersection... 9-10
Figure 9-5. Typical Dotted Line Markings to Extend Longitudinal Lane Line Markings.... 9-11
Figure 9-6. Typical Yield Line Layouts... 9-14
Figure 9-7. Crosswalk Marking Options... 9-16
Figure 9-8. Diagonal Crossing.. 9-16
Figure 9-9. Typical Parking Space Markings... 9-18
Figure 9-10. Typical Lane Use Control Word and Symbol Markings.................................. 9-20
Figure 9-11. Example of a Right Turn Only Word Pavement Markings............................. 9-21
Figure 9-12. Typical Elongated Letters for Word Pavement Markings.............................. 9-22
Figure 9-13. Typical Intersection Pavement Markings with Designated Bicycle Lane with Left-Turn Area, Heavy Turn Volumes, Parking, One-Way Traffic, or Divided Highway... 9-23
Figure 9-14. Nighttime Visibility with Raised Pavement Markers..................................... 9-26
Figure 10-1. Sidewalk Free of Protruding Objects.. 10-4
Figure 10-2. Symbol Sign Examples... 10-5
Figure 10-3. Example of an Advance Street Name Sign... 10-7
Figure 10-4. Overhead Street Name Sign on Mast Arm Post... 10-9
Figure 10-5. Example of Overhead Street Name Sign.. 10-9
Figure 10-6. Example of Street Name Sign on Stop Sign... 10-10
Figure 10-7. Signing for Different Street Names for Different Directions of Travel, Two Examples ... 10-11
Figure 10-8. Example of Crossing Signs (W11-2) with Supplemental Plaques (W16-7P) .. 10-14
Figure 10-9. Placards Explaining Signal Operations ... 10-15
Figure 10-10. Typical Locations for Stop Signs at Intersections .. 10-19
Figure 10-11. Turn Prohibition Example from TMUTCD ... 10-20
Figure 10-12. Intersection Lane Control Sign Example from the TMUTCD................................. 10-21
Figure 10-13. Back-to-Back Mounting of Do Not Enter Signs on Stop and Yield Signs 10-22
Figure 10-14. An Example of a Do Not Enter Sign Obscuring the Shape of a Stop Sign 10-23
Figure 10-15. Parking and Bus Sign Examples from TMUTCD .. 10-24
Figure 10-16. Signing for Prohibited Right Turn on Red (TMUTCD) .. 10-25
Figure 10-17. Supplemental Panel to Mount below Stop Sign .. 10-26
Figure 10-18. Placement of Overhead Lane-Use Control Signs .. 10-27
Figure 11-1. Elimination of Jog Crossing Movements by Increasing Separation 11-4
Figure 11-2. Effect of Widening Roadway and Raising Railroad on Grades 11-5
Figure 11-3. Low Ground Clearance Highway-Rail Grade Crossing Sign (W10-5) 11-7
Figure 11-4. Alternative Warning Signs for Use on Roadways Parallel to Railroad Tracks 11-8
Figure 11-5. Turn Prohibition Sign ... 11-8
Figure 11-6. Stop on Tracks Prohibition Sign ... 11-8
Figure 11-7. Storage Space Signing (U.S. Customary, Metric) .. 11-9
Figure 11-8. Channelizing Island at Railroad Grade Crossing .. 11-10
Figure 11-9. Intersection Conflict Points ... 11-14
Figure 11-10. Driveways Blocked by Intersection Queue .. 11-15
Figure 11-11. Channelized Median Opening to Restrict through Movements 11-18
LIST OF TABLES

Table 2-1. 1995 Survey Results ... 2-13
Table 2-2. Selected Disability Measures in the United States: 1997 2-14
Table 2-3. Characteristics of the Civilian Non-Institutionalized Population by Age, Disability Status, and Type of Disability: 2000 ... 2-15
Table 2-4. Intersection Safety Comparison ... 2-22
Table 2-5. Distribution of 2000 On-System Texas Urban Crashes by Relationship to Intersections .. 2-22
Table 2-6. Distributions of 1998 – 2000 Texas Urban On-System and Off– System Crashes by First Harmful Event .. 2-26
Table 3-1. Case B1, Left Turn from Minor Roadway, Stop Control 3-6
Table 3-2. Summary of Intersection Sight Distance Cases and Potential Adjustments 3-9
Table 3-3. Turning Radius Effects .. 3-16
Table 4-1. Guidelines for Offsetting Opposing Left-Turn Lanes 4-10
Table 4-2. Right-Turn Lane Designs .. 4-17
Table 5-1. Horizontal Clearances ... 5-13
Table 5-2. Bus Stop Placements .. 5-27
Table 5-3. Advantages and Disadvantages of Bus Stop Configurations 5-28
Table 8-1. Advantages and Disadvantages of Traffic Control Signals 8-3
Table 8-2. Minimum Sight Distance Requirements .. 8-8
Table 8-3. Advantages and Disadvantages of Signal Support Systems (Based on Information in Traffic Engineering Handbook) 8-19
Table 9-1. Selected Pavement Marking Applications 9-7
Table 11-1. Potential Low-Clearance Design Vehicles 11-6
Chapter 1
Intersection Function

Contents:

Section 1 — Intersection Planning & Development... 1-3
Section 2 — Types of Intersections.. 1-3
Section 3 — Components of an Intersection.. 1-3
Section 4 — Utility Accommodation... 1-3
Section 5 — References.. 1-3
Section 1
Intersection Planning & Development

Overview

The American Association of State Highway and Transportation Officials (AASHTO), publishes information on geometric design in the following documents:

♦ *A Policy on Geometric Design of Highways and Streets*¹ (commonly known as the *Green Book*),

♦ The *Guide for the Development of Bicycle Facilities*² (commonly known as the *Bike Guide*), and

♦ The *Guide for the Planning, Design, and Operation of Pedestrian Facilities*³ (commonly known as the *Pedestrian Guide*).

The *Green Book* defines an intersection as the general area where two or more highways join or cross, including the roadway and roadside facilities for traffic movements within the area. Intersections are an important part of a highway facility because the efficiency, safety, speed, cost of operation, and capacity of the facility depend on their design to a great extent. Each intersection involves through- or cross-traffic movements on one or more of the highways and may involve turning movements between these highways. Traffic may include vehicles, pedestrians, and bicyclists. Such movements may be facilitated by various geometric design and traffic control, depending on the type of intersection.

Design Considerations and Objectives

The main objectives of intersection design are to facilitate the safe and efficient movements of motor vehicles, buses, trucks, bicycles, and pedestrians. Intersection design should be fitted closely to the operating characteristics of its users. Basic elements to consider in intersection design are discussed in the *AASHTO* documents and include the following:

♦ Human Factors:
 ∙ driving habits,
 ∙ ability of drivers, pedestrians, and bicyclists to make decisions,
 ∙ driver, pedestrian, and bicyclist expectancy,
 ∙ decision and reaction time of various users,
 ∙ conformance to natural paths of movement,
 ∙ pedestrian use, ability, and habits, and
 ∙ bicyclist use, ability, and habits;

♦ Traffic Considerations:
 ∙ design and actual capacities,
 ∙ design-hour turning movements,
 ∙ size and operating characteristics of vehicles,
• variety of movements (diverging, merging, weaving, turning, and crossing),
• vehicle speeds,
• crossing distance,
• signal complexity,
• transit involvement,
• light rail operations,
• freight rail operations,
• crash experience,
• bicycle movements, and
• pedestrian movements;

♦ Physical Elements:
• character and use of abutting property,
• vertical alignments at the intersection,
• sight distance,
• angle of the intersection,
• conflict area,
• speed-change lanes,
• geometric design features,
• traffic control devices,
• lighting equipment,
• utilities,
• drainage features,
• safety features,
• environmental factors,
• pedestrian facilities (sidewalk, curb ramps, crosswalks), and
• medians and islands;

♦ Economic Factors:
• cost of improvements,
• effects of controlling or limiting rights of way (ROWs) on abutting residential or commercial properties where channelization restricts or prohibits vehicular movements,
• energy consumption,
• vehicular delay cost,
• pedestrian delay,
• air quality cost,
• functional intersection area,
The Intersection Development Process

The development of intersections typically follows a path that includes planning, design, construction, and operations. The development process also is influenced by feedback from other projects and research findings. Figure 1-1 illustrates the continuous, integrated series of steps that form the intersection development process. The process must be able to reflect changes in goals and objectives, travel patterns, safety emphasis, geometric restrictions, and capacity needs. Recent emphasis in society is on the better accommodation of pedestrians and bicycles in the transportation network. All phases of the roadway development process must be able to integrate the changes needed to reflect this evolving society goal. Additionally, laws require design and construction that are usable by pedestrians who have disabilities. Improvements (curb ramps, limited grade and slope, etc.) important to those with mobility impairments are well known. However, treatments that are effective in providing information to pedestrians with vision impairment are less understood.

![Diagram of Intersection Development Process](image-url)

Figure 1-1. The Intersection Development Process.
Planning is conducted in conjunction with an overall regional plan and with public involvement that reflects the community goals. At this stage the facilities are classified and basic corridor requirements are identified. Consideration of all modes should occur, including transit, bicycle, and pedestrian facilities. Understanding the constraints presented by intersections can assist in developing a network that meets the basic needs of all modes. If the intersection is identified as being in a historic district or if there are historic buildings near the intersection, contact the District Environmental Coordinator for information. The presence of historic resources may affect development of project plans. Coordination with the Texas Historical Commission will be needed.

Design involves the development of the project plans while considering the design control and criteria applicable to the setting. The intersection type, lane configuration, basic geometric form, pedestrian improvements, and right-of-way requirements are all developed during design. Due to public interest in the development of transportation projects, the design stage routinely includes public participation in some form.

Construction involves the building of all parts of the intersection as designed. An element of construction is the consideration of how to accommodate the safe movement of vehicles, pedestrians, and other users during the work.

Operations of the intersection include consideration of all users when selecting the traffic control devices and evaluating how the devices are functioning. During operations, the traffic control plan can be reviewed to determine if changes are desired. These changes could result in revisions to the operational approach or in changes to the design of the intersection.

Feedback from existing intersections can improve the planning, design, and operations process. Feedback can come in many forms such as volumes, operating speed, and complaints/comments from users. Crash records can be a valuable source of additional information on the performance of a site.

Research can also provide valuable information on how to better plan, design, or operate an intersection. It is an integral part of the process as it provides information on the various users of the system, what techniques have worked in other areas, and how to improve the system.

Policy and Procedures

The Texas Department of Transportation (TxDOT) has developed a series of manuals that can assist with the development of roadways and intersections. These online manuals include the following:

♦ **Project Development Policy Manual**⁴ – provides a one-stop location for all project development-related policies and practices and facilitates research of project development policy-related issues/requirements. The manual is also intended to provide an overview of policy hierarchy, descriptions of various federal, state, and departmental policy documents as well as a discussion on engineering ethics.
Design Exceptions, Variances, and Waivers

The design criteria contained in the *Roadway Design Manual* are applicable to all classes of roadway. When the controlling criteria for a particular category of work (i.e., 4R, 3R, 2R, or Special Facilities) cannot be met, design exceptions must be requested. The controlling criteria are listed in Chapter 1 of the *Roadway Design Manual*.

When criteria in noncontrolling categories are not met, design waivers must be handled at the district level. The noncontrolling categories are provided in the *Roadway Design Manual*.

Finally, design variances must be sought when requirements in the Texas Accessibility Standards (TAS) are not met (requirements are discussed in the *Roadway Design Manual* Chapter 1 and Chapter 2 (Sidewalk and Pedestrian Elements section)). Design variances should be sent to the Design Division for forwarding to the Texas Department of Licensing and Regulation for approval.

Ultimate Design

Intersection operation is generally considered to be the greatest influence on the level of service on urban roadways, which contrasts greatly with rural design. Consideration of future expansion needs at intersections is a critical aspect of creating successful sustainable designs in urban areas. *Application 1-1* provides an example of a subdivision entrance design so that the ultimate cross section can be constructed without affecting the subdivision entrance.

Obtaining traffic projections is a normal part of beginning a roadway design and provides designers with information necessary to determine specific characteristics of the roadway design. Those traffic projections, while prepared with great care, should be reviewed with a
critical eye. Designers should consider the possibility that projected turning movement volumes could be underestimated.

In other cases, roadway designs may be “standardized” in certain aspects. For example, some agencies provide for dual left-turn movements at all intersections between major roadways even though traffic projections for specific intersections may not be high enough to justify their use at the projected design volume. This provides motorists with a strong sense of what types of intersections will be encountered along a corridor, thereby enhancing safety and reducing erratic operations. However, the impacts on non-motorized users need to be evaluated when considering such policies.

Another consideration in urban design is the accommodation of pedestrians. Designing urban roadways with a sidewalk or with the consideration that a sidewalk will be added at a later date can result in overall cost savings for the corridor. Designing for a future sidewalk can save costly reconstruction of driveways and moving of utilities.

Arterial to Arterial Intersection Design

Arterial to arterial intersections should be designed with the concept that geometric features should be used to:

- maximize efficiency for all modes,
- accommodate turning vehicles, and
- balance the requirements of all modes so they interact in a safe and efficient manner.

Traffic Efficiency. Urban arterials are expected to (and should be designed to) accommodate high vehicular traffic volumes at relatively high speeds. When arterial streets intersect, a large number of vehicles are likely to need the same intersecting area. Also sharing the space are pedestrians and bicyclists. The high demands often cause operational bottlenecks or points of congestion. The most desirable geometric design for arterial to arterial intersections is to eliminate the intersection by providing a grade separation or interchange. However, factors such as right-of-way availability and construction costs often prohibit the possibility of constructing a grade separation or interchange.

Arterial to arterial intersections must be designed and constructed for high capacity volumes in order to eliminate, or at least alleviate, the bottlenecks. Two multilane arterials operating at or near capacity volumes will create a bottleneck at their intersection unless the cross sections of the arterials become wider at and on the approaches to the intersection. In order to provide for the widened cross section, ROW widths must be increased at and on the approaches to the intersection. Figure 1-2 illustrates how the ROW could be widened (or flared) to accommodate the addition of turn lanes, pedestrian facilities, and transit needs at an intersection. Arterial roadways generally serve as transit routes. Transit stops will generate pedestrian traffic, as will the development that generally occurs at arterial intersections.
Arterial to arterial intersections must be designed to accommodate high volumes of traffic and to provide opportunities for pedestrian crossing movements (e.g., median refuge, crosswalk design, curb ramp design, etc.). The initial design or reconstruction of an intersection may also need to accommodate:

- illumination,
- transit stops and shelters,
- signage,
- drainage structures,
- streetscaping,
- landscaping, and
- crosswalk and curb ramp design.

Additionally, as noted in Section 4 of this chapter, the increasing number of utilities due to growth in both population and technology may be a consideration in determining the amount of right of way needed. Further, because arterial to arterial intersections are typically signalized, it is also important to design an intersection to accommodate for traffic signals and the related hardware, without interfering with the other modes of travel.

Turn Lanes. Turning maneuvers are accommodated by providing left- and right-turn lanes. The number and lengths of turning lanes affect the ability of the intersection to
accommodate turning maneuvers and storage of turning vehicles. Through-traffic efficiency is maximized when:

♦ The number of through lanes is maximized.
♦ Turning lanes are provided with long tapers and storage areas.
♦ Driveways, median openings, and street intersections are located at considerable distances from the intersection.
♦ The time required for pedestrian movements provides for safe and efficient movement.

The provision of left-turn lanes provides greater capacity (particularly at signalized intersections) and increased safety at intersections. Consideration of the possibility of providing left-turn lanes in the future can influence the choice of median width.

On roadways with raised medians, median width should be selected to accommodate future expansion possibilities. By selecting a median width that could accommodate future pedestrian storage, the installation of left-turn lanes, dual left-turn lanes, or offset left-turn lanes, an entire corridor could be provided with a higher level of service with minimal disruption.

“Flaring” an intersection to provide turn lanes (both left and right) is frequently used to improve traffic operations in urban locations (see Figure 1-2). Consideration of ROW needs to accommodate such an improvement in the future could greatly reduce the cost of such a design improvement. Flaring will increase the crossing time for pedestrians so adequate space should be considered for pedestrian refuge.

Consideration of providing a right-turn lane in the future could lead to the acquisition of more ROW at critical intersections. Because development frequently occurs around intersections, those intersections should be carefully evaluated for the future need to install right-turn lanes. Development can also result in increased pedestrian activities so the design and resulting ROW needs of pedestrian facilities should be included in the evaluation. Controlling the access within the area where turning vehicles and pedestrians queue will improve the operation of the intersection.

Pedestrian Movements. The safety and efficiency of pedestrian movements at an intersection may be improved by providing:

♦ good sight distances;
♦ marked crosswalks;
♦ accessible pedestrian signals;
♦ push button actuations with locator tones;
♦ short, direct crossings;
♦ adequate time for crossing at the signal;
♦ protected crossing phase at the signal;
♦ low speeds;
♦ no right turn on red;
♦ clear, visible, multi-format information;
♦ pedestrian storage/refuge areas; and
♦ accessible curb ramps and landings.

Additional information on accommodating pedestrians is provided in Chapters 7 and 8 of this Guide <link>.

Bicycle Movements. Bicycle movements should also be considered at intersections. Chapter 4, Section 6 of this Guide <link> provides information on:

♦ bicycle lanes and
♦ shared roadways.
Section 2
Types of Intersections

Overview

At each particular location, selecting an intersection type is influenced by:

♦ functional class of intersecting streets;
♦ design level of traffic;
♦ number of intersecting legs;
♦ topography;
♦ access requirements;
♦ traffic volumes, patterns, and speeds;
♦ all modes to be accommodated;
♦ availability of right of way; and
♦ desired type of operation.

Although many of the intersection design examples are located in urban areas, the principles involved apply equally to design in rural areas. Some minor design variations occur with different kinds of traffic control, but all of the intersection types lend themselves to the following types of control:

♦ cautionary or non-stop control,
♦ stop control for minor approaches,
♦ four-way stop control, and
♦ both fixed-time and traffic-actuated signal control.

Types of Intersections

When two or more roads intersect, there is potential for conflict between vehicles and between various modes of travel. A priority in the design of at-grade intersections is to reduce the potential severity of conflicts and at the same time, assure the convenience and ease of all users in making the necessary maneuvers.

The basic types of intersections are:

♦ T-intersection (with variations in the angle of approach),
♦ four-leg intersection,
♦ multileg intersection, and
♦ roundabouts.
A brief discussion of these intersection types follows. The basic intersection types vary greatly in scope, shape, and degree of channelization. More detailed information regarding intersection type and additional examples are provided in Chapter 9 of AASHTO’s *A Policy on Geometric Design of Highways and Streets*. Additionally, information on channelization may be found in the National Cooperative Highway Research Project (NCHRP) Report 279, *Intersection Channelization Design Guide*.3

Three-Leg or T-Intersections. The normal pavement widths of both highways should be maintained at T-intersections except for the paved returns or where widening is needed to accommodate the selected design vehicle. Typical T-intersections are shown in Figure 1-3, and an aerial photograph of a channelized T-intersection is shown in Figure 1-4.

Four-Leg or Cross Intersections. Four-leg intersections vary from a simple 90-degree intersection of two lightly traveled local roads to a complex intersection of two main highways. The overall design principles, island arrangements, use of auxiliary lanes, and many other aspects of three-leg intersection design also apply to four-leg intersections. Patterns at four-leg intersections are shown in Figure 1-5 and aerial photographs in Figure 1-6.

Multileg Intersections. Multileg intersections are seldom used and should be avoided where possible. Most often they are found in urban areas where volumes are light and stop control is used. At other than minor intersections, safety and efficiency are improved by rearrangements that remove some conflicting movements from the major intersection. Information on intersection realignment is provided in Chapter 3, Section 4, of this Guide.<link>
There has been an emergence of interest in modern roundabouts in some parts of the United States since 1990. The term “modern roundabout” is used in the United States to differentiate them from traffic circles and rotaries that have been in use for many years. Two basic operational and design principles define modern roundabouts:

♦ yield-at-entry where entering vehicles must yield to crossing pedestrians and to vehicles on the circulatory roadway of the roundabout and

♦ deflection of entering traffic where entering traffic is deflected to the right by a central island on each approach to the roundabout.

Additional information on roundabouts is provided as Application 1-2 <link>.
Innovative Designs

Information on innovative intersection designs is included in the *Applications* document as *Application 1-3 <link>*. The following designs are discussed:

♦ unconventional left-turn alternative designs:
 * median U-Turn,
 * bowtie,
 * superstreet,
 * paired intersections,
 * jug handle,
 * continuous flow, and
 * continuous green T;

♦ quadrant roadway intersection;

♦ flyovers, and

♦ echelon.
Section 3
Components of an Intersection

Overview

An intersection consists of several components. This Section will review two major components: right-of-way needs and intersection area. It will also discuss principles in designing an intersection.

Principles of Intersection Design

A prime function of intersections is to provide for changes in travel direction. Intersection design goals may include the following:

♦ Consider all modes: bicycles, pedestrians, transit, and motor vehicles.
♦ Reduce number of conflict points.
♦ Control relative speed.
♦ Coordinate design and traffic controls.
♦ Minimize skew angle.
♦ Avoid multiple and compound merging and diverging maneuvers.
♦ Separate conflict points.
♦ Favor the predominant flow.
♦ Segregate nonhomogeneous flows.
♦ Be consistent with local/neighborhood objectives.

Right-of-Way Needs

Right-of-way (ROW) needs for intersections vary with:

♦ type of intersection;
♦ type of traffic control;
♦ number of intersecting legs;
♦ number of lanes on each approach;
♦ angle of the intersection;
♦ provision of sidewalks, curb ramps, and landings; and
♦ provision of bicycle lanes.

When adequate right of way is available both at and in advance of an intersection, the desirable geometric features that contribute to a high level of safety, along with maximum intersectional capacity and operational efficiency, can be constructed. Figure 1-2 illustrated
the varying right-of-way widths to consider on an approach to an intersection. When right of way is restricted, less desirable and less efficient intersection operations will result. Therefore, the final design chosen for a new or reconstructed intersection will often be a compromise between what is desirable and what can be provided, because adequate right of way cannot always be obtained in a cost-effective manner.

Right-of-Way Acquisition

Procedures for acquiring right of way vary from agency to agency. TxDOT’s procedures are included in the TxDOT Right of Way collection of online manuals. The Right of Way collection includes the following:

- Real Estate Acquisition Guide for Local Public Agencies
- Vol. 1 – ROW Procedures Preliminary to Release
- Vol. 2 – ROW Acquisition
- Vol. 3 – ROW Relocation Assistance
- Vol. 4 – ROW Eminent Domain
- Vol. 5 – ROW Property Management
- Vol. 6 – ROW Miscellaneous, and
- Vol. 7 – ROW Beautification.

These manuals are available on the TxDOT Web site at: http://manuals.dot.state.tx.us/dynaweb.

Intersection Area

Both functional and physical areas define an intersection (see Figure 1-7). The functional area of an intersection extends both upstream and downstream from the physical intersection area and includes any auxiliary lanes and their associated channelization. The functional area on the approach to an intersection or driveway consists of three basic elements as shown in Figure 1-8:

- perception-reaction distance (d_1),
- maneuver distance (d_2), and
- queue-storage distance (d_3).

The distance traveled during the perception-reaction time will depend upon vehicle speed, driver alertness, and driver familiarity with the location. Where there is a left- or right-turn lane, the maneuver distance includes the length needed for both braking and lane changing. In the absence of turn lanes, it involves braking to a comfortable stop. The storage length should be sufficient to accommodate the queues expected during a typical peak period.

Ideally, driveways should not be located:

- within the functional area of an intersection, or
♦ in the influence area of an adjacent driveway.

For additional information on the spacing between access points, consult the TxDOT Access Management Manual⁸ or the Design Division.

![Figure 1-7. Functional Area of an Intersection.¹⁸](image1)

![Figure 1-8. Elements of the Functional Area of an Intersection.¹⁸](image2)
Section 4
Utility Accommodation

Overview

Public utilities have located facilities on federal-aid highway right of way in the United States since 1916, with individual states controlling the access and use of that right of way through laws and regulations administered through their departments of transportation (DOTs). Over time, right-of-way issues materialized as the network of roadways across the U.S. expanded and grew. When Congress created the National System of Interstate and Defense Highways in the mid-1950s, issues regarding access control of right of way emerged as one of the safety factors of concern. As a result, the American Association of State Highway and Transportation Officials developed *A Policy on the Accommodation of Utilities on the National System of Interstate and Defense Highways*. States were required to adopt guidelines and regulations that were at least as restrictive as those outlined in the AASHTO guide. By 1966 these regulations had expanded to include all federal-aid highways operated by state DOTs.

As required by federal mandate, Texas adopted guidelines for accommodating public utilities in highway right of way. The Texas Utility Accommodation Policy, as contained in the Texas Administrative Code and the TxDOT Utility Manual issued by the ROW Division, outlines the manner in which utilities may be accommodated along and across highway right of way. The Texas Utilities Code grants utilities the right to access to the right of way. These public utilities include lines that transport natural gas, water, electricity, telecommunications, cable television, salt water, and common carrier petroleum and petroleum-related products. Additionally, privately owned lines are normally allowed to cross highway right of way.

Growing Demand for Utility Accommodation

As new public utilities form, the number of public utilities vying for space within the state’s right of way increases. However, right of way is a finite resource and is quickly reaching its capacity, creating congestion, pedestrian accessibility, and safety problems. Although utilities have a right to access TxDOT right of way, the department determines whether room is available to safely accommodate a particular utility installation. Costs to relocate a public utility are inevitably borne by the utility rate and tax-paying citizens of our state.

As technology and the population grow, the need for expanding existing and adding new utility lines increases. With the explosion in the telecommunications industry, both public and private interests are building new networks and upgrading existing networks at an unparalleled pace.

Interstates and other federal-aid highways often link major metropolitan centers and smaller outlying cities. As a result, there is increasing interest by utility companies to occupy the right of way of controlled access highways. In 1995 the AASHTO Board of Directors revised its long maintained policy in opposition to the longitudinal use of freeway rights of way for utilities by stating that there is a distinction between buried fiber-optic
cables and other types of utilities and deemed permissible the longitudinal use for buried fiber-optic cables under appropriate guidelines.\(^{24}\)

Alternative Installation Methods

Just as the demand for utility accommodation has increased, the cost of right-of-way purchase has also increased in recent years. With the proliferation of utilities in limited right of way, the complexity of detecting and relocating utility lines during transportation infrastructure projects has become a more complex issue. In order to successfully accommodate utilities in congested right-of-way conditions, alternative installation methods are being considered and used. These methods include trenching, joint trench encased utilities, and utility corridors. TxDOT Report 0-4149-1 (*Utility Corridor Structures and Other Utility Accommodation Alternatives in TxDOT Right-of-Way*)\(^ {25}\) provides more detailed information and recommendations on the use of these methods.

Subsurface Utility Engineering

Subsurface Utility Engineering (SUE) is the non-destructive process of accurately locating, identifying, and mapping underground utilities. SUE is an interdisciplinary service, involving professional engineers, geologists, and licensed land surveyors. It is a professional service resulting in signed and sealed deliverables. SUE includes three major activities: designating, locating, and data management. Additional information on SUE is contained in the TxDOT *Project Development Process Manual*\(^ {5}\) <link>.

The district utility coordinator should be contacted to determine the need for SUE. The district utility coordinator coordinates the work with the Right-of-Way Division.

Inclusion of Utility Relocation in Construction Contract

Generally the highway right of way should be clear of the need for utility relocation before construction projects are let, but in some cases it may be determined that utility adjustments are to be included in the highway construction contract. In the preparation of the PS&E, the designer must give consideration for who will be responsible for the costs and who will perform the adjustments. TxDOT’s *Utility Manual*\(^ {26}\) provides guidance on the appropriate manner in which the work can be included in the PS&E.

Potential Impacts on Intersection Design

Any utilities located within intersection ROW may have an impact on the design of that intersection. Utilities will require manholes, markers, and other appurtenances that may present challenges to designing the intersection. While TxDOT accommodates utilities within the ROW so that they do not adversely affect safety, design, construction, operation, or maintenance,\(^ {22}\) designers should be aware of certain features related to utilities that may impact the intersection. Careful coordination is needed to ensure that utility installations do not negatively impact pedestrian features such as sidewalk width, curb ramps, and landings. These specific features are discussed in Chapter 5, Section 8 of this *Guide* <link>.
Section 5

References

Chapter 1 — Intersection Function

Section 5 — References

Chapter 2
Design Control and Criteria

Contents:

Section 1 — Modes of Travel... 2-3
Section 2 — Users.. 2-3
Section 3 — Intersection Characteristics... 2-3
Section 4 — Safety ... 2-3
Section 5 — References.. 2-3
Section 1
Modes of Travel

Overview

There are many different modes of travel at an intersection including the following:

♦ motorized vehicles,
♦ transit and light rail,
♦ bicycles, and
♦ pedestrians.

Characteristics of each of these users are discussed below.

Motorized Vehicles

The physical characteristics and proportions of vehicles provide key controls in the design of an intersection. The type of vehicle that influences critical elements of a design is known as the “design vehicle.” For purposes of geometric design, each design vehicle has larger physical dimensions and a larger minimum turning radius than most vehicles in its class. The AASHTO Green Book\(^1\) has four general classes of design vehicles: passenger cars, buses, trucks, and recreational vehicles. Dimensions and minimum turning paths templates for the following design vehicles representing these four general classes are discussed and included in the Green Book:

♦ passenger car,
♦ single-unit truck,
♦ intercity bus,
♦ city transit bus,
♦ conventional school bus (65 passengers),
♦ large school bus (84 passengers),
♦ articulated bus,
♦ intermediate semitrailer (WB-40 [WB-12]),
♦ intermediate semitrailer (WB-50 [WB-15]),
♦ interstate semitrailer (WB-65 [WB-20] or WB-67 [WB-20]),
♦ double-bottom-semitrailer/trailer,
♦ triple-semitrailer/trailers,
♦ turnpike double-semitrailer/trailer,
♦ motor home,
• car and camper trailer,
• car and boat trailer,
• motor home and boat trailer, and
• farm tractor.

The *Green Book* recommends that the design consider the largest design vehicle likely to use the facility with considerable frequency or a design vehicle with special characteristics appropriate to a particular intersection in determining the design of such critical features as corner radii at intersections and median nose location. It also provides the following advice:

• A single-unit truck may be used for intersection design of residential streets and park roads.
• A city transit bus may be used in the design of state highway intersections with city streets that are designated bus routes and that have relatively few large trucks using them.
• Depending on expected usage, a large school bus (84 passengers) or a conventional school bus (65 passengers) may be used for the design of intersections of highways with low-volume county highways and local roads under 400 average daily traffic (ADT). The school bus may also be appropriate for the design of some subdivision street intersections.
• The WB-65 or 67 [WB-20] truck should generally be the minimum size design vehicle considered for intersections of two arterials.

The TxDOT *Roadway Design Manual* Chapter 7, Section 7 also presents information on minimum designs for truck and bus turns. It notes that corner radii at intersections on arterial streets should satisfy the requirements of the drivers using them to the extent practical and in consideration of the following:

• amount of right of way available,
• angle of the intersection,
• numbers of and space for pedestrians,
• width and number of lanes on the intersecting street, and
• amounts of speed reductions.

Another consideration in the selection of a corner radii is the trade-off with pedestrian crossing distance. Large radii can improve vehicle operations; however, pedestrians will need a longer crossing interval due to additional pavement to cross. Smaller radii can benefit pedestrians through slower vehicle right-turn speeds and smaller street distance to be crossed. Guidance on turning radii is provided in Chapter 3, Section 3.

An operational measure that appears promising is to provide guidance in the form of edge lines to accommodate the turning paths of passenger cars, while providing sufficient paved area beyond the edge lines to accommodate the turning path of an occasional large vehicle.
Transit and Light Rail

Transit vehicles include buses, light rail, and heavy rail. Light and heavy rail operates on a fixed guideway of two rails. Transit vehicles are typically larger than highway vehicles and have poorer stopping capabilities. When in a semi-exclusive alignment, they operate in a separate right of way where road users have limited access and cross at designated locations only. Mixed-use environments have the transit vehicle operating with other road users and the roadway is shared by all modes. The transit system must be integrated into the everyday life of a community to realize its full potential. Consideration should be given to long-term design and system performance, which can enhance the interaction of transit with communities. The efficient placement of transit stops near major destinations and within easy access provides a viable transportation alternative to the automobile by making the entire transit trip shorter and more pleasant.

Reports or material available on light rail transit (LRT) systems includes:

♦ Transit Cooperative Research Program (TCRP) Report 69, Light Rail Service: Pedestrian and Vehicular Safety,

♦ TCRP Report 17, Integration of Light Rail Transit into City Streets, and

TCRP Report 69 presents the results of a study to improve the safety of light rail transit in semi-exclusive rights of way where light rail vehicles (LRVs) operate at speeds greater than 35 mph [56 km/h] through crossings with streets and pedestrians pathways. The report discusses the effectiveness of presignals and presents recommended guidelines. The application guidelines focus on six principal areas:

♦ LRT system design,

♦ LRT system operation and maintenance,

♦ traffic signal placement and operation,

♦ automatic gate placement,

♦ pedestrian control (including specific guidelines for selecting among the various pedestrian control devices), and

♦ public education and enforcement.

TCRP Report 17 addresses the safety and operating experience of LRT systems operating on shared rights of way at speeds generally under 35 mph [56 km/h]. The principal findings of the study were:

♦ LRT system design should respect and adapt to the existing urban environment.

♦ LRT system design should comply with motorist and pedestrian expectations.

♦ Decisions by motorists and pedestrians who interact with the LRT should be kept as simple as possible.

♦ Traffic control devices related to LRT operations should clearly communicate the level of risk associated with the LRT system.
♦ LRT system design should provide recovery opportunities for erratic motor vehicle and pedestrian movements.

Transit stops are typically located at or near intersections to provide greater access to buildings located along both streets. Transit use is closely connected with the need for pedestrian access and improvements. How those transit stops function can have a great impact on the operations of the intersection. The use of transit priority systems, such as extending the green signal at an intersection when a transit vehicle is near, can also impact the performance of an intersection.

TCRP Project D-09\(^6\) is developing a handbook to provide the following:

♦ Comprehensive geometric design guidelines for accommodating transit vehicles and facilities on highways and streets.

♦ A decision-making process and guidelines for selecting appropriate transit facilities to accommodate current and future transit demand – based on local conditions – in a manner that improves transit travel times and reliability. The handbook will include geometric guidelines associated with transit facilities on or immediately adjacent to streets and highways. This project will build on and implement recommendations from NCHRP Project 20-7/Task 135, *Interim Geometric Design Guide for Transit Facilities on Highways and Streets – Phase1.*\(^7\)

Exclusive busways in separate rights of way frequently have at-grade crossings with roadways or pedestrian and bicycle facilities. Buses are sometimes given preferential crossing priority, similar to that given for light rail transit. Although individual transit systems have developed their own design criteria, no generally accepted guidelines exist. Research will be conducted as part of TCRP Project D-11\(^8\) to determine what operational planning and functional design treatments are appropriate to enhance safety and to maximize throughput of transit passengers for at-grade crossings of exclusive busways. The research may also contribute to the development of national guidelines on operational planning and functional design of busways.

Several universal concerns of both users and providers of transit services include the following:

♦ **Transit system performance:** Travel time for a transit trip has four components — the time it takes to walk to the transit stop, the wait time for the transit, the actual in-vehicle travel time, and the time to walk to the destination. Each is affected by the transit stop location and the frequency of the transit stops.

♦ **Traffic flow:** Transit stop location and design affect the flow and movement of other vehicles. A well-designed transit stop can allow passengers to board and alight without significantly impeding or delaying adjacent traffic and without blocking the sidewalk.

♦ **Safety:** In the transit environment, safety includes an individual’s relationship to the transit vehicle and the relationship between the transit vehicle and general traffic. Pedestrian safety issues include the nearness of a bench to the flow of traffic on a busy street or safely crossing the street to reach the transit stop. Safe transit reentry into the flow of traffic is an example of an operational safety concern. Thus, pedestrians,
passengers, transit vehicles, and private vehicles can all be involved in concerns for safety at or near a transit stop.

- **Security:** Security refers to an individual’s feeling of well being. Security is affected by the amount of lighting at the transit stop, and the visibility of the transit stop from the street and from nearby land uses. The amount of real or perceived locations with hiding places at or near the transit stop also influences an individual’s feeling of how secure the facility is.

Bicycles

Roadway improvements can considerably enhance the safety of a street or highway for bicycle traffic. The *Green Book* lists the following low to moderate cost improvements:

- paved shoulders;
- wider outside traffic lanes, if no shoulder exists;
- bicycle-safe drainage grates;
- adjusting manhole covers to the grade; and
- maintaining a smooth, clean riding surface.

For guidance on bicycle dimensions and operating characteristics and acceptable turning radii, grades, and sight distance, see Chapter 4, Section 6 of the *Guide*<link>. Other documents that provide information include:

- AASHTO *Guide for the Development of Bicycle Facilities*,
- Federal Highway Administration (FHWA) report *Selecting Roadway Design Treatments to Accommodate Bicycles*, and
- Institute of Transportation Engineers (ITE) report *Innovative Bicycle Treatments*.

Pedestrians

The current designs for streets and highways provide an efficient network for moving motor vehicles; however, much of the system does little to accommodate pedestrians. AASHTO’s *Green Book*, however, states:

“Because of the demands of vehicular traffic in congested urban areas, it is often extremely difficult to make adequate provisions for pedestrians. Yet this must be done, because pedestrians are the lifeblood of our urban areas, especially in the downtown and retail areas.”

AASHTO published a guide for the development of pedestrian facilities in 2004 entitled the *Guide for the Planning, Design, and Operation of Pedestrian Facilities*. The guide identifies pedestrian design measures that are appropriate for streets and highways. Other documents that can provide information on pedestrians include the following:

- *Americans with Disabilities Act Accessibility Guidelines* (ADAAG),
Texas Department of Licensing and Regulation’s *Architectural Barriers Texas Accessibility Standards*;\(^{14}\)

an FHWA report, *Designing Sidewalks and Trails for Access: Part 2*;\(^{15}\)

U.S. Access Board’s *Draft Guidelines for Accessible Public Rights of Way*\(^{16}\) and other technical assistance materials available at www.access-board.gov;

Pedestrian and Bicycle Information Center (PBIC) Web site\(^{17}\) <link>. The PBIC is a clearinghouse for information about health and safety, engineering, advocacy, education, enforcement, and access and mobility. The PBIC serves anyone interested in pedestrian and bicycle issues, including planners, engineers, private citizens, advocates, educators, police enforcement, and the health community.

an FHWA report, *Pedestrian Facilities User Guide – Providing Safety and Mobility*\(^{18}\) that contains information regarding how to create walking environments, the main causes of pedestrian crashes and ways to counter them, and engineering improvements that can be made to improve the quality of life for all citizens; and

an ITE report, *Alternative Treatments for At-Grade Pedestrian Crossings*.\(^{19}\)
Section 2

Users

Overview

The ability of the public to safely and efficiently use an intersection reflects on the suitability of a design. A design that is incompatible with the capabilities of the public increases the chance for errors, crashes, or inefficient operations.

Driving Task

The driving task depends upon drivers receiving and using information correctly. The information received by drivers as they travel is compared with the information they already possess. Decisions are then made based on the information available. Driving tasks when grouped by performance are in three levels:

♦ control,
♦ guidance, and
♦ navigation.

Figure 2-1 shows the levels of the driving task.

![Figure 2-1. Levels of the Driving Task.](image)

Simple steering and speed control are examples of control and are considered to be at the lowest complexity end of the scale. Guidance tasks are at the midlevel of the scale and include road-following and safe path maintenance in response to road and traffic conditions. At the other end of the scale are navigation activities such as trip planning and route following.
Many driver errors occur because:
- Drivers may not always recognize what particular responses are required of them.
- Situations may lead to task overload or inattentiveness.
- Deficient or inconsistent designs or information displays may cause confusion.

Driver errors may also result from pressures of time, complexity of decisions, or information overload. Control and guidance errors by drivers may also contribute directly to crashes. In addition, navigational errors resulting in delay contribute to inefficient operations and may lead indirectly to crashes.

Additional information on the driving task is contained in the *Green Book*\(^1\) which drew heavily from two documents: *A User’s Guide to Positive Guidance*\(^2\) and “Human Factors and Safety Research Related to Highway Design and Operations.”\(^21\)

Older Drivers

Older drivers are a significant and rapidly growing segment of the highway user population with a variety of age-related diminished capabilities. The 65 and older group accounted for 15 percent of the driving population in 1986 and is expected to increase to 22 percent by the year 2030. Older drivers have special needs that should be considered in highway design and traffic control. For example, for every decade after age 25, drivers need twice the brightness at night to receive visual information. Hence, by age 75, some drivers may need 32 times the brightness they did at age 25.

Some of the more important observations from recent research studies concerning older drivers are summarized below from information provided in the *Green Book*.\(^1\)

Characteristics of the Older Driver. In comparison to younger drivers, older drivers often have deteriorated driving skills that are caused by:
- slower information processing;
- slower reaction times;
- slower decision-making;
- visual deterioration;
- hearing deterioration;
- decline in ability to judge time, speed, and distance;
- limited depth perception; and
- limited physical mobility.

The *Highway Design Handbook for Older Drivers and Pedestrians*\(^22\) provides recommendations to enhance the performance of diminished-capacity drivers as they approach and travel through intersections. Comparisons of responses from drivers ages 66 to 68 versus those age 77 and older showed that the older group had more difficulty following pavement markings, finding the beginning of the left-turn lane, and driving across
intersections. Similarly, the level of difficulty for reading street signs and making left turns at intersections increased with increasing senior driver age. Turning left at intersections was perceived as a complex driving task. This was made more difficult when raised channelization providing visual cues was absent, and only pavement markings designated which were through lanes versus turning lanes ahead. For the oldest age group, pavement markings at intersections were the most important item, followed by the number of left-turn lanes, concrete guides, and intersection lighting. A study of older road users completed in 1996 provides evidence that the single most challenging aspect of intersection negotiation for this group is performing left turns during the permitted (green ball) signal phase.

Additional insight into the problems older drivers experience at intersections was provided by focus group responses from 81 older drivers in a 1977 study. The most commonly reported problems are listed below:

- difficulty in turning more than 90 degrees to view intersecting traffic;
- difficulty in smoothly performing turning movements at tight corners;
- hitting raised concrete barriers such as channelizing islands in the rain and at night due to poor visibility;
- finding oneself positioned in the wrong lane—especially a “turn only” lane—during an intersection approach due to poor visibility (maintenance) of pavement markings or the obstruction of roadside signs designed to inform drivers of intersection traffic patterns;
- difficulty at the end of an auxiliary (right)-turn lane in seeing potential conflicts well and quickly enough to smoothly merge with adjacent-lane traffic; and
- merging with adjacent-lane traffic after crossing an intersection, when a lane drop occurs near the intersection (e.g., when two lanes merge into one lane within 500 ft [152 m] after crossing the intersection).

Although these problems are by no means unique to older drivers, the various functional deficits associated with aging result in exaggerated levels of difficulty for this user group.

Specific Recommendations for Intersections. Research findings show that enhancements to the highway system to improve its usability for older drivers and pedestrians can also improve the system for all users. A Federal Highway Administration report, entitled *Guidelines and Recommendations to Accommodate Older Drivers and Pedestrians,* provides information on how geometric design elements and traffic control devices can be modified to better meet the needs and capabilities of older road users. Recommendations for intersections are included for the following design elements:

- intersecting angle (skew);
- receiving lane (throat) width for turning operations;
- channelization;
- intersection sight distance requirements;
- offset (single) left-turn lane geometry, signing, and delineation;
- treatments/delineation of edgelines, curbs, medians, and obstacles;
♦ curb radii;
♦ traffic control for left-turn movements at signalized intersections;
♦ traffic control for right-turn-on-red (RTOR) movements at signalized intersections.
♦ street name signing;
♦ one-way/wrong-way signing;
♦ stop- and yield-controlled intersection signing;
♦ devices for lane assignment on intersection approach;
♦ traffic signals;
♦ fixed lighting installations;
♦ pedestrian crossing design, operations, and control; and
♦ roundabouts.

Pedestrian

The decision to walk usually takes into account the following:
♦ the availability of an alternate mode,
♦ the distance of the trip,
♦ perceived safety of the route, and
♦ the comfort and convenience of walking versus an alternative mode.

Distance is a factor in the initial decision to walk although some people have no other choice. The majority of pedestrian trips are 0.5 mi [0.8 km] or less, with 1 mi [1.6 km] generally being the limit that most people are willing to travel on foot. Impacts on the perceived and actual safety of the pedestrian users include sidewalks that are too narrow or adjacent to moving lanes of traffic, pedestrian crossings that are intimidating because of confusing signal indications, excessive crossing distances, or fast-turning vehicles. The immediate physical environment impacts comfort and convenience of walking. For example, are there shade trees; do the street and adjacent buildings, landscape, or public art provide a pleasant visual environment; is lighting adequate; and are there places to sit and rest?

Pedestrians have a wide range of needs and abilities. Following are characteristics of pedestrians:
♦ The TMUTCD includes a speed of 4 ft/sec [1.2 m/sec] for calculating pedestrian clearance intervals for traffic signals. It also includes a comment that where pedestrians who walk slower than normal or who use wheelchairs routinely use the crosswalk, a walking speed of less than 4 ft/sec [1.2 m/sec] should be considered in determining the pedestrian clearance times. Children, older pedestrians, and persons with disabilities may travel at slower speeds. Walking speeds as low as 2.5 ft/sec [0.8 m/sec] have been recommended for some user groups.
Two people walking side-by-side or passing one another generally require 4.7 ft [1.4 m] of space. Two people in wheelchairs need a minimum of 5 ft [1.5 m] to pass one another.

The 2001 Nationwide Household Travel Survey found trips to be distributed as: 8.6 percent walking, 86.6 percent private vehicles, 1.5 percent transit, 1.7 percent school bus, and 1.7 percent other.

A 1995 survey determined trips by trip purposes (see Table 2-1). For the four categories used, most trips either as a pedestrian or for all modes combined were for personal/family business (43 percent and 46 percent, respectively). Only 7 percent of the walking trips were for earning a living, while 20 percent of the trips for all modes combined were for earning a living.

<table>
<thead>
<tr>
<th>Reason</th>
<th>Walking Trips (%)</th>
<th>All modes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal/family business</td>
<td>43</td>
<td>46</td>
</tr>
<tr>
<td>Social recreational</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>School/church/civic</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Earning a living</td>
<td>7</td>
<td>20</td>
</tr>
</tbody>
</table>

Disabled Users

The Americans with Disabilities Act (ADA) defines a disability as “a physical or mental impairment that substantially limits one or more of the major life activities of an individual.” Impairment includes any mental disorders or physiological conditions that interfere with daily life functions. In 2000, persons with disabilities comprised 17.3 percent of the Texas population five years of age and older, mirroring the 17.7 percent of U.S. population with disabilities.

In August to November 1997 the Survey of Income and Program Participation (SIPP) was administered to gather information about the number and characteristics of individuals with disabilities in the United States. Table 2-2 lists the number and percent of individuals with specified characteristics. In 1997, 52.6 million people (19.7 percent) had some level of disability, and 33.0 million people (12.3 percent of the population) had a severe disability. The U.S. Census Bureau defines severe disability in its 2000 population report as the need for mobility assistance; Alzheimer’s disease, mental retardation, or other developmental disability; or any mental or emotional condition which seriously interferes with or prevents independently conducting everyday activities. Of the population aged 15 years and older, 2.2 million (1 percent of the population) used a wheelchair. Another 6.4 million (3.1 percent) used some other ambulatory aid such as a cane, crutches, or a walker, while 9.4 million (4.5 percent) were either blind or visually impaired. The likelihood of having a disability increases with age as shown in Figure 2-2.

The 2000 Census counted 49.7 million people with some type of long lasting condition or disability. They represented 19.3 percent of the 257.2 million people who were aged 5 and older in the civilian non-institutionalized population – or nearly one person in five.

Table 2-3 presents the findings by type of disability.
Table 2-2. Selected Disability Measures in the United States: 1997.29

<table>
<thead>
<tr>
<th>Categories</th>
<th>Number with Specified Characteristics (in Thousands)</th>
<th>Percent with Specified Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Ages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With a disabilitya</td>
<td>267,665</td>
<td>100.0</td>
</tr>
<tr>
<td>Severe disabilityb</td>
<td>52,596</td>
<td>19.7</td>
</tr>
<tr>
<td>Needed personal assistance with an ADLc or IADLd</td>
<td>32,970</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>10,076</td>
<td>3.8</td>
</tr>
<tr>
<td>Age 15 years and over</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Used a wheelchair</td>
<td>208,059</td>
<td>100.0</td>
</tr>
<tr>
<td>Used a cane, crutches, or walker (not a wheelchair)</td>
<td>2155</td>
<td>1.0</td>
</tr>
<tr>
<td>Had difficulty seeing</td>
<td>6372</td>
<td>3.1</td>
</tr>
<tr>
<td>Unable to see</td>
<td>7673</td>
<td>3.7</td>
</tr>
<tr>
<td>Had difficulty hearing</td>
<td>1768</td>
<td>0.8</td>
</tr>
<tr>
<td>Unable to hear</td>
<td>7966</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>832</td>
<td>0.4</td>
</tr>
</tbody>
</table>

a. Disability is defined as “a physical or mental impairment that substantially limits one or more of the major life activities of an individual. Impairment includes any mental disorders or physiological conditions that interfere with daily life functions.”

b. Severe disability is the need for mobility assistance; Alzheimer’s disease, mental retardation, or other developmental disability; or any mental or emotional condition which seriously interferes with or prevents independently conducting everyday activities.

c. ADL is having difficulty with activities of daily living such as bathing, dressing, or eating.

d. IADL is defined as having difficulty with instrumental activities of daily living such as going outside the home, keeping track of money and bills, and preparing meals.

Figure 2-2. 1997 United States Disability Prevalence by Age (Percent with Specified Level of Disability).29
Table 2-3. Characteristics of the Civilian Non-Institutionalized Population by Age, Disability Status, and Type of Disability: 2000.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
</tr>
<tr>
<td>Population 5 and older</td>
<td>257,167,527</td>
</tr>
<tr>
<td>With any disability</td>
<td>49,746,248</td>
</tr>
<tr>
<td>Population 5 to 15</td>
<td>45,133,667</td>
</tr>
<tr>
<td>With any disability</td>
<td>2,614,919</td>
</tr>
<tr>
<td>Sensory</td>
<td>442,894</td>
</tr>
<tr>
<td>Physical</td>
<td>455,461</td>
</tr>
<tr>
<td>Mental</td>
<td>2,078,502</td>
</tr>
<tr>
<td>Self-care</td>
<td>419,018</td>
</tr>
<tr>
<td>Population 16 to 64</td>
<td>178,687,234</td>
</tr>
<tr>
<td>With any disability</td>
<td>33,153,211</td>
</tr>
<tr>
<td>Sensory</td>
<td>4,123,902</td>
</tr>
<tr>
<td>Physical</td>
<td>11,150,365</td>
</tr>
<tr>
<td>Mental</td>
<td>6,764,439</td>
</tr>
<tr>
<td>Self-care</td>
<td>3,149,875</td>
</tr>
<tr>
<td>Difficulty going outside the home</td>
<td>11,414,508</td>
</tr>
<tr>
<td>Employment disability</td>
<td>21,287,570</td>
</tr>
<tr>
<td>Population 65 and older</td>
<td>33,346,626</td>
</tr>
<tr>
<td>With any disability</td>
<td>13,978,118</td>
</tr>
<tr>
<td>Sensory</td>
<td>4,738,479</td>
</tr>
<tr>
<td>Physical</td>
<td>9,545,680</td>
</tr>
<tr>
<td>Mental</td>
<td>3,592,912</td>
</tr>
<tr>
<td>Self-care</td>
<td>3,183,840</td>
</tr>
<tr>
<td>Difficulty going outside the home</td>
<td>6,795,517</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau, Census 2000 Summary File 3.

Bicyclist Characteristics

AASHTO’s Guide for the Development of Bicycle Facilities provides information on bicycle facilities and characteristics. Bicyclists have the same mobility needs as other users of the transportation system and use the highway system to access jobs, services, and recreational activities. Planning for existing and potential bicycle use should be integrated into the overall transportation planning process.

As Figure 2-3 shows, bicyclists require at least 40 inches [1 m] of essential operating space based solely on their profile. An operating space of 4 ft [1.2 m] is assumed as the minimum width for any facility designed for exclusive or preferential use by bicyclists. Where motor vehicle traffic volumes, motor vehicle or bicyclist speed, and the mix of truck and bus traffic increase, a more comfortable operating space of 5 ft [1.5 m] or more is desirable.
Although their physical dimensions may be relatively consistent, the skills, confidence, and preferences of bicyclists vary dramatically. Some riders are confident riding anywhere they are legally allowed to operate and can negotiate busy and high-speed roads that have few, if any, special accommodations for bicyclists. Most adult riders are less confident and prefer to use roadways with a more comfortable amount of operating space, perhaps with designated space for bicyclists, or shared use paths that are away from motor vehicle traffic. Children may be confident riders and have excellent bicycle handling skills, but have yet to develop the traffic sense and experience of an everyday adult rider. All categories of rider require smooth riding surfaces with bicycle-compatible highway appurtenances, such as bicycle-safe drainage inlet grates.

Figure 2-3. Bicyclist Operating Space (Based on Data in the AASHTO Guide for the Development of Bicycle Facilities).
Section 3

Intersection Characteristics

Traffic

Information on traffic characteristics is important in selecting the appropriate geometric features of a roadway. Necessary traffic data are discussed in the Roadway Design Manual² and include the following:

- traffic volume,
- traffic speed, and
- type and percentage of trucks or large vehicles.

Community

Many planners are taking an approach that considers a broader range of community values beyond the accommodation of traffic. Once the community has determined what type of facility meets community goals, the designer can ensure their design meets those needs.

Capacity

Capacity analysis is a set of procedures for estimating the traffic-carrying ability of facilities over a range of defined operational conditions. It provides tools to assess facilities and to plan and design improved facilities. The capacity of a facility is the maximum hourly rate at which persons or vehicles reasonably can be expected to traverse a point or a uniform section of a lane or roadway during a given time period under prevailing roadway, traffic, and control conditions. Level of service (LOS) is a quality measure describing operational conditions within a traffic stream, generally in terms of such service measures as speed and travel time, freedom to maneuver, traffic interruptions, and comfort and convenience. To determine the capacity or level of service for an intersection, the designer should refer to the most recent edition of the Highway Capacity Manual (HCM)³¹ for guidance.

Access Management

Access management is a set of tools used to balance the needs of mobility on a roadway with the needs of access to adjacent land uses. Access management includes not only the physical treatments on the ground, but the guidance to implement an access management program as well. A successful access management program will provide several types of benefits to the traveling public and the community in general. The benefits will be to:

- Provide a safer roadway network.
- Improve mobility on the road.
- Protect the infrastructure investment.
More information on access management can be obtained from the following sources:

♦ TxDOT Design Division,
♦ Transportation Research Board (TRB) *Access Management Manual*, 32 and
♦ TxDOT *Access Management Manual*. 33

Aesthetics

Aesthetics is most often associated with a sense of beauty. With respect to the practice of transportation design, the TxDOT *Landscape and Aesthetics Design Manual* 34 states that aesthetics may be defined as dealing with the visual integration of highways and other transportation modes into the fabric of a landscape in a way that blends with or complements that setting. The manual also states:

“…The aesthetic properties of a transportation facility have purpose beyond simply creating a pleasant view. Aesthetics is intertwined with the function of the facility. An aesthetically pleasing highway or other transport mode is one that provides its users with a clear picture of what is going on around them and what is expected of them. This is accomplished by using techniques and materials to provide better definition of the elements of the facility, to visually highlight important information, and to reduce the stress on users that results from operating a vehicle in a complex environment.”

This online manual provides guidance in the selection of landscape and aesthetic design criteria for highway and street project development. 34

ADA Guidelines/TAS

To ensure that buildings and facilities are accessible to and usable by people with disabilities, the Americans with Disabilities Act establishes accessibility requirements for state and local government facilities, places of public accommodation, and commercial facilities. Under the ADA, the Access Board has developed and continues to maintain design guidelines for accessible buildings and facilities known as the ADA Accessibility Guidelines. The ADAAG covers a wide variety of facilities and establishes minimum requirements for new construction and alterations. The ADAAG and other technical assistance materials are available at www.access-board.gov.

The TAS are similar to, but sometimes more restrictive, than the ADAAG. Refer to www.license.state.tx.us/ab/abtas.htm or contact the Design Division for more information. As part of complying with Texas requirements, the proposed plans must be submitted to the Texas Department of Licensing and Regulation (TDLR) for projects where the estimated cost of pedestrian elements is over $50,000. Failure to submit the plans can result in a disciplinary action by the appropriate professional licensing board.

The Access Board is undertaking rulemaking to supplement the ADA Accessibility Guidelines, which primarily cover facilities on sites, by adding new provisions specific to public rights of way. The ADA requires that access for persons with disabilities is provided wherever a pedestrian way is newly built or altered, and that the same degree of
convenience, connection, and safety afforded the public is available to pedestrians with disabilities. The ADA applies where a pedestrian route or facility is altered as part of a planned project to improve existing public rights of way.

Building a True Community Report. The Board chartered an advisory committee in 1999 to develop recommendations on guidelines for accessible public rights of way. The committee included many industry representatives and its work resulted in the January 2001 report *Building a True Community*. This document provides recommendations to the Access Board for guidelines covering construction or alteration of public rights of way. The report includes advisory notes, figures, and discussion of issues that merit further study or special attention in the Board’s rulemaking. It covers the following components of public streets and sidewalks:

- sidewalks,
- curb ramps and landings,
- street crossings,
- pedestrian signals and walk phasing,
- street fixtures and furnishings,
- vehicular ways,
- parking, and
- other components of public rights of way.

Draft Guidelines. The Access Board reviewed the committee’s report in depth and wrote a set of draft guidelines based on the committee’s recommendations. The draft guidelines departed from the advisory committee’s report in several areas so an advance draft of the guidelines was released for comment on June 17, 2002. After reviewing comments from the public, industry groups, state and local governments, and advisory committee members, the Board will develop a proposed rule to add requirements for public rights of way projects to the ADAAG. The ADA has required accessible construction since 1991. The new guidelines will make it easier for engineers to comply with the requirements on public right-of-way projects.
Section 4

Safety

Overview

The Green Book notes that crashes seldom result from a single cause — usually several influences affect the situation at any given time. These influences can be separated into three groups:

♦ the human element,
♦ the vehicle element, and
♦ the highway element.

Roadways and intersections should be designed to minimize decisions and to reduce unexpected situations for all modes. The number of crashes increases with an increase in the number of decisions required of the driver. Uniformity of roadway design features and traffic control devices plays an important role in reducing the number of required decisions. Uniformity helps all users become aware of what to expect at certain types of intersections.

Intersection Crash Statistics

In the year 2000, more than 2.8 million intersection-related crashes occurred in the United States, representing 44 percent of all reported crashes.36 Other national statistics include the following:

♦ About 8500 fatalities (23 percent of the total fatalities) and almost one million injury crashes occurred at or within an intersection. Of the fatal crashes at intersections, 47 percent involve left turns (or U-turns), 2 percent involve right turns, and 51 percent involve no turning maneuver.

♦ At intersections 8 percent of the crashes involve alcohol.

Table 2-4 lists a comparison of the Texas intersection crashes with the values published by the National Highway Traffic Safety Administration (NHTSA). A notable difference between the Texas and NHTSA values is the percent of injury crashes. Texas is much higher (65 percent) than the national value of 32 percent. Correspondingly, the property-damage-only (PDO) crashes represent a much smaller percent of all crashes in Texas as compared to the national data. Presumably this difference is a reflection of the thresholds used in Texas for reporting crashes.

For Texas, approximately 55 percent of crashes are at or related to an intersection or driveway (see Table 2-5). Nationally, 44 percent of crashes occur at intersections or are intersection related. A slightly higher percentage of fatal crashes are occurring at Texas intersections and driveways (26 percent) as compared to the national data (23 percent).

Of on-system urban crashes in the year 2000, 26 percent occurred at intersections and 20 percent were intersection related. A crash in an urban area is more likely to be at or
related to an intersection or driveway than a crash in a rural area. Only 51 percent of the urban crashes were at or near an intersection as compared to 37 percent for rural crashes.

Table 2-4. Intersection Safety Comparison.

<table>
<thead>
<tr>
<th></th>
<th>2000 NHTSA(^a)</th>
<th>2000 TEXAS(^b)</th>
<th>2000 TEXAS(^d) URBAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freq</td>
<td>%</td>
<td>Freq</td>
</tr>
<tr>
<td>ALL CRASHES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatality Crashes</td>
<td>37,409</td>
<td>0.6</td>
<td>3247</td>
</tr>
<tr>
<td>Injury Crashes</td>
<td>2,070,000</td>
<td>32.4</td>
<td>205,569</td>
</tr>
<tr>
<td>PDO Crashes</td>
<td>4,286,000</td>
<td>67.0</td>
<td>110,174</td>
</tr>
<tr>
<td>All Crashes</td>
<td>6,394,000</td>
<td>100.0</td>
<td>318,990</td>
</tr>
<tr>
<td>INTERSECTION AND INTERSECTION-RELATED CRASHES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatality Crashes</td>
<td>8474</td>
<td>22.6</td>
<td>844</td>
</tr>
<tr>
<td>Injury Crashes</td>
<td>995,000</td>
<td>48.1</td>
<td>120,477</td>
</tr>
<tr>
<td>PDO Crashes</td>
<td>1,804,000</td>
<td>42.1</td>
<td>53,928</td>
</tr>
<tr>
<td>All Crashes</td>
<td>2,807,000</td>
<td>43.9</td>
<td>175,249</td>
</tr>
</tbody>
</table>

\(^a\) Data from 2000 Motor Vehicle Crash Data from Fatality Analysis Reporting System (FARS)\(^37\)
\(^b\) Data reflect statewide crashes (both on and off system) for 2000
\(^c\) Includes class A, B, and C injury categories
\(^d\) Data reflect statewide crashes for intersection codes of: intersection, intersection related, and driveways

Table 2-5. Distribution of 2000 On-System Texas Urban Crashes by Relationship to Intersections.

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Urban</th>
<th></th>
<th>Rural</th>
<th></th>
<th>Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Percent</td>
<td>Frequency</td>
<td>Percent</td>
<td>Frequency</td>
<td>Percent</td>
</tr>
<tr>
<td>Intersection</td>
<td>31,592</td>
<td>26</td>
<td>9085</td>
<td>17</td>
<td>40,677</td>
<td>23</td>
</tr>
<tr>
<td>Intersection-Related</td>
<td>23,429</td>
<td>20</td>
<td>5970</td>
<td>11</td>
<td>29,399</td>
<td>17</td>
</tr>
<tr>
<td>Driveway Access</td>
<td>10,062</td>
<td>8</td>
<td>5183</td>
<td>9</td>
<td>15,245</td>
<td>9</td>
</tr>
<tr>
<td>Non-Intersection</td>
<td>54,500</td>
<td>46</td>
<td>34,654</td>
<td>63</td>
<td>89,154</td>
<td>51</td>
</tr>
<tr>
<td>Total</td>
<td>119,583</td>
<td>100</td>
<td>54,892</td>
<td>100</td>
<td>174,475</td>
<td>100</td>
</tr>
</tbody>
</table>

Older Driver Crashes

The U.S. Census Bureau\(^38\) projects that by 2030, one in five Americans will be aged 65 years and over. Automobile fatalities are expected to increase 45 percent for drivers over age 75, and pedestrian fatalities are also expected to increase as the population ages.\(^39\)

The single greatest concern in accommodating older road users, both drivers and pedestrians, is the ability of these persons to safely maneuver through intersections. The findings of one widely cited analysis of nationwide crash data reveal the percent of injuries and fatalities at intersections in the United States. For drivers 65 years and older, 37 percent of fatal crashes occur at intersections, compared with 16 percent or less for drivers up to 65 years of age.\(^38\) Figure 2-4 illustrates the findings for Texas during the period 1998 to 2000 as a function of age and road user type (driver or pedestrian). The Texas data revealed trends similar to the earlier national study. A disproportionate number of fatalities for older
drivers are associated with intersections. In Texas, 41 percent of the older driver fatalities are associated with intersections as compared to only 19 percent of drivers age 26 to 64. Both findings reinforce a long-standing recognition that driving situations involving complex speed-distance judgments under time constraints—the typical scenario for intersection operations—are more problematic for older drivers than for their younger counterparts.

![Figure 2-4. Percentage of Injuries and Fatalities at Intersections or Intersection Related for Drivers and Pedestrians (1998–2000 Texas Urban Data).]

Crash Frequency. Older drivers are involved in a disproportionate number of crashes where there is a higher-than-average demand imposed on driving skills. The driving maneuvers that most often precipitate higher crash frequencies among older drivers include:

- making left turns across traffic,
- merging with high-speed traffic,
- changing lanes on congested streets in order to make a turn,
- crossing a high-volume intersection,
- stopping quickly for queued traffic, and
- parking.

Countermeasures. The following countermeasures may help to alleviate the potential problems of the older driver and may improve overall driver behavior:

- Improve sight distance by modifying designs and removing obstructions, particularly at intersections and interchanges.
- Assess sight triangles for adequacy of sight distance.
- Provide decision sight distances as appropriate.
- Simplify and redesign intersections and interchanges that require multiple information reception and processing.
♦ Increase use of protected left-turn signal phases.
♦ Increase vehicular clearance times at signalized intersections.
♦ Use offset left-turn lanes.
♦ Provide wider and brighter pavement markings.
♦ Provide larger and brighter signs.
♦ Reduce sign clutter.
♦ Provide more redundant information such as advance guide signs for street name, indications of upcoming turn lanes, and right-angle arrows ahead of an intersection where route turns or where directional information is needed.

Before implementing a countermeasure, the impact on all modes of travel should be considered.

Pedestrian Crashes

The Roadway Safety Foundation predicts that pedestrian fatalities will increase as the population ages. Older pedestrians are more likely to have some vision loss and also may have mobility impairments that cause them to need more time to cross the street. Characteristics of national pedestrian crashes include:

♦ Based on an analysis of more than 8000 crashes, from six states, the most frequent crash types are:
 • dart-out first half (i.e., the pedestrian is struck in the first half of the street being crossed) (24 percent),
 • intersection dash (13 percent),
 • dart-out second half (10 percent),
 • midblock dart (8 percent), and
 • turning-vehicle crashes (5 percent).
♦ A 1999 report stated that individuals at both extremes of age were more likely to be victims of pedestrian accidents.41
♦ Pedestrians between the ages of 25 and 44 have been found to be involved in a higher rate of alcohol-related incidents.42
♦ Speeding is another major contributing factor in pedestrian crashes, being a factor in 29 percent of all fatal crashes involving pedestrians in 2000.40
♦ Pedestrian crashes are most likely to occur during daytime traffic peaks, but fatal crashes are more likely to occur between 5 pm and 11 pm. Elderly pedestrians however, are more likely to become involved in daytime incidents.43
♦ The majority of pedestrian fatalities occurred in urban areas (69 percent).44
♦ A 1992 analysis included an examination of pedestrian crashes and the collision types for older pedestrians. The results showed older pedestrians to be overrepresented in both right- and left-turn accidents. The young-elderly (ages 65 to 74) were most likely
to be struck by a vehicle turning right, whereas the old-elderly (age 75 and older) were more likely to be struck by a left-turning vehicle.22

♦ Roadway/environmental factors were identified in one-fourth of the pedestrian crashes. The most common factor cited was blocked vision, most often the result of bushes, trees, or other vegetation growing near the edge of the roadway or driveway.45

Bicyclist Crashes

Characteristics of national bicyclist crashes available from a 1996 report that evaluated 3000 bicycle-motor vehicle crashes from six states include the following:45

♦ Bicycle-motor vehicle crashes were distributed as:
 • parallel paths (36 percent),
 • crossing path (57 percent), and
 • specific circumstances (6 percent);

♦ Most frequent parallel path crashes were:
 • motorists turn/merge into bicyclist’s path (34 percent),
 • motorist over-taking (24 percent), and
 • bicyclists turn/merge into motorist’s path (21 percent);

♦ Most frequent crossing path crashes were:
 • motorist failed to yield (38 percent),
 • bicyclist failed to yield at an intersection (29 percent), and
 • bicyclist failed to yield midblock (21 percent).

Texas Pedestrian and Bicyclist Crashes

Characteristics of Texas pedestrian and bicyclist (called pedal cyclist in the Texas crash database) crashes occurring between 1998 and 2000 include:

♦ Although pedestrian crashes account for only 2 percent of Texas crashes and pedal cyclists account for 1 percent (see Table 2-6), their severity is much greater compared to other collisions. In Texas, 7 percent of the pedestrian crashes end in death as compared to 1 percent for all urban crashes (see Figure 2-5). The remaining 93 percent of pedestrian crashes end in some form of injury. For bicyclists, 99 percent of the crashes end in injury or fatality.

♦ For pedestrian crashes, 61 percent were non-intersection related. The intersection or driveway crashes were 10 percent at an intersection, 22 percent intersection related, and 7 percent driveway access. While most of the pedestrian crashes are non-intersection, most of the cyclist crashes are at or near an intersection or driveway. Only 29 percent of the bicyclist crashes were non-intersection.

<table>
<thead>
<tr>
<th>Collision With</th>
<th>On System</th>
<th>Off System</th>
<th>All Urban</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Percent</td>
<td>Frequency</td>
</tr>
<tr>
<td>Animal</td>
<td>718</td>
<td>0</td>
<td>288</td>
</tr>
<tr>
<td>Another Vehicle In Transport</td>
<td>288,027</td>
<td>81</td>
<td>264,879</td>
</tr>
<tr>
<td>Fixed Object</td>
<td>49,897</td>
<td>14</td>
<td>50,176</td>
</tr>
<tr>
<td>Other Non-Collision</td>
<td>1660</td>
<td>0</td>
<td>1370</td>
</tr>
<tr>
<td>Other Object</td>
<td>1361</td>
<td>0</td>
<td>759</td>
</tr>
<tr>
<td>Overturned</td>
<td>8676</td>
<td>2</td>
<td>4850</td>
</tr>
<tr>
<td>Parked Car</td>
<td>2702</td>
<td>1</td>
<td>14,648</td>
</tr>
<tr>
<td>Pedal Cyclist</td>
<td>1356</td>
<td>0</td>
<td>5015</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>3007</td>
<td>1</td>
<td>9033</td>
</tr>
<tr>
<td>RR Train</td>
<td>69</td>
<td>0</td>
<td>302</td>
</tr>
</tbody>
</table>

Figure 2-5. Pedestrian and Bicyclist Accident Severity (Texas Urban On- and Off-System Roadways 1998–2000).

- Most crashes and most pedestrian and bicyclist crashes occur between the hours of 3:00 pm and 7:00 pm. Another peak occurs in the morning between 7:00 am and 8:00 am (see Figure 2-6).
- The highest percent of pedestrian crashes occur on a Friday (18 percent), while Sunday is the least likely day for a pedestrian crash (11 percent). The other days of the week
had: Monday (14 percent), Tuesday (14 percent), Wednesday (14 percent), Thursday (15 percent), and Saturday (14 percent). Bicyclists followed a similar pattern with most crashes on Friday (16 percent) and least on Sunday (11 percent).

♦ The highest percent of pedestrian crashes occurs in October and April (see Figure 2-7). For pedal cyclists, the highest percent occurs in April and May followed by June, July, August, and September. Months with the lowest bicyclist crashes are November, December, and January.

♦ Other characteristics of pedestrian (and bicyclist) crashes in Texas are: 62 percent (77 percent) occurred in the daylight, 94 percent (97 percent) occurred in clear weather, 91 percent (95 percent) occurred on dry surfaces, and 98 percent (99 percent) involved one vehicle.

![Figure 2-6. Pedestrian and Bicyclist Crashes versus All Crashes (1998–2000 Texas Urban On- and Off-System Roadways by Time of Day).](image-url)
AASHTO Strategic Highway Safety Plan

In 1998, AASHTO approved its Strategic Highway Safety Plan, which was developed by the AASHTO Standing Committee for Highway Traffic Safety with the assistance of the Federal Highway Administration, the National Highway Traffic Safety Administration, and the Transportation Research Board Committee on Transportation Safety Management. The plan includes strategies in 22 key emphasis areas that affect highway safety. The goal is to reduce the annual number of highway deaths by 5000 to 7000. NCHRP Project 17-18(3) is developing a series of guides to assist state and local agencies in reducing injuries and fatalities in targeted areas. The guides correspond to the emphasis areas outlined in the AASHTO Strategic Highway Safety Plan. Each guide includes a brief introduction, a general description of the problem, the strategies/countermeasures to address the problem, and a model implementation process. The fifth volume of the NCHRP Report 500, Guidance for Implementation of the AASHTO Strategic Highway Safety Plan, Volume 5: A Guide for Addressing Unsignalized Intersection Collisions provides strategies that can be employed to reduce the number of unsignalized intersection collisions. An expanded version of each volume, with additional reference material and links to other information sources, is available on the AASHTO Web site at http://transportation+1.org/safetyplan.
Section 5

References

36 ITE. “Intersection Safety Issue Briefs.” Institute of Transportation Engineers. Not Dated.
Chapter 3
Design Elements

Contents:
Section 1 — Intersection Sight Distance ... 3-3
Section 2 — Horizontal Alignment .. 3-3
Section 3 — Turning Radius ... 3-3
Section 4 — Angle of Intersection ... 3-3
Section 5 — Vertical Alignment .. 3-3
Section 6 — References .. 3-3
Section 1
Intersection Sight Distance

Overview

The provision of appropriate intersection sight distance (ISD) reduces the potential for conflicts at intersections.

General Considerations

As a motorist approaches an intersection, the right of way is established by the traffic control devices or by state traffic laws. The *Texas Drivers Handbook*\(^1\) should be consulted for motorist responsibilities at intersections without traffic control devices.

The operator of a vehicle approaching an intersection should have an unobstructed view of the entire intersection and an adequate view of the intersecting highway to permit control of the vehicle to avoid a collision. When designing an intersection, the following factors should be considered:\(^2\)

- Adequate sight distance should be provided along both highway approaches to allow drivers and other road users to anticipate and avoid potential collisions.
- Gradients of intersecting roadways should be as flat as practical on sections that are to be used for storage of stopped vehicles.
- Combination of vertical and horizontal curvature should allow adequate sight distance of the intersection.
- Traffic lanes should be clearly visible at all times.
- Lane and crosswalk markings and signs should be clearly visible and understandable from a desired distance.
- Intersections should be evaluated for the effects of barriers, rails, retaining walls, landscaping, curbside parking, and other vertical elements on sight distance.

Sight distance is also provided at intersections to allow the drivers of stopped vehicles a sufficient view of the intersecting highway. If the available sight distance of an entering or crossing vehicle is at least equal to the appropriate stopping sight distance for the major road, then drivers have sufficient sight distance to anticipate and avoid collisions. To enhance traffic operations, intersection sight distances that exceed stopping sight distances are desirable along the major road.

Sight Triangles

Clear sight triangles are those areas along the intersection approach legs that should be clear of obstructions that can block road user’s view of traffic on the opposing roadway. The dimensions of the triangle are based on the design speed of the intersection roadways and the type of traffic control used at the intersection, grades on the roadways, and the roadway...
width. Two types of clear sight triangles are used at each intersection: approach sight triangles and departure sight triangles. Approach sight triangles are applicable for when the minor road driver is in motion while departure sight triangles apply when the minor road vehicle is accelerating from a stop position.

Approach Sight Triangles. Approach sight triangles are those visually clear areas on either side of an approach to an intersection that allow drivers approaching an intersection enough time to slow or stop to avoid vehicles approaching on the crossing roadway. Figure 3-1A shows typical clear sight triangles to the left and to the right for a vehicle approaching an uncontrolled or yield-controlled intersection. The dimension “a” represents the sight distance along the minor road while “b” represents the sight distance along the major road. The decision point shown in the figure is that point at which the driver should begin to stop if another vehicle is approaching on the cross street.\(^3\) Because of the use of Stop signs or traffic signals, approach sight triangles, as shown in Figure 3-1A, are not typically needed in urban areas.

Departure Sight Triangles. A departure sight triangle provides the driver of a stopped vehicle the sight distance necessary to either cross the intersection or merge in the traffic stream. Figure 3-1B shows typical departure sight triangles to the left and right of a vehicle at an intersection. Unlike the approach sight triangles, departure sight triangles should be provided for intersections with stop control, yield control, and some signalized intersections. The dimensions “a” and “b” shown in Figure 3-1B are based on assumptions derived from field observations of driver gap acceptance behavior. The dimension “a” is this distance from the stopped driver’s eye to the center of lane on the intersection approach. The dimension “b” provides the distance that the vehicle on the intersecting approach sees the minor-road driver.

The decision point (see Figure 3-1B) of the departure sight triangle on the minor road should be 14.4 ft [4.4 m] from the edge of the major-road traveled way. This represents the typical position of the minor-road driver’s eye when a vehicle is stopped relatively close to the major road. Field observation of vehicle stopping positions found that, where necessary, drivers will stop with the front of their vehicle 6.5 ft [2.0 m] or less from the edge of the major-road traveled way. Measurements of passenger cars indicate that the distance from the front of the vehicle to the driver’s eye for the current U.S. passenger car population is nearly always 8 ft [2.4 m] or less.\(^4\) Where practical, it is desirable to increase the distance from the edge of the major-road traveled way to the vertex of the clear sight triangle from 14.4 ft to 17.8 ft [4.4 m to 5.4 m]. This increase allows 10 ft [3.0 m] from the edge of the major-road traveled way to the front of the stopped vehicle, providing a larger sight triangle. The length of the sight triangle along the minor road (distance “a” in Figure 3-1B) is measured from the position of the driver’s eye to the midpoint of lane of interest (either the first lane to the left or the first lane to the right, depending on the sight triangle being examined).

Identification of Sight Obstructions within Sight Triangles. Within a sight triangle there are many obstructions that can obscure the driver’s view of oncoming vehicles. These may include buildings, vegetation, longitudinal barriers or retaining walls, side slopes, etc. The horizontal and vertical alignment of the intersecting roadways and any visual obstructions should be considered. For design purposes the driver’s eye is assumed to be 3.5 ft
[1080 mm] above the roadway. The object that is used for design approximates the height of an automobile and is assumed to be 3.5 ft [1080 mm] above the roadway.

Where the sight distance value used in design is based on a single-unit or combination truck as the design vehicle, it is also appropriate to use the eye height of a truck driver in checking sight obstructions. The recommended value of a truck driver’s eye height is 7.6 ft [2330 mm] above the roadway surface.

![Diagram of Intersection Sight Triangles]

Figure 3-1. Intersection Sight Triangles.

Intersection Control

The sight distance required at intersections varies depending on the type of intersection control. Sight distance criteria are discussed in AASHTO’s *A Policy on Geometric Design for Highways and Streets.*³
Case A — Intersections with No Control. The sight triangles for an intersection with no control should allow the driver of a vehicle to see an approaching vehicle and have enough time to stop before reaching the intersection. Chapter 9 of AASHTO’s *Green Book* provides tables (Exhibits 9-51 and 9-53, respectively) showing the lengths for the approach sight triangles shown in Figure 3-1A and adjustment factors for use where the approach grades are greater than 3 percent. Use of this procedure is demonstrated in Application 3-1 <link>.

Case B — Intersections with Stop Control on the Minor Road. The departure sight triangles for vehicles from a minor road to a major road should allow the driver of a vehicle to see approaching vehicles and choose gaps in the traffic that allow them to accelerate and complete a crossing maneuver or a turn without unduly interfering with major-road traffic operations. The *Green Book* method to determine the required sight distance and determine dimension “b” from Figure 3-1A is shown in Table 3-1. It uses the distance traveled at the road’s design speed during the time gap for the maneuvers to determine the intersection sight distance.

| Table 3-1. Case B1, Left Turn from Minor Roadway, Stop Control.³ |
|---------------------------------|---------------------------------|---------------------------------|
| **US Customary** | **Metric** | |
| ISD = 0.278 V_{major} t_{g} | ISD = 1.47 V_{major} t_{g} | |
| where: ISD = intersection sight distance (length of the leg of sight triangle along the major road) (ft) | where: ISD = intersection sight distance (length of the leg of sight triangle along the major road) (m) |
| V_{major} = design speed of major road (mph) | V_{major} = design speed of major road (km/h) |
| t_{g} = time gap for minor road vehicle to enter the major road (s) | t_{g} = time gap for minor road vehicle to enter the major road (s) |

If medians on divided roadways are wide enough to store vehicles, then departure sight triangles should be provided from the median stop position. If they are not wide enough to store vehicles then the median width’s effects should be included in the determination of the required sight distance as an additional lane.

Departure sight triangle for intersections with stop control on the minor road should be considered for three situations:

- **Case B1 – Left turn from the minor road.** Uses *Green Book* Exhibits 9-54 to 9-56. Use of this procedure is demonstrated in Application 3-2 <link>.

- **Case B2 – Right turn from the minor road.** The departure sight triangles for a right turn from the minor road are similar to the left-turn triangles except that the time gaps required can be reduced by one second. *Green Book* Exhibits 9-57 to 9-59 contain information on the procedure. Use of this procedure is demonstrated in Application 3-3 <link>.

- **Case B3 – Crossing maneuver from the minor road.** When vehicles are crossing the major road, the sight triangles provided in Cases B1 and B2 should be sufficient;
however if any of the following situations exist, then the sight triangles should be checked:

- where left and/or right turns are not permitted from a particular approach and the crossing maneuver is the only legal maneuver;
- where the crossing vehicle would cross the equivalent width of six or more lanes; or
- where substantial volumes of heavy vehicles cross the roadway and steep grades that might slow the vehicle while its back portion is still in the intersection are present on the departure roadway on the far side of the intersection.

The *Green Book* provides tables and figures to determine the required sight distance for Case B3 (see *Green Book* Exhibits 9-57 to 9-59). Use of this procedure is demonstrated in Application 3-4 <link>.

Case C – Intersections with Yield Control on the Minor Road. For intersections with yield control, approach sight triangles are larger than those needed for stop control. The following two situations are considered for yield control:

- **Case C1 – Crossing maneuver from the minor road.** *Green Book* Exhibits 9-60 to 9-62 contain the sight distance lengths for Case C1. Use of this procedure is demonstrated in Application 3-5 <link>.

- **Case C2 – Left or right turn from the minor road.** *Green Book* Exhibits 9-63 to 9-65 contain the sight distance lengths for Case C2. Use of this procedure is demonstrated in Application 3-6 <link>.

Case D – Intersections with Traffic Signal Control. There are no required sight triangles in the *Green Book* for signalized intersections, although the following sight conditions should be considered:

- The first vehicle at one approach should be visible to the first vehicles on all the other approaches.
- Left-turning vehicles should have sufficient sight distance to select gaps in oncoming traffic and complete left turns.
- Where right turn on red is permitted, as at most locations, the departure sight distance to view traffic approaching from the left should be provided, as discussed in Case B2.

If the signal will be placed on flashing mode (yellow for the major roadway and red for the minor roadway) then the appropriate sight triangles for Case B (left and right) should be provided on the minor road approaches.

Use of the Case D procedure is demonstrated in Application 3-7 <link>.

Case E – Intersections with All-Way Stop Control. There are no sight triangle requirements for all-way stop control, although the first vehicles at every approach should be visible to each other.

Case F – Left Turns from the Major Road. Drivers turning left across oncoming traffic of a major roadway (see Figure 3-2) require sufficient sight distance to determine when it is
safe to cross and there is time to complete the maneuver. *Green Book* Exhibits 9-66 to 9-68 provide the intersection sight distance lengths for this case. If stopping sight distance has been provided continuously along the major road and if sight distance for Case B (stop control) or Case C (yield control) has been provided for each minor-road approach, sight distance will generally be adequate for left turns from the major roads. Therefore, no separate check of sight distance for Case F may be needed. However, at three-leg intersections or driveways located on or near a horizontal curve or crest vertical curve on the major road, the availability of adequate sight distance for left turns from the major road should be checked. In addition, the availability of sight distance for left turns from divided highways should be checked because of the possibility of sight obstructions in the median.

At four-leg intersections on divided highways, opposing vehicles turning left can block a driver’s view of oncoming traffic. Intersection designs using offset opposing left-turn lanes can provide drivers with a better view of oncoming traffic (<insert link to Chapter 4, Section 2, Offset Left-Turn Lanes>). Use of the Case F procedure is demonstrated in *Application 3-8* (<link>).

![Figure 3-2. Sight Triangle for Left Turn from Major Roadway.](image)
Table 3-2 lists the ISD cases along with a list of the relevant *Green Book* exhibits and potential conditions that would result in adjusting the base ISD value.

Table 3-2. Summary of Intersection Sight Distance Cases and Potential Adjustments.

<table>
<thead>
<tr>
<th>Case</th>
<th>Description</th>
<th>Potential Adjustments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case A</td>
<td>Intersections with No Control</td>
<td>♦ Approach Grade > 3%</td>
</tr>
<tr>
<td>Case B1</td>
<td>Intersections with Stop Control on the Minor Road, Left Turn from the Minor Road</td>
<td>♦ Design Vehicle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>♦ Approach Grade > 3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>♦ Number of lanes or presence of median on major road to be crossed</td>
</tr>
<tr>
<td>Case B2</td>
<td>Intersections with Stop Control on the Minor Road, Right Turn from the Minor Road</td>
<td>♦ Design Vehicle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>♦ Approach Grade > 3%</td>
</tr>
<tr>
<td>Case B3</td>
<td>Intersection with Stop Control on the Minor Road, Crossing Maneuver from the Minor Road</td>
<td>♦ Design Vehicle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>♦ Approach Grade > 3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>♦ Number of lanes or presence of median on major road to be crossed</td>
</tr>
<tr>
<td>Case C1</td>
<td>Intersections with Yield Control on the Minor Road, Crossing Maneuver from the Minor Road</td>
<td>♦ Design Vehicle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>♦ Approach Grade > 3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>♦ Number of lanes or presence of median on major road to be crossed</td>
</tr>
<tr>
<td>Case C2</td>
<td>Intersections with Yield Control on the Minor Road, Left or Right Turn from the Minor Road</td>
<td>♦ Design Vehicle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>♦ Approach Grade > 3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>♦ Number of lanes or presence of median on major road to be crossed</td>
</tr>
<tr>
<td>Case D</td>
<td>Intersections with Traffic Signal Control</td>
<td>♦ First stopped vehicle on one approach should be visible to the drivers of the first stopped vehicles on each of the other approaches.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>♦ For left-turning vehicles, check Case B1 or Case F.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>♦ If on two-way flash, check Case B.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>♦ If right turns on red are permitted, check Case B2.</td>
</tr>
<tr>
<td>Case E</td>
<td>Intersections with All-Way Stop Control</td>
<td>♦ First stopped vehicle on one approach should be visible to the drivers of the first stopped vehicles on each of the other approaches.</td>
</tr>
<tr>
<td>Case F</td>
<td>Left Turns from the Major Road</td>
<td>♦ Design Vehicle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>♦ Number of lanes or presence of median on major road to be crossed</td>
</tr>
</tbody>
</table>

Adjustment for Skewed Intersections

When two roadways intersect at an angle less than 60 deg and realignment to increase the angle of intersection is not justified, some of the factors for determination of intersection sight distance may need adjustment. Realignment may not be justified in cases involving intersections with low crossroad traffic volumes and no apparent safety concerns. However, if traffic volumes are expected to increase in the near term, or if the intersection may be signalized, realignment should be considered.
At an oblique-angle intersection, the length of the travel paths for some turning and crossing maneuvers will be increased. The actual path length for a turning or crossing maneuver can be computed by dividing the total widths of the lanes (plus the median width, where appropriate) to be crossed by the sine of the intersection angle. If the actual path length exceeds the total widths of the lanes to be crossed by 12 ft [3.7 m] or more, then an appropriate number of additional lanes should be used in applying the adjustment for the number of lanes to be crossed, as discussed in the *Green Book*³ in its Chapter 9 section, Effect of Skew.

In the obtuse-angle quadrant of an oblique-angle intersection, the angle between the approach leg and the sight line is often so small that drivers can look across the full sight triangle with only a small head movement (see Figure 3-3). However, in the acute-angle quadrant, drivers are required to turn their heads considerably to see across the entire clear sight triangle. For this reason, it is recommended that the sight distance criteria for Case A not be applied to oblique-angle intersections and that sight distances at least equal to those for Case B be provided, whenever practical.³

![Figure 3-3. Sight Triangles at Skewed Intersections.³](image-url)
Section 2

Horizontal Alignment

Overview

There are a number of general considerations that are important in attaining safe, smooth flowing, and aesthetically pleasing facilities.

Horizontal Curvature at Intersections

Intersections on sharp horizontal curves should be avoided. Superelevation and the widening of pavement on those curves complicates the design of the intersection and may affect sight distance. In addition, the curves should be evaluated with respect to the requirements imposed by the design speed on the respective roadways. The greatest benefit is obtained when the design speed used for the curve approaches that of the major roadway.

The placement of an intersection at the beginning of a horizontal curve should be avoided. Realignment as shown in Figure 3-4 typically provides better visibility and guidance onto the major roadway.

![Realignment of Tangent Roadway at Intersection](image)

Figure 3-4. Realignment of Tangent Roadway at Intersection.

The curves used for the realignment shown in Figure 3-4 should be carefully considered and be selected with regard to the design speed on the realigned roadway.

Realigning Multileg Intersections

Intersections with five or more intersection legs (multileg) should be avoided wherever practical. At locations where multileg intersections are used, it may be satisfactory to have all intersection legs intersect at a common paved area, where volumes are light and stop control is used. At major intersections, traffic operational efficiency can often be improved by reconfigurations that remove some conflicting movements from the major intersection. Such reconfigurations are accomplished by realigning one or more of the intersections, as shown in Figure 3-5.
Figure 3-5A shows the simplest application of this principle on an intersection with five approach legs. The diagonal leg is realigned to join the upper road at sufficient distance from the main intersection to form two distinct intersections, each of which can be operated simply. The left-to-right highway is likely to be the more important route, and for this reason the diagonal leg is realigned to locate the new intersection on the less important road.

Figure 3-5B illustrates an intersection with six approach legs, two of which are realigned in adjacent quadrants to form a simple four-leg intersection at an appropriate distance to the right of the main intersection, which is itself converted to a simple four-leg intersection. This pattern applies where the top-to-bottom highway at the left is the more important route. If the left-to-right highway is more important, it may be preferable to realign the diagonal legs toward the other highway and thereby create three separate intersections along the minor highway. The intersection configurations in Figure 3-5 are shown in their simplest form. Turning lanes and divisional islands may be used, as appropriate, to fit the particular situation.3

![Figure 3-5. Realigning Multileg Intersections.3](image-url)
Superelevation on Low-Speed Facilities (45 mph [72 km/h] or less)

Although superelevation is advantageous for traffic operations, various factors often combine to make its use impractical in many developed areas. These factors include the following:

♦ wide pavement areas,
♦ surface drainage considerations,
♦ frequency of cross streets and driveways, and
♦ the need to meet the grade of adjacent property.

For this reason, horizontal curves on low-speed streets in urban areas are frequently designed without superelevation, and lateral acceleration is provided solely with side friction. Figure 2.2 of the Roadway Design Manual shows the relationship of radius, superelevation rate, and design speed for low-speed urban street design. Additional information on superelevation is provided in Application 3-9.

Superelevation for Turning Roadways at Intersections

In intersection design, turning roadways frequently have curves with relatively sharp radii. When speed is not affected by the presence of other vehicles, drivers on turning roadways anticipate the sharp curves and accept higher side friction than they would accept on open highway curves of the same radii. This behavior appears to stem from their desire to maintain their speed through the curves, although some speed reduction does occur. When other traffic is present, drivers will travel more slowly on turning roadways than on open highway curves of the same radii because they must diverge from and merge with through traffic. Therefore, in designing for safe operation, periods of light traffic volumes and corresponding speeds will generally influence the design. Designs that encourage lower travel speeds will better accommodate pedestrian traffic.

Superelevation Transition

Superelevation is generally developed so that two-thirds of the transition occurs outside of the curve and one-third inside the curve, according to the Roadway Design Manual. The AASHTO Green Book recommends that 70 to 90 percent of the superelevation be located on the tangent, with recognition that deviation from its recommended values by 10 percent should not result in operational concerns. Chapter 2, Section 4 of the Roadway Design Manual should be consulted to design the superelevation transition.
Superelevation Effects on Pedestrian Crossings

The provision of superelevation should be examined for its effects on pedestrian crossings. Longitudinal slopes and cross slopes in crosswalks should not exceed the maximum slopes permissible under the ADAAG and Texas Accessibility Standards. Further information on those guidelines is provided in Chapter 7, Section 2, Crosswalks <link>.
Section 3
Turning Radius

Overview

The design of the corner radius affects how drivers traverse the intersection, including the speeds chosen as well as the path the driver follows. The corner also affects other features such as the provision of islands (see Chapter 4, Section 5). Turning templates (hardcopy or CAD cells) or turning path software may be used to predict the paths of vehicles in curves. Application 3-10 examines the influence of some of these factors.

Design Vehicle

The choice of design vehicle greatly influences the selection of an appropriate turning radius or turning roadway width. Consideration should be given to occasional vehicles (i.e., moving vans) as well as the predominant vehicle (i.e., passenger car) in developing an intersection design. Chapter 7, Section 7 of the Roadway Design Manual should be consulted for more information about selecting design vehicles. In addition, the vehicle classification data available through the Statewide Traffic Analysis Reporting System (STARS), administered by Transportation Planning and Programming Division (TPP), can show what types of vehicles are actually using a particular facility. Supplementing the hard infrastructure (curbs) with paint markings can be a useful technique to effectively reduce large areas of pavement to decrease the possibility of driver confusion.

Radius

The relationship between lane width, radius, and intersection angle affects the path vehicles take when turning at an intersection. The selection of the radius at an intersection affects turning-vehicle speeds and lane positioning. Consideration of the type of vehicle used in the design and acceptable lane positioning should be made based on the types of main and cross roadways. Curb radii should be selected to accommodate desired design vehicles (but not necessarily to turn into first lane on a multilane roadway). For intersections with minor roadways it is frequently judged acceptable for infrequent large trucks to occupy both lanes on the minor roadway in the course of completing the turning maneuver. This type of design would be inappropriate for a major crossroad, of course, or where trucks are frequent users of the minor roadway. Table 3-3 lists a summary of some of the effects the corner radii selection has on the operation of an intersection.
Table 3-3. Turning Radius Effects.

<table>
<thead>
<tr>
<th>Benefits of Larger Radii</th>
<th>Benefits of Smaller Radii</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ Accommodates larger vehicles without encroachment</td>
<td>♦ Reduced vehicle crossing time</td>
</tr>
<tr>
<td>♦ Permits higher turning-vehicle speeds in free-flow situations</td>
<td>♦ Reduced pedestrian crossing time leads to reduced vehicular delay at signalized intersections</td>
</tr>
<tr>
<td>♦ May allow the presence of islands for traffic control devices and pedestrian refuge areas</td>
<td>♦ Reduced turning speeds can benefit pedestrians</td>
</tr>
<tr>
<td></td>
<td>♦ Reduced pavement area</td>
</tr>
</tbody>
</table>

Figure 3-6 illustrates various radii and swept paths for two design vehicles. The *Green Book* provides tabular values for the cross street width occupied by turning vehicles in its Exhibit 9-31.

The following curb radii are generally recommended:

♦ 15 ft [4.6 m] to 25 ft [7.6 m] to accommodate passenger cars and

♦ 40 ft [12 m] to 50 ft [15 m] to accommodate heavy volumes of trucks or buses.

If combination tractor-trailer units are anticipated in significant volume, the *Roadway Design Manual’s* section on Minimum Designs for Truck and Bus Turns, Chapter 7, should be consulted <link>.
Effects on Pedestrians

The provision of larger radii affects the path of pedestrians at the intersection. Larger radii can increase the distance pedestrians are exposed to traffic and move crosswalks and curb ramps away from the intersection. The selection of a radius should be weighed in light of these effects, and may result in a compromise between pedestrian needs and vehicle needs.³
Crosswalk lengths increase with larger curb radii if the crosswalk is located inside the corner radius (see Figure 3-7), increasing pedestrian crossing time and, subsequently, traffic signal timing.

Another issue that may be problematic is the speed of the turning vehicles. The speed of turning vehicles can be estimated by the following equations.\(^5\)

The prediction equation for the 85\(^{th}\) percentile speed at the beginning of the right turn is:

\[
V_{85BT} = 17.50 - 1.00 \text{ Chan} + 0.10 \text{ CR} - 0.006 \text{ Len} + 0.13 \text{ Wid}
\]

Where:

- \(V_{85BT}\) = 85\(^{th}\) percentile free-flow speed near the beginning of the right turn (mph)
- Chan = channelization present at site, Chan = 0 for islands and 1 for lines
- CR = corner radius (ft)
- Len = length of right-turn lane (ft)
- Wid = width of right-turn lane at start of right turn (ft)

If the length and width of the right-turn lane are not readily available and the average values of 12 ft for lane width and 193 ft for lane length are assumed, the equation becomes:

\[
V_{85BT} = 17.80 - 1.00 \text{ Chan} + 0.10 \text{ CR}
\]

The equation for predicting the 85\(^{th}\) percentile speed near the middle of the right turn is:

\[
V_{85MT} = 13.03 + 0.23 \text{ Chan} + 0.06 \text{ CR} - 0.01 \text{ Len} + 0.40 \text{ Wid}
\]

Where:

- \(V_{85MT}\) = 85\(^{th}\) percentile free-flow speed near the middle of the right turn (mph)
- Chan = channelization present at site, Chan = 0 for islands and 1 for lines
- CR = corner radius (ft)
- Len = length of right-turn lane (ft)
- Wid = width of right-turn lane at start of right turn (ft)

If the length and width of the right-turn lane are not readily available and the average values of 12 ft for lane width and 193 ft for lane length are assumed, the equation becomes:

\[
V_{85BT} = 14.87 - 0.23 \text{ Chan} + 0.06 \text{ CR}
\]
Slower vehicle speeds improve pedestrian safety as they cross the roadway. However, because the turning vehicles slow to complete the maneuver, large speed differentials may result in a substantial distance upstream from the crossroad or driveway. Thus, consideration for the use of deceleration lanes should be given. Further information about deceleration lanes is provided in Chapter 4, Section 3 of this manual <link>.

Right of Way

Right of way and corner setback varies with curb radii but is also affected by border width and sight distance. Right of way should be obtained that provides an acceptable border width through the curb radius and permits attaining required intersection sight distance and stopping sight distance on the turning roadways.

Parking Lanes

When parking lanes are provided, the effective corner radius is increased if parking is restricted near the intersection.

Figure 3-8 shows an example that provides accommodation for larger vehicles through encroachment into the space provided by the parking restriction. Chapter 4, Section 7 of this manual should also be reviewed for parking lane restrictions at intersections <link>.

Minimum Curb Radius

The minimum curb radius used should be 5 ft [1.5 m] to enable the effective use of street sweepers.³
Figure 3-7. Added Crosswalk Distance with Increased Radius (Illustrated Using a 26-ft [7.9 m] Roadway, 5-ft [1.5 m] Sidewalk, and 6-ft [1.8 m] Planting Strip for the Setback Sidewalk).
Figure 3-8. Effective Radius with Parking Restriction.
Section 4

Angle of Intersection

Overview

For safety and economy, intersecting roads should generally meet at or nearly at right angles.

General Considerations

The ideal angle of intersection is 90 deg between two roadways. If a 90-deg angle cannot be obtained, the AASHTO Green Book recommends an angle of intersection of no less than 60 deg (see Figure 3-9). Skewed intersections of less than 60 deg should be evaluated for intersection sight distance using adjusted turning paths and criteria (see Chapter 3, Section 1, Adjustment for Skewed Intersections). Older drivers have significantly more problems at skewed intersections than average drivers. Therefore, the Guidelines and Recommendations to Accommodate Older Drivers and Pedestrians Handbook recommends an angle of intersection of no less than 75 deg. If the angle must be less than 75 deg, it recommends that right turn on red be prohibited.

Realigning Intersections

When existing intersecting roadways do not meet the desired specifications, redesigning the intersection is recommended. Roads intersecting at acute angles need extensive turning roadway areas and tend to limit visibility, particularly for drivers of trucks. When a truck is on an obtuse angle, the driver has blind areas on the right side of the vehicle. Acute angle intersections increase exposure time for the vehicles crossing the main traffic flow. Realigning roadways as shown in Figure 3-10 has been shown to be beneficial. The greatest
benefit is obtained when the curves used to realign the roads allow operating speeds nearly equivalent to the roadway approach speeds. A design exception may be required if curvature and sight distance requirements are not met (see *Roadway Design Manual* Chapter 1, Section 2 <link>). It should be noted that options A and B may require a considerable amount of new ROW, option C may present problems if there is a significant through movement on the realigned roadway due to the potential for large left-turn queues on the major roadway, and the separation distance between the intersections in options C and D needs to be sufficient to allow for adequate storage. The design of the profile and alignment should be carefully considered if there is a potential for the signalization of the intersection (or a change in which roadway has a stop condition), since vehicles would enter the intersection at speed rather than from a stop condition.

![Realignment Options at Intersections](image)

Figure 3-10. Realignment Options at Intersections.³
Section 5
Vertical Alignment

Overview

At an intersection, the combination of grade lines of the intersecting roadways should provide as seamless a transition as possible. Chapter 6, Section 3 Profile should also be reviewed to address drainage concerns regarding the vertical alignment of intersections.

Vertical Alignment

Substantial grade changes should be avoided at intersections, but that is not always possible. Adequate sight distance along all intersecting roads should be provided. Those sections of roads that are used for storage of stopped vehicles, otherwise known as storage platforms, should have a gradient that is as flat as possible. Where pedestrians are expected, intersections should be “tabled” as much as possible to ensure the cross slope in crosswalks is less than 2 percent.

The alignment and grades are subject to greater constraints at or near intersections than on the open road. At or near intersections, the combination of horizontal and vertical alignment should provide traffic lanes that are clearly visible to drivers at all times, clearly understandable for any desired direction of travel, free from the potential for conflicts to appear suddenly, and consistent in design with the portions of the highway just traveled.

The combination of vertical and horizontal curvature should allow adequate sight distance at an intersection. As discussed in Chapter 3 of the AASHTO Green Book, a sharp horizontal curve following a crest vertical curve is undesirable, particularly on intersection approaches.

Grades

When the intersecting gradients are 3 percent or less, stopping and accelerating distance do not differ substantially from those for level grades. However, if grades are greater than 3 percent, changes in several design elements may have to be made because of the effects of the grades on vehicle performance. Because of these effects and the complexities of intersecting two roadways when one or both are on substantial grades, grades of 3 percent or more should generally be avoided at intersections. If existing conditions require grades above 3 percent, grades up to 6 percent may be retained, although adjustments for the effects of the grades should be made in the geometric design elements (primarily sight distance) of the roadways. The use of grades greater than 2 percent will not allow compliance for cross slopes in the crosswalk as required by ADAAG and TAS. Chapter 3, Section 1 of this manual should be consulted regarding intersection sight distance and the Roadway Design Manual regarding stopping sight distance.
Coordination of Vertical Profiles

The vertical profiles of the main and cross roadways should be coordinated to provide acceptable ride quality for drivers.10 Simply matching the crossroad vertical profile to the main road vertical profile and cross section (see Figure 3-11A) may be acceptable in situations where the roadways are relatively flat. A considerable transition length is generally required when significant grades are involved because of the length of the vertical curves needed to meet design speed requirements. In locations where traffic does not always stop on the crossroad (i.e., a traffic signal is present) the minor road will have an undesirable vertical profile unless adequate vertical curves are provided.

The profile gradelines and cross sections on the legs of an intersection should be adjusted for a distance back from the intersection proper to provide a smooth junction and proper drainage. Normally, the gradelines of the major road should be carried through the intersection and that of the minor road should be adjusted to it. This design involves a transition in the crown of the minor road to an inclined cross section at its junction with the major road. For simple unchannelized intersections involving low design speeds and stop or signal control, it may be desirable to warp the crowns of both roads into a plane at the intersection; the appropriate plane depends on the direction of drainage and other conditions. Changes from one cross slope to another should be gradual. Intersections at which a minor road crosses a multilane divided highway with a narrow median on a superelevated curve should be avoided whenever practical because of the difficulty in adjusting grades to provide a suitable crossing. Gradelines of separate turning roadways should be designed to fit the cross slopes and longitudinal grades of the intersection legs.3 It is generally helpful to plot contours of the entire intersection to evaluate the impacts of the proposed warping on drainage and ADAAG/TAS compliance. Further guidance regarding warping the pavement surfaces can be found in Chapter 6, Section 3, Profile <link>.

Figure 3-11B provides an example of coordinating the cross section of the main roadway and the vertical alignment on the crossroad to achieve a better design. By changing the crown on the main road, the passage across it is much smoother. Because the resulting grade changes will be reduced and result in shorter vertical curves, this alignment will require less distance to meet design speed than that shown in Figure 3-10A while meeting design speed requirements. The design will require that a sufficient transition length on the major roadway be provided, however.

Minor changes in vertical profiles may be required on either the main or cross roadway. Changes in grade should generally be affected by using a vertical curve with a K-value that meets the design speed of the roadway. As provided in the Roadway Design Manual,2 however, minor grade changes may be accomplished without the use of a vertical curve under the following circumstances:

\begin{itemize}
 \item 1 percent or less for design speeds equal to or less than 45 mph [72 km/h], or
 \item 0.5 percent or less for design speeds greater than 45 mph [72 km/h].
\end{itemize}
Even when the above criteria are met, conditions where grade changes without vertical curves are not recommended include:

- bridges (including bridge ends),
- direct-traffic culverts, and
- other locations requiring carefully detailed grades.

![Diagram of vertical alignments](image)

Figure 3-11. Coordination of Vertical Alignments on Horizontal Tangent.

Figure 3-12 provides other examples of coordinating alignments where roadways are on curves. If the vertical alignment of the crossroad and the horizontal curve on the main roadway are complementary as in Figure 3-12A, then the alignment can be relatively smooth. The case illustrated in Figure 3-12B is more difficult to accomplish because of the introduction of the required vertical curves on the minor road. The vertical curve lengths and the intersection sight distance requirements will necessitate careful consideration of the alignment on the minor road.
Figure 3-12. Coordination of Vertical Alignments on Horizontal Curves.10
Section 6

References

Chapter 4
Cross Section

Contents:

Section 1 — Through Lanes .. 4-3
Section 2 — Left-Turn Lanes .. 4-5
Section 3 — Right-Turn Lanes ... 4-13
Section 4 — Channelization ... 4-19
Section 5 — Island and Median Design .. 4-23
Section 6 — Bicycle Facilities ... 4-35
Section 7 — Shoulders and Parking ... 4-43
Section 8 — References ... 4-45
Section 1

Through Lanes

Overview

Through lanes in the intersection should normally match the lanes upstream of the intersection in both number and width, although lanes can be added (i.e., downstream of an intersection or in the immediate area of the intersection) or removed if necessary for capacity purposes (i.e., for a lane drop).

Width

Lane widths vary for different functional classifications and depend on the scope of work. Design criteria are provided in the Roadway Design Manual.1

♢ Reconstruction (4R) work:

- Urban streets and frontage roads: Roadway Design Manual Table 3-1, Geometric Design Criteria for Urban Streets <link>
- Suburban roadways: Roadway Design Manual Table 3-5, Geometric Design Criteria for Suburban Roadways <link>

♢ Rehabilitation (3R) work:

- Roadway Design Manual Table 4-3, 3R Design Guidelines for Urban Streets All Functional Classes <link>
- Roadway Design Manual Table 4-5, 3R Design Guidelines for Urban Frontage Roads <link>

Adding a Lane

The capacity of urban roadways near at-grade signalized intersections is generally limited by the capacity at those intersections rather than on the links between the intersections. Signalization restricts the movement of vehicles through an intersection (thus limiting conflicts between opposing travel directions) but restricts capacity on the through roadways. Additional through lanes may be required at an intersection to meet capacity needs. Taper lengths and deceleration lengths for a new through lane are similar to those needed when introducing a left-turn lane (see Table 3-3 in the Roadway Design Manual <link>).1
Lane Drop

Lane drops are used to reduce the total number of lanes. The lane drop can occur at an intersection in the form of a mandatory right (or left) turn or after the intersection (see Figure 4-1). When the lane drop occurs after the intersection, the taper and acceleration lengths shown in the Roadway Design Manual, Figure 3-10 can be utilized. Application 4-1 provides an example of a situation when a lane drop occurs after an intersection due to the end of a widening project.

![Figure 4-1. Lane Drops.](A) Lane Drop at Intersection

![Figure 4-1. Lane Drops.](B) Lane Drop after Intersection

Reallocation of Cross Section

Undivided multilane roadways without turn lanes may sometimes function as if the centermost through lanes were left-turn lanes, as vehicles wait for openings in the opposing traffic. If large numbers of turning vehicles are present, then these “through” lanes may actually operate as turn lanes. An improvement alternative to the four-lane urban cross section is to redesign it to a three-lane cross section with the middle lane becoming a continuous left-turn lane since this is similar to how the cross section is working. The redesign can result in additional width available for bicycle lanes, wider sidewalks, or roadside amenities. The improvement is generally called a “road diet.” Application 4-2 provides examples of the road diet concept.
Section 2

Left-Turn Lanes

Overview

Left-turn lanes are used to provide space for the deceleration and storage of turning vehicles (see Figure 4-2). They may be used to improve safety and/or operations at intersections. Multiple left-turn lanes may be used to accommodate high peak hour left-turn volumes.

Provision of Left-Turn Lanes

Strong consideration should be given to the provision of left-turn bays at all signalized intersections, intersections that may be signalized in the future, and intersections of higher-class roadways.

Left-turn lanes can also improve safety at all types of intersections. The TxDOT Roadway Design Manual includes recommendations for when left-turn lanes should be considered based on traffic volumes (link to RDM Table 3-11). Application 4-3 illustrates the use of the guidelines on when to consider a left-turn lane on a two-lane highway.

Length

The length of the turn lanes depends on three elements:

♦ deceleration length,
♦ storage length, and
♦ entering taper.

If insufficien room is available for each of these elements, allowing a moderate amount of deceleration length to be included in the taper section is acceptable. Table 3-3 of the Roadway Design Manual provides recommended lengths for the dimensions shown in the Roadway Design Manual figure (link to Roadway Design Manual Figure 3-1). Deceleration length assumes that moderate deceleration will occur in the through traffic lane and the vehicle entering the left-turn lane will clear the through traffic lane at a speed of 10 mph [16 km/h] slower than through traffic. Where providing this deceleration length is impractical, it may be acceptable to allow turning vehicles to decelerate more than 10 mph [16 km/h] before clearing the through traffic lane. See the Roadway Design Manual Table 3-3.

When determining storage lengths, the length of the queue in the adjacent through lane should be reviewed to ensure that queued traffic will not block the entrance to the dedicated turn lane. Application 4-4 demonstrates this concept.
A dual left-turn lane is shown in Figure 4-3. The length of dual left-turn lanes may be found in the *Roadway Design Manual*¹ Table 3-4. If dual left-turn lanes are used, the length required for storage is approximately half that required for single left-turn lanes.² Flexibility in signalization is provided if the left-turn movements are separated as shown in Figure 4-3 (dimension m, note at *). This separation, if sufficient, can allow concurrent dual left-turn phases. Separate dual left-turn phases eliminate the potential problem of overlapping vehicle paths in the intersection.

Figure 4-2. Left-Turn Lanes on Urban Streets.

Figure 4-3. Dual Left-Turn Lane.
Width

The width of auxiliary lanes should preferably match the width of the through lanes, although they should be at least 10-ft wide [3 m]. If curbs are present, a curb offset of 1 to 2 ft [0.3 to 0.6 m] from the edge of the travel lane to the face of the curb should be used.

To accommodate a single left-turn lane, a median width of 18 ft [5.5 m] (12-ft-lane width [3.7 m] plus a 6-ft divider [1.8 m]) is recommended. The 6-ft divider [1.8 m] may provide a refuge for pedestrians, depending on its design (see Chapter 4, Section 5, Island and Median Design <link>); however, it is not sufficient to fully offset the turn lane (discussed below). If dual left-turn lanes are used, a median width of 28 to 30 ft [8.5 to 9.1 m] (11 to 12 ft [3.4 to 3.7 m] lanes plus a 6-ft divider [1.8 m]) is recommended.

If dual left-turn lanes are used, the median opening and crossroad should be sufficiently wide to accommodate both incoming lanes.

Offset Left-Turn Lanes

Vehicles in opposing left-turn lanes can limit each other’s views of approaching traffic. The restriction on the sight distance is dependent on the amount and direction of the offset between the opposing left-turn lanes. The offset is measured between the left edge of a left-turn lane and the right edge of the opposing left-turn lane as shown in Figure 4-4.
Benefits of positive offset left-turn lanes include:

- better visibility of opposing through traffic,
- improved unprotected left-turn phase,
- decreased possibility of conflict between opposing left-turn movements within the intersection, and
- service for more left-turn vehicles in a given period of time (particularly at signalized intersections).

The impact on pedestrian crossings of all roadways should be considered in the design of offset left-turn lanes.

Figure 4-5 shows an example of an offset left-turn lane.

Application 4-5 <link> presents an example where offset left-turn lanes were used to improve the view of oncoming vehicles.
Guidelines for Offset Left-Turn Lanes

Greater ROW width is required to offset left-turn lanes, but research has shown that they can provide significantly greater sight distance for left-turn maneuvers, a particularly critical maneuver for older drivers.\(^5\) Guidelines were developed for offsetting opposing left-turn lanes at 90-degree intersections on level, tangent sections of divided roadways with 12 ft \([3.7 \text{ m}]\) lanes (see Table 4-1).\(^6\) The minimum offsets in the table are those required to provide opposing left-turning vehicles with adequate sight distances. They are applicable to left-turning passenger cars opposed by either another passenger car or a truck. The desirable offsets are those that provide opposing left-turning vehicles with unrestricted sight distances, and therefore, they are independent of design speed. The guidelines include minimum and desirable offsets when (a) both vehicles are unpositioned and (b) the left-turning vehicle is unpositioned and the opposing left-turning vehicle is positioned. Positioned vehicles entered the intersection to obtain a better view of oncoming traffic while unpositioned vehicles were defined as those that remained behind the stop line while waiting to turn left. A previous study found that 60 percent of older drivers did not position their vehicle. Therefore, in areas with high percentages of older drivers, the guidelines based on both vehicles being unpositioned should be used. Likewise, in areas where there are high percentages of trucks, the guidelines based on the opposing left-turning vehicle being a truck should be used.
Table 4-1. Guidelines for Offsetting Opposing Left-Turn Lanes.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Minimum Offset (m)</th>
<th>Design Speed (km/h)</th>
<th>Desirable Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Metric</td>
<td>Opposing Left-Turn Vehicle</td>
<td>Location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Passenger Car</td>
<td>Unpositioned</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Positioned</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Truck</td>
<td>Unpositioned</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Positioned</td>
<td>0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric</th>
<th>Minimum Offset (ft)</th>
<th>Design Speed (mph)</th>
<th>Desirable Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Opposing Left-Turn Vehicle</td>
<td>Location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type</td>
<td></td>
<td>80.5</td>
</tr>
<tr>
<td></td>
<td>Passenger Car</td>
<td>Unpositioned</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Positioned</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Truck</td>
<td>Unpositioned</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Positioned</td>
<td>2.6</td>
</tr>
</tbody>
</table>

The guidelines presented in Table 4-1 would typically involve reconstructing the left-turn lanes. Increasing the width of the lane line between the left-turn lane and the adjacent through lanes can also improve the sight distance by encouraging the driver to position the vehicle closer to the median. McCoy et al. developed a methodology for determining the width of the left-turn lane line.

Types of Offset Left-Turn Lanes

Two types of offset left-turn lanes are typically used: parallel and tapered. Parallel lanes may be used at both signalized and unsignalized intersections, while tapered lanes are usually used only at signalized intersections. An illustration of both types is provided in Figure 4-6.

Tapered offset left-turn lanes are normally constructed with a 4-ft [1.2 m] nose between the left-turn and the opposing through lanes. This median nose can be offset from the opposing through-traffic by 2 ft [0.6 m] or more with a gradual taper, making it less vulnerable to contact by the through traffic (see part B of Figure 4-6).

This type offset is especially effective for turning radii allowance where trucks with long rear overhangs, such as logging trucks, are turning from the mainline roadway. This same type of offset geometry may also be used for trucks turning right with long rear overhangs.

Parallel and tapered offset left-turn lanes should be separated from the adjacent through traffic lanes by painted or raised channelization. Adequate advance signing is essential so that drivers recognize the need to enter the turn lane well in advance of the intersection.
Performance

Results of a 1996 study indicated that driver performance can be adversely affected by offsets that are much less (i.e., more negative) than -2.95 ft [-0.9 m]. Such large negative offsets significantly increased the size of the critical gaps of drivers turning left and also seemed to increase the likelihood of conflicts between left turns and opposing through traffic. Large negative offsets may be particularly troublesome for older drivers and women drivers, who are less likely to position their vehicles within the intersection to see beyond vehicles in the opposing left-turn lane.

The same 1996 study had a somewhat counter-intuitive finding. Driver perceptions of the level of comfort were not found to improve with greatly increased offsets. An offset of 5.9 ft [1.8 m] was associated with a lower level of comfort and a higher degree of difficulty perceived by drivers than an offset of -2.95 ft [-0.9 m], even though the latter provides less sight distance. The study’s authors speculated that this reaction might be because the -2.95-ft offset [-0.9 m] is more common than the 5.9-ft-offset [1.8 m].
Section 3
Right-Turn Lanes

Overview

Right-turn lanes are used to provide space for the deceleration and storage of turning vehicles. They may be used to improve safety and/or operations at intersections. If a parking lane is present, it may provide the space necessary for a right-turn lane.²

In built-up areas, channelized right-turn lanes should be used only where significant capacity and safety problems may occur without them and adequate pedestrian crossings can be provided.²

Figure 4-7 illustrates examples of right-turn lanes.

Figure 4-7. Right-Turn Lane Examples.
Location

A number of factors enter into the decision regarding whether right-turn lanes should be used: speeds, traffic volumes, percentage of trucks, capacity, type of highway, service provided, and the arrangement and frequency of intersections. Deceleration lanes that include storage lanes for turning traffic are particularly advantageous, providing improved intersection performance and safety.

Length

The length of turn lanes depends upon three elements:

- entering taper,
- deceleration length, and
- storage length.

If insufficient room is available for each of these elements, including a moderate amount of deceleration length in the taper section is acceptable. Figure 4-8 provides an illustration of a basic right-turn lane, while Table 3-3 of the TxDOT Roadway Design Manual provides recommended lengths. Storage length calculations should consider that the queue from the through movement may block the entry to the right-turn lane, so both the right-turn and through-movement queues should be reviewed when establishing the length of the right-turn lane. Application 4-6 demonstrates this concept.

Application 4-7 provides an example of a design where length requirements overlapped in an area needing successive right-turn lanes.

Width

The width of right-turn lanes should preferably match the width of the through lanes, although they should be at least 10 ft wide [3 m]. If curbs are present, a curb offset of 1 to 2 ft [0.3 to 0.6 m] from the edge of the travel lane to the face of the curb should be used.
Chapter 4 — Cross Section

Section 3 — Right-Turn Lanes

The width of the turning roadway present with a corner island is discussed in Chapter 4, Section 5 <link>.

Radius

Corner radii are designed to accommodate the expected vehicle classes for each location. Chapter 3, Section 3 provides more information regarding corner radius selection <link>.

Corner Island

When a turning radius is designed for semitrailer combinations or when the design allows passenger vehicles to turn at 10 mph [16 km/h] or more, the pavement area becomes very large. In order to reduce the pavement area and prevent vehicles from wandering from their natural paths, a corner triangular island is usually used. In urban areas, the island in all instances should be located about 2 ft [0.6 m] outside the traveled way edge extended, as shown in Figure 4-9.

An important part of the design for some intersections is the design of a free-flow alignment for right turns. Information on corner islands is included in Chapter 4, Section 5 <link> and turning radius in Chapter 3, Section 3 <link>.

![Figure 4-9. Minimum Turning Roadway Design to Accommodate WB-50 [WB-15] with Corner Island at Urban Locations.](image-url)
Configuration and Control of Right-Turn Lanes

The type of control established by traffic control devices and geometry of an intersection affects the operation of the turning lane. Right-turn lanes can have many forms, based on the design elements used and method of control on the right turn. At the intersection of two high-speed or high-volume roadways, a free-flow design has been used with some frequency. At intersections where one or both of the intersecting roadways has low speeds and low pedestrian activity, a turn lane with island design has emerged as a cost-effective design. In other locations with low volumes or strong pedestrian activity, turn lanes without an island may be appropriate. Vehicles turning right must stop at a red signal or Stop sign before proceeding, resulting in some right-turn queues but improving the location for pedestrians. Common configurations for right turns along with their pluses and minuses are shown in Table 4-2.
Table 4-2. Right-Turn Lane Designs.

Right-Turn Lane

<table>
<thead>
<tr>
<th>Plus</th>
<th>Minus</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ Allows right turn on red (unless prohibited), reducing right-turn queues.</td>
<td>♦ All vehicles must stop on red, potentially increasing the right-turn queue.</td>
</tr>
<tr>
<td>♦ Removes turning vehicles from through-vehicle lane for improved intersection operations.</td>
<td>♦ The absence of an island eliminates its use for:</td>
</tr>
<tr>
<td>♦ Lower turning speeds provide a safer pedestrian environment.</td>
<td>• placement of traffic control devices, and</td>
</tr>
<tr>
<td>♦ All vehicles must stop on red, potentially increasing the right-turn queue.</td>
<td>• a pedestrian refuge.</td>
</tr>
</tbody>
</table>

Shared Lane with Island

<table>
<thead>
<tr>
<th>Plus</th>
<th>Minus</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ Provision of islands permits its use for placement of traffic control devices or as a pedestrian refuge.</td>
<td>♦ May encourage higher speeds.</td>
</tr>
<tr>
<td>♦ Removes turning vehicle from head of queue.</td>
<td>♦ If signal support is located on island, pedestrians will need to cross uncontrolled lane to reach pedestrian push button.</td>
</tr>
<tr>
<td>♦ The through movement queue may obstruct the throat of the right-turn lane, reducing capacity of the intersection.</td>
<td>♦ Design may result in small island size.</td>
</tr>
</tbody>
</table>

Right-Turn Lane with Island

<table>
<thead>
<tr>
<th>Plus</th>
<th>Minus</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ Provides relatively free movement for vehicles after yielding to</td>
<td>♦ Higher turning speeds may present a hazard to pedestrians.</td>
</tr>
<tr>
<td>pedestrians and opposing traffic, reducing right-turn queues.</td>
<td>♦ Driver attention is split between looking back to merging traffic</td>
</tr>
<tr>
<td>♦ Removes turning vehicles from through-vehicle lane for improved</td>
<td>and looking forward to pedestrian crossing points that may be present in</td>
</tr>
<tr>
<td>intersection operations.</td>
<td>front of the vehicle.</td>
</tr>
</tbody>
</table>

Right-Turn Lane with Island and Dedicated Downstream Lane

<table>
<thead>
<tr>
<th>Plus</th>
<th>Minus</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ Benefits motorized vehicles by lowering emissions and increasing</td>
<td>♦ High-turning speeds are detrimental to pedestrian safety, so this</td>
</tr>
<tr>
<td>capacity.</td>
<td>design is not generally recommended in the urban environment.</td>
</tr>
<tr>
<td>♦ Provides free flow of turning vehicles, reducing right-turn</td>
<td>♦ Vehicles are observed to frequently stop prior to entering the</td>
</tr>
<tr>
<td>queues.</td>
<td>cross street even with an available dedicated lane because drivers</td>
</tr>
<tr>
<td>♦ Eliminates need to look for merging vehicles (attention may be</td>
<td>do not know they have a dedicated lane or how long it lasts.</td>
</tr>
<tr>
<td>focused ahead of vehicle because driver is entering dedicated</td>
<td>♦ Dedicated downstream lane must be sufficient length for vehicles to</td>
</tr>
<tr>
<td>lane).</td>
<td>merge.</td>
</tr>
<tr>
<td>♦ Removes turning vehicles from through-vehicle lane for improved</td>
<td>♦ Access needs to be managed along dedicated downstream lane to</td>
</tr>
<tr>
<td>intersection operations.</td>
<td>ensure proper operation.</td>
</tr>
</tbody>
</table>

Section 4
Channelization

Overview

Channelization is used to control, direct, or divide vehicle paths. Where the use of large
radii for turning movements results in areas of pavement too large for the proper control of
traffic, channelization in the form of raised islands or pavement markings may be used to
enhance the guidance of vehicles. Information on raised islands is included in Chapter 4,
Section 5.

Definition

According to AASHTO, channelization is defined as “the separation or regulation of
conflicting traffic movements into definite paths of travel by traffic islands or pavement
marking to facilitate the orderly movements of both vehicles and pedestrians.” Properly
done, channelization can improve traffic operations, improve convenience, and enhance
driver confidence. Improperly done, channelization can accomplish exactly the opposite
effects. Over-channelization can result in confusion and poor operations.

Principles of Channelization Design

A number of principles have been identified that typically govern the design of channelized
intersections, although their application will depend on the specific circumstances of
specific intersections:

♦ Pedestrian traffic and crossings should be considered.
♦ Motorists should not be confronted with more than one decision at a time.
♦ Unnatural paths that require turns greater than 90 degrees or sudden and sharp reverse
curves should be avoided.
♦ Areas of vehicle conflict should be reduced as much as possible. Channelization should
be used to keep vehicles within well-defined paths that minimize the area of conflict.
♦ Traffic streams that cross without merging and weaving should intersect desirably at
right angles with a range of 60 to 120 degrees acceptable.
♦ The points of crossing or conflict should be studied carefully to determine if such
conditions would be better separated or consolidated to simplify design with appropriate
control devices added to ensure safe and efficient operation.
♦ Refuge areas for turning vehicles should be provided clear of through traffic.
♦ Islands used for channelization should not interfere with or obstruct bicycle lanes at
intersections.
♦ Prohibited turns should be blocked wherever possible.
♦ Location of essential control devices should be established as a part of the design of a channelized intersection.

♦ Channelization may be desirable to separate the various traffic movements where multiple-phase signals are used.

Additional information on island design and usage is provided in Chapter 4, Section 5 <link>.

Usage

The use of channelization usually provides improved path guidance, narrowed conflict areas, controlled vehicle movements, areas for the placement of traffic signals and signs, or refuge areas. Channelizing islands must be raised if intended for pedestrian refuge, but this may not be possible due to truck turning radius requirements. Examples of the use of channelization are provided below.

♦ The paths of vehicles are confined by channelization so that not more than two paths cross at any one point (see Figure 4-10).

![Figure 4-10: Channelized Left-Turn Lanes and Exit Legs](8)

♦ The angle and location at which vehicles merge, diverge, or cross are controlled (see Figure 4-11).

![Figure 4-11: Channelized Right Turns](8)

Highly channelized right turns separate merge-related, right-turn conflicts from other turning and crossing conflicts within the intersection. Median dividers separate head-on conflicts.
♦ The amount of paved area is reduced and thereby decreases vehicle wander and narrows the area of conflict between vehicles (see Figure 4-12).

Unchannelized right turns with large turning radii greatly increase open pavement area and pedestrian exposure to conflicts. Raised traffic islands serve as locations of pedestrian refuge, reducing maximum time of exposure to conflicting vehicular flows for easier crossing.

Figure 4-12. Reduction of Pedestrian Exposure with Raised Islands.

♦ Areas are provided for pedestrian refuge (see Figure 4-13).

Raised median channelization of sufficient width provides midway refuge for pedestrians crossing wide arterial streets. This reduces total time of exposure to conflict and also greatly eases the crossing task. With median refuge, pedestrians can concentrate on one direction of traffic at a time. This is particularly important to the elderly and disabled, whose travel times crossing the intersection may be much greater than the general population.

Figure 4-13. Raised Median Channelization.
Space is provided for traffic control devices so that they can be more readily perceived (see Figure 4-14). Pedestrian crossing visibility should not be impaired, however. The use of a smaller radius and eliminating the island could provide lower vehicle speeds and place pedestrians in the driver’s cone of vision <link to Chapter 4, Section 5>.

Traffic islands, in addition to serving other functions, are appropriate locations for Stop and Yield signs. Use of islands in this manner results in the sign being placed at the stop line and within the driver’s cone of vision. Also note the use of separate turning lanes at this stop-controlled intersection. Provision for a right-turn lane eliminates unnecessary delays to right-turning vehicles from drivers waiting to make the more difficult left turn.

Figure 4-14. Traffic Islands.

Prohibited turns are controlled (see Figure 4-15). The solid lines in the figure represent permitted movements while the dashed lines represent prohibited movements blocked by the traffic islands.

Raised traffic islands can block through movements or undesirable turning movements without hindering other intersection movements.

Figure 4-15. Raised Traffic Islands.
Section 5
Island and Median Design

Overview

Three primary purposes that islands and medians provide are:

♦ channelization—to control and direct traffic movement, usually turning (principles of channelization can be found in Chapter 4, Section 4 <link>);

♦ division—to divide opposing or same direction traffic streams, usually through movements; and

♦ refuge—to provide refuge for pedestrians.²

Islands are defined areas between traffic lanes used for the control of vehicle movements.² Medians are considered to be a type of island, but they separate opposing directions of the roadway.

The design of islands and medians varies, depending on the purpose for their inclusion and the site characteristics present. Examples of islands used in roadway design are shown in Figure 4-16. This section presents overall guidelines for the design of islands and medians, as well as guidance for specific circumstances (i.e., requirements if pedestrian refuge or accommodation for large vehicles is to be provided).

Figure 4-16. Examples of Island Types.
Corner Islands

Corner islands may be used effectively to reduce conflicts where large corner radii or oblique crossings lead to large areas of pavement. Used to delineate the path of through and turning vehicles, corner islands also provide refuge areas and space for sign placement.

Island Size. Channelization in the form of raised islands should be designed so that it commands the driver’s attention. Because small islands may be overlooked, curbed corner islands should be at least 50 ft2 [5 m^2] for urban intersections, although 100 ft2 [9 m^2] is preferred. To afford refuge to pedestrians, islands should be at least 6 ft [1.8 m] in width.1 If pedestrians are intended to use cuts through islands for passage, the cuts must have a minimum 5-ft width [1.5 m]. If curb ramps are used, there must be a minimum 5 ft × 5 ft [1.5 m × 1.5 m] landing provided in the island. This landing area, combined with a maximum curb ramp slope of 1:12, means that ramped islands are only feasible where the median or island width is at least 17 ft [5.2 m]. Because bicyclists may traverse intersections in the crosswalk as pedestrians, this use should be considered. To provide refuge for bicyclists, islands must be at least 6 ft wide [1.8 m].9

Turning Roadway Widths. Corner islands should accommodate turning roadway widths of 14 ft [4.2 m] and allow turning vehicles to keep their wheel tracks within the traveled way by about 2 ft [0.6 m] on both sides. If large trucks are used as design vehicles this may result in undesirably wide lanes that may encourage passenger cars to use the facility as if it had two lanes; to discourage this behavior, paint or other flush markings may be used to delineate the desired path. For a right turn at a 90-degree intersection with a minimum-size island, a 60-ft-radius [18.2 m] on the outer edge provides a 14-ft turn lane [4.3 m]. Other designs using three-centered curves are shown in AASHTO’s Exhibit 9-41.

Oblique-Angle Turns with Corner Islands. The characteristics of islands and turn lane width for intersections with oblique angles may be found in AASHTO’s Exhibit 9-42.

Delineation and Approach Treatments. Small islands are usually delineated by curbs and retroreflective materials, while large islands may be delineated by vegetation, mounded earth, shrubs, reflector posts, signs, or any combination of these. Section 3G of the TMUTCD provides guidance on the use of delineation treatments for islands.10

Island outlines are dictated by the through or turning roadways that surround them. An offset should be provided to the face of the curb on through lanes, although offsets may also be used to turning roadways if necessary to provide clearance for turning trucks. The AASHTO Green Book provides details for corner island designs. Figure 4-17 depicts details regarding curb offsets on urban streets. Offsets to islands are desirable but not essential if large uncurbed islands are used.2

Nose Offset. The offset from the travel lane to the approach nose should be greater than that to the face of the curbed island, normally about 2 ft [0.6 m]. For curbed median islands, the face of curb at the approach island nose should be offset at least 2 ft [0.6 m] and preferably 3 ft [1.0 m] from the normal median edge. The island should then be gradually widened to its full width. For other curbed islands, the total nose offset should be 3 to 6 ft [1 to 2 m] from the normal edge of through lanes and 2 to 3 ft [0.6 to 1 m] from the edge of the traveled way of a turning roadway. Large offsets should be provided where the curbed
corner island is preceded by a right-turn deceleration lane. *Application 4-8, Island Offsets,* provides an example of the design of curbed corner island offsets.

If the approach roadway has shoulders, the face of the curb on the corner island should be offset by an amount equal to the width of the shoulder.\(^2\) If a right-turn deceleration lane precedes the corner island, the shoulder offset should be at least 8 ft [2.4 m].

Figure 4-17. Details of Corner Island Designs for Turning Roadways (Urban Locations).
Visibility of Islands. Islands may be curbed or painted. The use of painted islands can be effective and may be more readily modified if layouts are unsatisfactory. Their effectiveness may be reduced in inclement weather; they may require more frequent maintenance, and they do not provide pedestrians with the height advantage that a curbed island provides. Although curbed islands are common in urban areas, painted islands are frequently used where speeds are low and available space is limited. Curbs 6 inches [152 mm] in height are usually used for urban curbed islands.

Because of the difficulty of seeing curbed islands at night, they can be illuminated with fixed-source lighting or delineated appropriately with retroreflective devices, although large curbed islands may be sufficiently delineated by color and texture contrast of vegetative cover, mounded earth, shrubs, reflector posts, or any combination of these.

Large channelizing islands frequently have turf or other vegetation to enhance their appearance and delineation characteristics. Care should be taken to select low plants that do not obstruct sight distance. Large islands should be depressed to prevent drainage from crossing the intersection.

Pedestrians. Pedestrian accommodation is especially challenging at right-turn lanes with islands. Turning drivers have a tendency to be focused more on negotiating the curve or seeking gaps in the cross street than looking for pedestrians. In addition to marked crosswalks, innovative pedestrian treatments may be appropriate at right-turn lanes with islands; however, the literature in this area is limited and tends to focus more on crossings at midblock locations and intersection corners (see Chapter 7). Figure 4-18 provides an example of an island design intended to improve the performance for pedestrians of a right-turn lane with islands.

Observations on this design include:

- Compound curvature decreases the effective radius of the turn and thus reduces speed and increases entry angle.
- It is believed to be a better solution for accommodating pedestrians due to lower speeds.
♦ The smaller angle (112 degrees) between the right-turning vehicle and the cross traffic when searching for an acceptable gap requires less head turning that is especially beneficial for older drivers.

♦ The location of the pedestrian crosswalk is sometimes moved upstream, providing a better driver view of pedestrians in an area where the driver is not yet searching for a gap. However, pedestrians frequently cross downstream, parallel to the flow of traffic on the cross street since it is the shortest route.

♦ It is believed to be safer, although definitive studies have not been conducted.

Also, directional barriers or devices (such as fences, bollards, or signs) may be used to encourage pedestrians to not step off the curb in areas other than the crosswalk.

Two NCHRP projects are addressing pedestrian concerns at right-turn lanes with islands. NCHRP Project 3-72’s12 objective is to develop design guidance or criteria addressing the safety and operational trade-offs for motorists, pedestrians, and bicyclists for channelizing right turns, along with lane width and right-turn deceleration lanes at driveways and unsignalized intersections. NCHRP Project 3-7212 began in 2003. NCHRP Project 3-7813 is anticipated to begin in 2004 and will address crossing treatments at roundabouts and channelized turn lanes for pedestrians with vision disabilities. With any free-flowing design, pedestrians with vision disabilities do not have cues available to enable them to determine where to cross nor when a sufficient gap is available to make a safe crossing.

Median Design

Divisional islands (also called medians) may be introduced on undivided highways at intersections (if they are not already present).2 Divisional islands can serve to alert drivers to the presence of the intersection, help to channel traffic through the intersection, and provide pedestrian refuge. The islands may be used to help control left turns (particularly at skewed intersections) or where right-turning traffic has separate channels.

Alignments. Alignments used to introduce the islands should be done so that driver paths are clear and unmistakable. Reverse curves or tapers should be used, but their characteristics should be selected so their designs are appropriate for the facility’s design speed. If reverse curves are used, roadways with speeds up to 45 mph [72 km/h] should use radii of 2035 ft [620 m] or more; radii of 3825 ft [1166 m] or greater should be used on high-speed roadways.2 Figure 4-19 shows some typical layouts used for the introduction of divisional islands at intersections.

If located near a crest or the beginning of a horizontal curve, the approach end of an island should be extended to be clearly visible to approaching drivers.

Pedestrians. The presence of a median presents both challenges and opportunities for pedestrians:

♦ Raised medians may allow pedestrians to cross the intersection in stages.

♦ If used as a refuge area, pedestrians must be able to traverse the median without leaving the line of the crosswalk and have sufficient room for refuge.
Additional information on the use of a median for refuge is included in Chapter 4, Section 5, Island and Median Refuge <link>.

![Figure 4-19. Layouts for Addition of Divisional Islands at Intersections.](image)

Median Size. Elongated or divisional islands should be a minimum of 4 ft wide [1.2 m] and 20 to 25 ft long [6 to 8 m], although in special cases with limited space they may be reduced to 2 ft wide [0.6 m]. Divisional islands used as pedestrian refuges should be at least 6 ft wide [1.8 m]. Other restrictions on island size and design related to their use as a refuge area for pedestrians are provided later in Chapter 4, Section 5, Island and Median Refuge <link>.

Median End Treatment Design

The design of the median end treatment for a raised or depressed median has to address a number of considerations. An example of a raised median end is shown in Figure 4-20. The median end treatment:

- should not infringe on the expected path of turning vehicles and should delineate the beginning of traffic separation provided by the median;
- should be located as close as practical to the intersecting curb lines to minimize crossing times;
- should not impede pedestrian crossings; and
- may provide a pedestrian refuge area.

Application 4-9 <link> provides an example of the impacts of using a large design vehicle in the design of the median.
Shape. The shape of the median end treatment is usually dictated by the design vehicle, the width of the median, the vehicle turning path, and the length of the median opening. The two basic shapes are:

♦ semicircular and
♦ bullet ends.

Bullet-nose shapes share a number of characteristics. In general they:

♦ more closely follow the path of turning vehicles,
♦ minimize the median opening,
♦ reduce the amount of time required for vehicles to clear the intersection (allowing a more efficient signal timing plan),
♦ provide better guidance for the turning driver because they position the left-turning vehicles to turn to or from the crossroad centerline (semicircular ends tend to direct vehicles onto the opposing traffic lane of the crossroad), and
♦ are better positioned to provide refuge areas for pedestrians (see Section 5, Island and Median Refuge <link>).

Median widths below 4 ft [1.2 m] will generally function similarly regardless of the selected end shape. For medians greater than about 14 ft wide [4.3 m] and with a 40-ft control radius [12.2 m], the left-turn path controls the median opening length.

Squared bullet noses (see Figure 4-21) should be used for medians greater than 14 ft [4.3 m] (the flat end parallel to the crossroad centerline). This accommodates left-turning vehicles
and directs them into appropriate lanes on the crossroad because it allows the median nose to match the turning path of the vehicle.

![Bullet nose fits path of turning vehicle](image)

Figure 4-21. Example of Squared Bullet Nose Median End.

Profile. Curbed median noses should be ramped down (see Figure 4-22) and provided with delineation devices to provide advance warning of their presence. For details, the AASHTO *Green Book* should be reviewed. Special care should be used to delineate divisional island approach noses. If practical, raised texturized surfaces or jiggle bars may be used to provide a transition section.

![Ramped Down Median Nose](image)

Figure 4-22. Ramped Down Median Nose.

Median Opening Design

Median opening designs for a variety of vehicle types are provided in the AASHTO *Green Book*. Figure 4-23 shows a minimum design median opening designed using a passenger car as a design vehicle. The turning path of a WB-50 [WB-15] is overlaid on the design, showing that the truck would infringe on other lanes and possibly strike the curb on the turn from the major roadway onto the minor roadway.
If permitted, U-turning vehicles may also be considered in the selection of the median nose shape. The U-turning vehicle is usually expected to proceed from a turning lane to the outermost lane on the opposite side of the roadway. It may not be practical to accommodate greater than passenger car or single-unit truck traffic.

Asymmetrical shapes may be used when vehicle turning paths warrant this type of design, such as at intersections with one-way roadways or at skewed intersections.2

Median Opening Length. Minor roadway intersections may be accommodated by median opening lengths as small as the width of the crossroad including shoulders; if the crossroad is a divided highway, that length should include the width of the median. In most other circumstances, however, the median opening length should be determined after consideration of vehicle turning paths.

Median openings longer than 80 ft [24.4 m] should be avoided. The provision of channelization, turning lanes, or reducing skew angles should be considered to reduce the required median opening.

Island and Median Refuge

Medians and islands help pedestrians cross streets by providing refuge areas that are physically separated from the vehicle path of travel. A median separates opposing lanes of traffic, and an island is a defined area between traffic lanes used for the control of vehicle movements. They both can provide a protected area within a crosswalk for pedestrians to
wait to continue crossing the street. Medians and islands allow pedestrians to cross during smaller gaps in traffic.

Pedestrian refuge islands (shown in Figure 4-24, Figure 4-25, and Figure 4-26) are commonly installed on wide streets where adequate crossing time cannot be provided or when the characteristics of the pedestrians indicate that some pedestrians might need more time, or when space is available. Pedestrian refuge should be considered in all reconstruction projects. Raised-curb corner islands and center channelizing or divisional islands can be used as refuge areas. Pedestrian refuge islands should include the following characteristics:

- If landscaping is present, it should not obstruct:
 - the pedestrian pathway,
 - the visibility of the pedestrian and drivers to each other, or
 - the sight distance at the intersection.
- It should be equipped with pedestrian actuation detectors at signalized crossings to allow the pedestrian to recall the WALK phase if adequate time is not provided for a full pedestrian crossing.

Figure 4-24. Typical Layout of Curb Ramps at a Channelizing Island.

Figure 4-25. Curb Ramp at Median Islands.
Whether the median is raised or depressed, access to the crossing island and median is to be functional and safe for all pedestrians. The island or median should be large enough to enable a wheelchair to wait on a level landing, or a cut-through design should be provided. The cut-through width should be the same as the complete width of the crosswalk. Cut-through designs should be graded to drain quickly and may also require additional maintenance such as sweeping, etc. An example of a cut through is shown in Figure 4-26. Where the cut through connects to the street, the edges of the cut through should be aligned with the direction of the crosswalk for a minimum length of 2 ft [0.6 m].

Application 4-10 provides a review of some of the issues related to median design in a design that considers the staged development of a roadway and its median. Consideration of the impacts of the median width on pedestrians and vehicles is provided in the application.
Section 6

Bicycle Facilities

Overview

Bicycle facilities are defined as improvements made to accommodate or encourage bicycling, and include (but are not limited to) improvements such as:

♦ Bicycle lane: a portion of a roadway which has been designated by striping, signing, and/or pavement markings for the preferential or exclusive use of bicyclists.

♦ Shared roadway: a roadway which is open to both bicycle and motor vehicle travel. This may be an existing roadway with wide curb lanes or a roadway with paved shoulders.

The most complete source of bicycle facility design information is contained in AASHTO’s Guide for the Development of Bicycle Facilities. The AASHTO guide provides information on the planning, design, construction, maintenance, and operation of bicycle facilities.

Bicycle Lane

Bicycle lanes are located at the right side of the roadway, and they carry bicycle traffic in the same direction as the adjacent motor vehicle traffic; even on one-way roadways bicycle lanes are still generally located on the right side of the roadway to avoid violating driver expectancy.

Minimum widths for bicycle lanes are 4 ft [1.2 m] if parking is not allowed, although 5 ft [1.5 m] is recommended from the face of a curb or guardrail. If parking is permitted the bicycle lane should be 5 ft [1.5 m]. The recommended width of a bicycle lane from the face of a curb or bridge rail is 5 ft [1.5 m]. The 5 ft width [1.5 m] should be sufficient in cases where a 1 to 2 ft [0.3 to 0.6 m] gutter pan exists if the longitudinal joint between the bicycle lane and the gutter pan is smooth. If the joint is not smooth then 4 ft [1.2 m] of ridable surface should be provided. The width of the gutter pan should not be included in the measurement of the ridable or usable surface, with the possible exception of those communities that use an extra-wide, smoothly paved gutter pan that is 4 ft [1.2 m] wide as a bicycle lane. In areas that allow parking, bicycle lanes should be 5 ft [1.5 m] in width and located between the parking area and the motor vehicle lanes. Bicycle lanes should never be placed between the parking lane and the curb. If parking is permitted but no parking stripes or stalls are provided, the shared area should be 11 ft [3.4 m]. However, 13 ft [4.0 m] is recommended where there is substantial parking or turnover of parked cars is high (e.g., commercial areas).

Bicycle lane markings should not extend across intersections in most cases, although in some exceptionally complex intersections dotted guidelines may be used. Bicycle lane markings should never cross crosswalks. If no crosswalks are present the bicycle lane markings should stop at the near side street property line extension and resume at the far side street property line extension. Figure 4-27 shows typical markings for signalized or

Urban Intersection Design Guide 4-35 TxDOT 7/7/2005
stop-controlled intersections and for a minor intersection with crosswalks, while Figure 4-28 shows typical markings at T-intersections.

Figure 4-27. Bicycle Lane Marking Examples.\(^9\)
The introduction of right-turn lanes at intersections complicates the design of bicycle lanes. As Figure 4-29 shows, a number of paths may be used by motorists and bicyclists at intersections with bicycle lanes. Figure 4-30 provides four potential alternatives for the bicycle lane and turn lane layout. Locations with sufficient room should provide the marked bicycle lane between the through traffic and the right-turning traffic, as shown in Figure 4-30.
Figure 4-29. Typical Bicycle and Motor Vehicle Paths at Major Intersections.9
Section 6 — Bicycle Facilities

Chapter 4 — Cross Section

Figure 4-30. Illustration of Bicycle Lane Treatments at Location with Right-Turn Lane.

(A) Right-turn-only lane

(B) Parking lane into right-turn-only lane

Note: The dotted lines in cases "A" and "B" are optional (see case "C")

(C) Right-turn-only lane

(D) Optional right/straight and right-turn-only lane

W11-1 and W16-1 (Optional)

R4-4 at beginning of right-turn lane

R3-7R

R3-8

R4-4 at beginning of right-turn lane

R3-7R
Shared Roadways

Bicycles will be used to varying extent on all roadways where they are legally permitted. Design features that can make roadways more compatible to bicycle travel include:

♦ bicycle-safe drainage grates and bridge expansion joints,
♦ improved railroad crossings,
♦ smooth pavements,
♦ adequate sight distances,
♦ signal timing and detector systems that respond to bicycles, and
♦ shoulder improvements and wide curb lanes.

Signed shared roadways are those that have been identified by signing as preferred bicycle routes. The addition of destination information, as shown in Figure 4-31, enhances the functionality of the bicycle route signing.9 Paved shoulder widths should be at least 4 ft [1.2 m] (not including any gutter pan, if present, unless the pan width is 4 ft [1.2 m] or greater) to accommodate bicycles. A 5-ft wide [1.5 m] shoulder is recommended in areas with guardrail or roadside barrier. Wide curb lanes are preferred if shoulders are not present. Curb lane widths exclusive of the gutter pan of 14 ft [4.3 m] are recommended, although 15 ft [4.6 m] may be used where drainage grates, raised pavement markers, or on-street parking effectively reduce the usable width.1
In urban areas, signs should be placed every approx. 1/4 mile [500 m], at every turn, and at all signalized intersections.

Figure 4-31. Bicycle Route Signing.
Section 7
Shoulders and Parking

Overview

Although not frequently provided on urban streets, shoulders provide a number of important functions:1,2

- Wide, surfaced shoulders provide a suitable, all-weather area for stopped vehicles to be clear of the travel lanes.
- Shoulders lend lateral support to travel lane pavement structure.
- Shoulders provide a maneuvering area.
- Shoulders provide space for postal and other delivery vehicles to stop.
- Shoulders can be used by bicyclists.

Width

Design shoulder widths are provided in the Roadway Design Manual:1

- Reconstruction (4R) work:
 - Urban streets and frontage roads: Roadway Design Manual Table 3-1, Geometric Design Criteria for Urban Streets <link>
 - Suburban roadways: Roadway Design Manual Table 3-5, Geometric Design Criteria for Suburban Roadways <link>

- Rehabilitation (3R) work:
 - Roadway Design Manual Table 4-3, 3R Design Guidelines for Urban Streets All Functional Classes <link>
 - Roadway Design Manual Table 4-5, 3R Design Guidelines for Urban Frontage Roads <insert>

Shoulder width consideration may also include the shoulder’s use as a \textit{de facto} right-turn lane. If shoulders are widened to explicitly permit the inclusion of a right-turn lane then it eliminates the possibility of conflicts between vehicles turning right from the main lanes and vehicles turning right from the shoulder.

Parking Lanes

As noted in the Roadway Design Manual1, parking lanes may be provided rather than shoulders on urban collector and local streets, although they are discouraged on arterial streets because of the effect that vehicles entering and exiting parking spaces have on capacity in the adjacent through lanes. Parking should be restricted (or replaced with a curb extension) in locations where it interferes with sight distance (particularly intersection or stopping sight distance) or operations. Parking is not permitted within 20 ft [6 m] of a
crosswalk or within 30 ft [9 m] of the approach to Stop signs, Yield signs, or traffic control signals. The *Roadway Design Manual* states that parking should be restricted 20 ft [6 m] prior to the curb radius to meet these needs and to even provide a short right-turn lane if desired.

Because erratic maneuvers may result if parking lanes are carried up to the intersection, the designer can consider the following:

♦ prohibiting parking and creating a short turn lane, or
♦ providing a transition (also referred to as curb extensions or bulb) such as shown in Figure 4-32.²

The use of a parking lane transition or curb extension may provide enhanced visibility to pedestrians approaching the curb or awaiting a crossing opportunity, and shortens the time required for them to cross the roadway. For further information, see Chapter 5, Section 5 <link>.

Figure 4-32. Parking Lane Transition.²

Curb Offset

Although not defined as a “shoulder,” an offset of 1 to 2 ft [0.3 to 0.6 m] from the edge of the travel lane to the face of the curb should be provided for curb-and-gutter sections.¹
Section 8

References

Chapter 5
Roadside

Contents:

Section 1 — Sidewalks... 5-3
Section 2 — Horizontal Clearance ... 5-9
Section 3 — Landscaping... 5-15
Section 4 — Street Furniture and Fixtures 5-19
Section 5 — Curb Extensions.. 5-23
Section 6 — Bus Stops.. 5-27
Section 7 — Lighting... 5-35
Section 8 — Utilities... 5-39
Section 9 — References.. 5-49
Section 1
Sidewalks

Overview

Sidewalks provide distinct separation of pedestrians and vehicles, serving to increase pedestrian safety as well as to enhance vehicular capacity. A sidewalk is a paved area (typically concrete) that normally runs parallel to vehicular traffic and is separated from the road surface by at least a curb and gutter. Properly planned, designed, and constructed sidewalks are essential for increasing pedestrian mobility, accessibility, and safety, especially for persons with disabilities, older pedestrians, and children. A recent Federal Highway Administration study cited the presence of sidewalks in residential areas as the one physical factor in the roadway environment having the greatest effect on pedestrian safety.

Application 5-1 discusses sidewalk considerations during a redevelopment of an area.

Planning for Sidewalks

Sidewalks are typically an integral part of the transportation system in central business districts. In rural and suburban areas, sidewalks are most justified at points of community development such as at schools, recreation areas, and local businesses when these developments result in pedestrian concentrations near or along the highways. In typical suburban development, there are initially few pedestrian trips because there are only a few closely located pedestrian destinations. However, when pedestrian demand increases with additional development, it may be more difficult and more costly to install pedestrian facilities if they were not considered in the initial design. Early consideration of pedestrian facility design during the project development process may also greatly simplify compliance with accessibility requirements established by the *Americans with Disabilities Act Accessibility Guidelines* and the *Texas Accessibility Standards*.

In some cases the inclusion of sidewalks is left to the discretion of the engineer or planner on a site-by-site or project-by-project basis. Some cities and communities have requirements for the use and the design of the sidewalk that are based on functional classification of the roadway. The ITE publication on *Design and Safety of Pedestrian Facilities* includes general sidewalk installation guidelines that are based on land use, roadway functional classification, and, in the case of residential areas, dwelling unit density.

When to Include Sidewalks on TxDOT Projects

Early in the project development process, several factors should be considered when determining whether to include new sidewalks on a TxDOT project. When any of the following factors are present, sidewalks should be included on the project:

♦ The facility is part of a locally adopted sidewalk planning document.
There is evidence of pedestrian traffic (either pedestrians are observed, there is a beaten down path, or significant potential exists for pedestrians to walk in the roadway).

Facility is located on a route to a school or a transit route.

In addition, where pedestrian generators/attractors exist, new sidewalk construction may also be considered.

It is important that walking be incorporated into the TxDOT system and that the facilities constructed are usable by those with disabilities. Therefore, planning for these facilities must occur early and continuously throughout project development.

Even when sidewalks are not incorporated into a project, they will likely be added in the future. The designer can make the future addition of sidewalks much simpler by providing preliminary grading that includes space for a future sidewalk and by designing driveways to include an accessible path across them (see TxDOT Roadway Design Manual, Chapter 2, Section 6, Sidewalks and Pedestrian Elements).

Sidewalk Location

It is desirable to provide a buffer space between the traveled way and the sidewalk for pedestrian comfort, especially adjacent to high-speed traffic. Figure 5-1 illustrates a buffer zone. For curb and gutter sections, a buffer space of 3 ft [915 mm] or greater between the back of the curb and the sidewalk is desirable. For rural sections without curb and gutter, sidewalks should be placed between the ditch and the right-of-way line if practical.

![Figure 5-1. Sidewalks Zones](image-url)
ADAAG/TAS

Specific design minimum requirements to accommodate the needs of persons with disabilities are established by the ADAAG3 and TAS.4 More generous values should be utilized when possible. A request for a design variance for any deviations from TAS requirements must be submitted to the Design Division for forwarding to the Texas Department of Licensing and Regulation for approval.

Sidewalk Width

Sidewalks should be wide enough to accommodate the volume and type of pedestrian traffic expected in the area. Following are suggested sidewalk widths:

- The minimum clear sidewalk width is 5 ft [1525 mm]. Any exception to this minimum dimension must satisfy ADAAG/TAS requirements.
- Where a sidewalk is placed immediately adjacent to the curb, a sidewalk width of at least 6 ft [1830 mm] (measured from back of curb) is desirable to allow additional space for street and highway hardware and to allow for the proximity of moving traffic.
- Sidewalk widths of 8 ft [2.4 m] or more may be appropriate in commercial areas, along school routes, and other areas with concentrated pedestrian traffic.
- The sidewalk width may be reduced to 4 ft [1.2 m] where necessary to cross a driveway while maintaining the maximum 2 percent cross slope.
- The width may be reduced to 4 ft [1.2 m] for a length of 2 ft [0.6 m] maximum if insufficient space is available to locate street fixtures (elements such as sign supports, signal poles, fire hydrants, manhole covers, and controller cabinets), provided that reduced width segments are separated by at least 5 ft [1.5 m] in length.

Cross Slope

Sidewalk cross slope is not to exceed 1:50 (2 percent). Due to construction tolerances, it is recommended that sidewalk cross slopes be shown in the plans at 1.5 percent to avoid exceeding the 2 percent limit when complete. Cross slope requirements also apply to the continuation of the pedestrian route through the crosswalk. Sidewalks immediately adjacent to the curb or roadway may be offset to avoid a non-conforming cross slope at driveway aprons by diverting the sidewalk around the apron. Chapter 7, Section 1 discusses and shows examples of sidewalk treatments at driveways.

Grades

Steep grades create problems for pedestrians with mobility impairments. Wheelchair users may travel quickly on downhill pathways but will travel much more slowly on uphill segments and at greater expense of energy or battery reserves. Sidewalks should be designed with the flattest grade possible to maximize accessibility. Wherever possible, sidewalks and walkways should be designed with maximum grades of 5 percent (1:20).
When the topography of an area has a steeper grade, the sidewalk may follow the grade of the roadway.

Surfaces

The sidewalk surface treatment can have a significant impact on the overall accessibility and comfort level of the facility. The ADAAG\(^3\) requirement is that the surface be stable, firm, and slip resistant. The preferred materials are Portland cement concrete (PCC) and asphaltic concrete pavement (ACP). PCC (typically found in urban areas) provides a smooth, long-lasting, and durable finish that is easy to grade and repair. ACP has a shorter life expectancy but may be appropriate in less urban areas and park settings. Crushed limestone may be used as an all-weather walkway surface in park settings or rural areas, but such paths generally require a higher level of maintenance to maintain accessibility.

Sidewalks, walkways, and crosswalks can be constructed with bricks and pavers if they are constructed to avoid settling or removal of bricks, which can create a tripping condition. Stamping molds have also been used to create the visual appearance of bricks and pavers. The technique has the advantages of using traditional concrete without some of the maintenance issues associated with bricks and pavers. There are commercially available products that produce a variety of aesthetically pleasing surfaces that are almost impossible to distinguish from real bricks and pavers. Stamped surface treatments are not completely without maintenance issues: the color has been known to fade, and there is usually little or no attempt made to replicate the original pattern and color when utility cuts or sidewalk repairs are made. In addition, stamped products should be selected carefully to ensure a smooth ride for persons using wheelchairs.

A disadvantage of either real or stamped brick sidewalks is the problem that seemingly small surface irregularities pose for wheelchair users with spinal injuries. However, it is possible to enhance sidewalk aesthetics while still providing a smooth walking surface by combining a concrete main walking area with brick edging where street furniture (lights, trees, poles, etc.) can be placed.

Street Furniture

Street furniture includes items intended for use by the public such as benches, public telephones, bicycle racks, and parking meters. Special consideration should be given to the location of street furniture. A clear ground space at least 2.5 ft × 4 ft [760 mm × 1220 mm] with a maximum slope of 2 percent must be provided and positioned to allow for either forward or parallel approach to the element in compliance with ADAAG\(^3\) or TAS.\(^4\) The clear ground space must have an accessible connection to the sidewalk. The draft guidelines for ADAAG\(^7\) state that the clear ground space can overlap the pedestrian route a maximum of 12 inches [305 mm]. Additional information on street furniture is provided in Chapter 5, Section 4 <link>.
Street Crossings

Intersections can present formidable barriers to pedestrian travel. Intersection designs that incorporate properly placed curb ramps, sidewalks, crosswalks, pedestrian signal heads, and pedestrian refuge islands can provide a pedestrian-friendly environment. Desirably, drainage inlets should be located on the upstream side of crosswalks and sidewalk ramps. Refuge islands enhance pedestrian comfort by reducing effective walking distances and pedestrian exposure to traffic. Islands should be a minimum of 5 ft wide [1525 mm] to afford refuge to wheelchair users. A minimum 5 ft width [1525 mm] should be cut through the island for pedestrian passage, or curb ramps with a minimum 5 ft × 5 ft [1525 mm × 1525 mm] landing should be provided in the island. Additional information on street crossing issues is included in Chapter 7 <link>.

Curb Ramps and Landings

Curb ramps must be provided in conjunction with each project where the following types of work will be performed:

♦ resurfacing projects, including overlays and seal coats, where a barrier exists to a sidewalk or path;
♦ construction of curbs, curb and gutter, and/or sidewalks;
♦ installation of traffic signals with pedestrian signals; and
♦ installation of pavement markings for pedestrian crosswalks.

Discussion on design criteria for curb ramps and landings is presented in Chapter 7, Section 1 <link>.

Sidewalk Considerations

Sidewalks should be continuous and installed to the recommended widths, exclusive of street furniture and other appurtenances. Discontinuous sidewalks and street appurtenances located within the sidewalk can create problems for pedestrian access or safety (see Figure 5-2 through Figure 5-4).
Figure 5-2. Discontinuous Sidewalk to Bus Stop.

Figure 5-3. Discontinuous Sidewalk to Mailbox.

Figure 5-4. Examples of Street Appurtenances Located within the Sidewalk.
Section 2

Horizontal Clearance

Overview

A clear recovery area, or horizontal clearance, should be provided along roadways as practical. Ideally this area would be free of obstacles such as unyielding sign and luminaire supports, non-traversable drainage structures, utility poles, and steep slopes. Note that horizontal clearance involves a series of compromises between “absolute” safety and engineering, environmental, and economic constraints.

Horizontal Clearance

The TxDOT Roadway Design Manual⁸ and the AASHTO Roadside Design Guide⁹ provide discussion on principles and criteria for horizontal clearances. Table 5-1 is a reproduction of the Roadway Design Manual Table 2-11 <link>. The horizontal clearance values shown in Table 5-1 are measured from the edge of the travel lane unless otherwise indicated.

Protruding Objects

Obstacles on the roadside can encroach into the pedestrian’s path of travel and be difficult for visually impaired pedestrians to detect with a cane. The typical cane techniques do not locate objects extending into the travel path above 15 to 27 inches [38 to 69 cm] before contact with the body (see Figure 5-5). Figure 5-6 provides examples of objects in the roadside and the recommended protrusion limits. Generally objects with leading edges more than 27 inches [685 mm] and not more than 80 inches [2030 mm] above the finish floor or ground may protrude 4 inches [100 mm] maximum horizontally into the circulation path. Guardrails or other barriers shall be provided where the vertical clearance is less than 80 inches [2030 mm]. An example of this situation might be under a stairway. The leading edge of such guardrail or barrier shall be located 27 inches [685 mm] maximum above the finish floor or ground. An exception is that door closers and door stops shall be permitted to be 78 inches [1980 mm] minimum above the finish floor or ground.
Placement of Poles

TRB State of the Art Report 911 (Utilities and Roadside Safety) provides the following guidance on locating poles.
Lane Drops and Roadway Narrowing. Placement of poles downstream of a lane drop or the area where the roadway narrows should be discouraged. This is especially important when it can be reasonably foreseen that an inattentive or physically impaired driver might not be able to accurately perceive the lane drop or lane narrowing. These situations are presented in Figure 5-7 and Figure 5-8. Another cause of this problem is a traffic conflict, where a driver is prevented by another vehicle from changing lanes or moving laterally. If it is impractical to span the critical zone without a pole, consideration should be given to the use of a guardrail or crash cushion.

![Figure 5-7. Exposure of Vehicle to Utility Pole Downstream of Lane Drop.](image)

Traffic Island. Placement of poles on a traffic island should be strongly discouraged. Islands are an element of traffic control at an intersection and are usually located within the boundaries of the traveled way. As such, they are likely to be occasionally traversed by errant vehicles. This traversal should not be prevented by a utility pole placed as indicated in Figure 5-9. If placement of a utility pole on an island is a practical necessity, consideration should be given to protecting errant vehicles with a crash cushion.

![Figure 5-8. Placement of Pole Downstream of Roadway Narrowing.](image)
Medians. Placement of poles in medians, as indicted in Figure 5-9, should be strongly discouraged. Medians are safeguards against head-on collisions and, as such, provide space for errant vehicles to regain control or space for installation of median barriers. A pole or pole line in a median should be considered only if vehicles can be completely shielded from the poles by median barriers. Luminaires are often placed in protected positions on top of median barriers.

Traffic Conflicts. Where critical traffic conflicts can be foreseen, especially at intersections of high-speed roadways, pole placement may be designed to avoid the most critical secondary collisions. For example, if the major roadway is in a north-south direction and the minor roadway is east-west, the most critical quadrants for a secondary collision (collision of a vehicle with a pole after an initial two-vehicle collision) are the northeast and southwest quadrants. Thus, the preferred placement for poles at this intersection would be in the northwest and/or southeast quadrants, as indicated in Figure 5-10.

Figure 5-9. Inappropriate Location of Poles within a Traffic Island or Median.

Figure 5-10. Intersection Zones Having Highest Exposure to Secondary Collisions.
Table 5-1. Horizontal Clearances.8

<table>
<thead>
<tr>
<th>Location</th>
<th>Functional Classification</th>
<th>Average Daily TrafficB</th>
<th>Design Speed (mph)</th>
<th>U.S. Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>Desirable</td>
<td></td>
</tr>
<tr>
<td>Suburban</td>
<td>All</td>
<td><8000</td>
<td>All</td>
<td>10[^f]</td>
<td>10[^f]</td>
</tr>
<tr>
<td>Suburban</td>
<td>All</td>
<td>8000-12,000</td>
<td>All</td>
<td>10[^f]</td>
<td>20[^f]</td>
</tr>
<tr>
<td>Suburban</td>
<td>All</td>
<td>12,000-16,000</td>
<td>All</td>
<td>10[^f]</td>
<td>25[^f]</td>
</tr>
<tr>
<td>Suburban</td>
<td>All</td>
<td>>16,000</td>
<td>All</td>
<td>20[^f]</td>
<td>30[^f]</td>
</tr>
<tr>
<td>Suburban Freeways</td>
<td>All</td>
<td></td>
<td>30 (16 for ramps)</td>
<td>All</td>
<td>9.0 (4.9 for ramps)</td>
</tr>
<tr>
<td>Urban All (Curbed)</td>
<td>All</td>
<td>≥50</td>
<td>Use above suburban criteria insofar as available border width permits.</td>
<td>≥80</td>
<td>Use above suburban criteria insofar as available border width permits.</td>
</tr>
<tr>
<td>Urban All (Curbed)</td>
<td>All</td>
<td>≤45</td>
<td>1.5 from curb face</td>
<td>3.0</td>
<td>0.5 from curb face</td>
</tr>
<tr>
<td>Urban All (Uncurbed)</td>
<td>All</td>
<td>≥50</td>
<td>Use above suburban criteria.</td>
<td>≥80</td>
<td>Use above suburban criteria.</td>
</tr>
<tr>
<td>Urban All (Uncurbed)</td>
<td>All</td>
<td>≤45</td>
<td>10</td>
<td>--</td>
<td>≤70</td>
</tr>
</tbody>
</table>

[a]Because of the need for specific placement to assist traffic operations, devices such as traffic signal supports, railroad signal/warning device supports, and controller cabinets are excluded from horizontal clearance requirements. However, these devices should be located as far from the travel lanes as practical. Other non-breakaway devices should be located outside the prescribed horizontal clearances or these devices should be protected with a barrier.

[b]Average Daily Traffic (ADT) over project life, i.e., 0.5 (present ADT plus future ADT). Use total ADT on two-way roadways and directional ADT on one-way roadways.

[c]Without barrier or other safety treatment of appurtenances.

[d]Measured from edge of travel lane for all cut sections and for all fill sections where side slopes are 1V:6H or flatter. Where fill slopes are steeper than 1V:6H it is desirable to provide an area free of obstacles beyond the toe of slope.

[e]Desirable, rather than minimum, values should be used where feasible.

[f]Desirable, rather than minimum, values should be used where feasible.

[g]Desirable, rather than minimum, values should be used where feasible.
Section 3
Landscaping

Overview

Landscaping is used to enhance the appearance of roadways and highways. It can help to define the character of the corridor or region or illustrate a community’s value. Figure 5-11 shows an example of landscaping added in the median of a major thoroughfare to help define the importance of the roadway and the neighboring developments. Landscaping is also being considered for slowing or “calming” of traffic to enhance safety. It can consist of continuous plantings along a street (see Figure 5-12) or as a treatment to define the entrance of a community, development, or roadway (see Figure 5-13). Trees are also used to provide shade for pedestrians waiting at a bus stop or walking along a street (see Figure 5-14).

Many of the landscaping features, however, are considered fixed objects and should not be located within the design horizontal clearance. Reducing existing, wider horizontal clearance area by introducing fixed objects, reduces the recovery distance available for errant vehicles.

Figure 5-11. Example of Landscaping along a Major Street.

Figure 5-12. Example of Continuous Landscaping to Encourage Lower Operating Speeds.
Sight Distance and Landscaping

When making landscaping decisions, designers should consider several criteria including aesthetics, erosion-control needs, maintenance requirements, future sidewalks, utilities, etc. Sight distance and clearance to obstructions also need to be considered, especially at intersections (see Figure 5-15). Information on determining the sight triangle is included in Chapter 3, Section 1 <link>.

Plants with the potential of blocking a sign should not be placed in front of the face of any sign (see Figure 5-16). The landscape designs should be arranged to permit a sufficiently wide, clear, and safe pedestrian walkway. Tree limbs will not be evident to visually impaired pedestrians and should be kept trimmed to provide 80 inches [2030 mm] minimum vertical clearance above the sidewalk. Vegetation should not be permitted to create a protrusion into the pedestrian area (see Chapter 5, Section 2 <link>). The check on landscaping height and width should occur both for the initial installation and for the anticipated growth of the vegetation.
Figure 5-15. Plant Use in Intersection Areas Must Be Limited to Low-Growing Varieties to Provide for a Clear Sight Triangle.12

DO NOT LOCATE PLANTS WHERE THEY MAY INTERFERE WITH SIGNAGE

CHOOSE SHRUBS OF APPROPRIATE HEIGHT

EYE-LEVEL SIGHTLINE MUST BE KEPT OPEN

Figure 5-16. Example of Landscaping Near Sign.12
References Available

Two AASHTO publications that discuss landscaping issues are *A Guide for Transportation Landscape and Environmental Design*\(^\text{13}\) and the *Roadside Design Guide*.\(^\text{9}\) The *Guide for Transportation Landscape and Environmental Design*\(^\text{13}\) report was revised in 1991 and was expanded to include all modes of transportation and interaction of landscape considerations with transportation improvements. It is a basic reference to improve landscape and environmental design. The Third Edition of the *Roadside Design Guide*\(^\text{9}\) was published in 2002 and is a synthesis of current information and operating practices related to roadside safety. It focuses on safety treatments that can minimize the likelihood of serious injuries when a motorist leaves the roadway. TxDOT also has the *Landscape and Aesthetics Design Manual* available online.\(^\text{12}\)

National Cooperative Highway Research Program (NCHRP) Project 16-04

There are needs to (1) identify landscape designs that have performed acceptably and (2) develop new design guidelines that enhance the roadside environment while being forgiving to errant vehicles. The objectives of an NCHRP project that began in October 2003 are to develop (1) design guidelines for safe and aesthetic roadside treatments in urban areas and (2) a toolbox of effective roadside treatments that (a) balance pedestrian, bicyclist, and motorist safety and mobility and (b) accommodate community values.\(^\text{14}\) The guidelines are to be based on an evaluation of the effects of treatments such as trees, landscaping, and other roadside features on vehicle speed and overall safety. The guidelines will generally focus on arterial and collector-type facilities in urban areas with speed limits between 25 and 50 mph [40 and 81 km/h].
Section 4
Street Furniture and Fixtures

Overview

Street furniture can provide comfort and convenience along a roadway or at an intersection. Street furniture includes features used by pedestrians such as benches and bus shelters along with bicycle racks, drinking fountains, and telephones. Street fixtures include those devices that are not generally used by pedestrians, such as utility poles, fire hydrants, drainage grates, and signal controller cabinets.

Placement

When determining the placement of both street furniture and street fixtures, the designer needs to consider both pedestrian and vehicular needs. Poorly placed objects can affect:

♦ pedestrians’ movement or become an obstacle for pedestrians (see Figure 5-17),
♦ sight distance between drivers,
♦ sight distance between drivers and pedestrians, and
♦ the safety of the roadside by becoming a roadside object.

Figure 5-18 is an example of artwork located on a sidewalk. Art in downtowns and neighborhoods can improve the aesthetics of an area; however, it needs to be placed so that it does not become an obstacle to pedestrian movement. In Figure 5-18 the artwork was aligned with the urban landscaping and appears to have a minimal impact on the pedestrians moving alongside it.

Planters can also improve the aesthetics of an area. Figure 5-19 shows the use of planters alongside a roadway and along the curb return. There is a wide gap in the planters at the crosswalks so that the pedestrians can access the street to cross it. Even though a gap is provided at the crosswalk, pedestrians are still moving between the planters to cross the streets, and the planters appear to have a significant impact on pedestrian movement.
Figure 5-20 shows another example of planters at an intersection. In this situation fewer but larger planters are used resulting in more open sidewalk area.

Figure 5-19. Example of Several Planters at an Intersection.

Figure 5-20. Example of a Planter at an Intersection.
Accessibility Requirements for Street Furniture and Fixtures

Street furniture shall have clear floor or ground space of 30 inches [0.8 m] by 48 inches [1.2 m] minimum. The street furniture is to be connected to the pedestrian route, and the draft accessibility guidelines propose to allow the clear floor or ground space to overlap the pedestrian route by 12 inches [305 mm] maximum. Street furniture and fixtures should not encroach into the minimum 5 ft [1.5 m] sidewalk width.

Placement of Street Furniture with Respect to On-Street Parking

Placement of street furniture near on-street parking can make exiting a lift-equipped vehicle difficult. One remedy is to have street furniture or fixtures, such as benches, telephone poles, or streetlights, placed at the ends of parking spaces rather than in the middle of parking spaces.

Drainage Grates

Drainage grates, particularly those with parallel bars, can cause problems for wheelchair, bicycle, stroller, walker, and crutch or cane users. Whenever possible, drainage grates should be placed outside of the pedestrian travel way. However, if unavoidable, the openings on the grates should not exceed 0.5 inches [13 mm] in width, should be mounted flush and level with the surrounding sidewalk surface, and should be placed so that the long dimension is perpendicular to the dominant direction of travel. This dimension also applies to manhole covers, hatches, vaults, and other utility coverings. Additional information on drainage issues is provided in Chapter 6.
Section 5
Curb Extensions

Overview

Curb extensions exist when the sidewalk extends across the parking lanes to the edge of the travel lanes (see Figure 5-21). They are used in areas with high pedestrian activity (downtowns, neighborhoods, etc.) where there is a need to shorten crossing distances and to improve the visibility of pedestrians. Curb extensions also are called pedestrian bulbs, bulbouts, knuckles, and intersection narrowing.

This treatment also minimizes the impact of parked vehicles on pedestrian visibility. Pedestrians’ height is increased by the height of the curb when standing at the end of the bulb (which is typically at or near the edge of the travel lane). When space limitations prevent the inclusion of amenities, curb extensions create additional sidewalk space that could be used for street furniture, a bus stop, seating for a café, or additional room for general pedestrian traffic (see Figure 5-22). Curb extensions self-enforce parking restrictions near the intersection and provide additional space in which to construct curb ramps.

Advantages and Disadvantages

Advantages of curb extensions include the following:

♦ Reduce the distance that pedestrians travel in the street and the potential for being struck by a vehicle.
♦ Make streets more pedestrian friendly.
♦ Add sidewalk space for the installation of a curb ramp in a narrow sidewalk.
♦ Slow the speed of turning vehicles by tightening the corner radius.
♦ Improve the visibility of pedestrians by placing them where drivers can see them and where parked vehicles do not obscure their presence.
♦ Make it difficult for drivers to park illegally at the corners of intersections.

Disadvantages of curb extensions include the following:
♦ Impact turning ability of trucks and other heavy vehicles.
♦ Increase chance that pedestrians may be hit by drivers at night and in inclement weather conditions (e.g., snow) when parked vehicles are not present.
♦ Result in no buffer existing between the pedestrian waiting at the curb and the passing vehicles.
♦ Pose obstacles to street sweepers and snowplows.
♦ May result in merchant objections to loss of on-street parking.
♦ May result in drainage problems or trash accumulation.
♦ Increase potential for conflicts between bicyclists and motorists.

Bus Bulbs

Placing a bus stop at a curb extension (also called a bulb) can provide several advantages to both the bus patrons and pedestrians. In these cases the treatment has been called a bus bulb or a bus nub.

♦ The bus bulb creates additional area for pedestrians to walk and for patrons to wait for a bus (see Figure 5-23).
♦ The bulb can also provide space for bus patron amenities, such as shelters and benches, and for additional landscaping to improve the visual environment.
♦ The replacement of a bus bay in a parking lane with a bus bulb can result in additional parking spaces because the bulb does not require the inclusion of weaving space for a bus to enter the bay.
♦ The bulb can be the length of the bus or the minimum length required for boarding and alighting activities.

Figure 5-23. Example of Bus Bulb.

A late 1990s research project found the replacement of a bus bay with a bus bulb improved vehicle and bus speeds on a corridor in San Francisco. Buses experienced approximately a
7 percent increase (about 0.5 mph [0.8 km/h]) in both the northbound and southbound directions. Vehicle speeds also improved by as much as 7 mph [11.3 km/h]. Reductions in travel speeds are assumed to be the consequence of installing bus bulbs because buses are stopping in the travel lane rather than moving into a bus bay. In the before period when the bus bay configuration was present, the majority of the buses stopped partially or fully in the travel lane rather than pulling into the bay. In addition, buses pulling away from the bay sometimes used both travel lanes to complete the maneuver. The number of buses affecting vehicles in the outside travel lane may not have greatly changed after the bulb’s installation. The number of buses affecting vehicles in both travel lanes did decrease because bus drivers no longer needed to use both travel lanes to leave the bus stop.

Additional information on bus bulb performance and recommendations on their use is contained in *Evaluation of Bus Bulbs.* Figure 5-24 is a schematic of typical bus bulb dimensions determined as part of that study.

Figure 5-24. Typical Bus Bulb Dimensions.

LEGEND

- Bus Stop Sign
- Optional Trash Receptacle
- Bulb Area
- Grass Strip
- On-Street Parking Area
- Loading Area, no street furniture
- Building Area

Note: Measurements may vary from site to site. Values shown are typical.

* 30’ min. to 140’ (accommodate two articulated buses).
Section 6
Bus Stops

Overview

Transit needs to be an integral part of a transportation system for the system to efficiently serve the state’s transportation needs. As a result of this expanded multi-modal approach to transportation planning, there is a need to incorporate provisions for transit vehicles and services into the department’s roadway planning, design, and operation guidelines.

Following is a summary of bus stop design issues as related to intersections.

Application 5-2 <link> presents an example where a bus stop is moved.

Placement of Bus Stop

Bus stops can be located far-side, near-side, or at midblock in relationship to an intersection (see Table 5-2). Some communities have a strong preference for the use of farside or nearside bus stops and attempt to use only one or the other to achieve a consistent type of location for all bus stops. Other communities are not as strict and will select different locations based on the characteristics present at the proposed bus stop location.

<table>
<thead>
<tr>
<th>Placement</th>
<th>Definitions</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farside Bus Stop</td>
<td>The bus stops immediately after passing through an intersection.</td>
<td>This type of stop minimizes conflicts between buses and vehicles turning right from the roadway with the transit route. It also encourages pedestrians to cross behind the bus.</td>
<td>Disadvantages include that an increase in the number of rear-end crashes may occur since drivers do not expect buses to stop again after stopping at a red signal indication or that the traffic stopped behind the bus could queue into the intersection.</td>
</tr>
<tr>
<td>NEarside Bus Stop</td>
<td>The bus stops immediately prior to an intersection.</td>
<td>Patrons can board and alight while the bus is stopped at a red signal indication, and the bus driver has the width of the intersection available for pulling away from the curb.</td>
<td>Stopping at the near-side of an intersection can increase conflicts with right-turning vehicles and could limit sight distance to curbside traffic control devices and crossing pedestrians.</td>
</tr>
<tr>
<td>Midblock Bus Stop</td>
<td>The bus stops within the block.</td>
<td>It can minimize intersection sight distance restrictions for vehicles and pedestrians.</td>
<td>It encourages patrons to cross the street at midblock or it could increase walking distance.</td>
</tr>
</tbody>
</table>

Types of Stops

Various roadway configurations are available to accommodate bus service at a stop, including:

♦ Curbside stop — buses stop in the travel lane alongside the curb.

♦ Bus bay (with or without acceleration and deceleration lanes) — buses move from the travel lane into a bay that is separated from the main lanes. The bay allows through
traffic to flow freely without being impeded by the stopped buses. They can be advantageous at locations where the bus operator is scheduled for a break or at timed stops where the bus must wait until a specific time even if running ahead of schedule.

- **Open bus bay** — similar to a far-side bus bay; however, the bay is open to the intersection (no deceleration length is needed as the bus can decelerate while moving through the intersection).

- **Queue jumper bus bay** — an open bus bay with an upstream right-turn lane. The bus can enter the right-turn lane and bypass the queue of through vehicles stopped at the upstream traffic signal.

- **Bulb** — the sidewalk is extended through a parking lane and the bus stops in the travel lane while servicing the bus stop. Bus bulbs have several qualities similar to curb extensions or pedestrian bulbs (see Chapter 5, Section 5). Table 5-3 lists advantages and disadvantages of the various bus stop configurations.

Table 5-3. Advantages and Disadvantages of Bus Stop Configurations.16

<table>
<thead>
<tr>
<th>Type of Stop</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curbside</td>
<td>♦ Provides easy access for bus drivers and results in minimal delay to bus</td>
<td>♦ Can cause traffic to queue behind stopped bus, thus causing traffic congestion</td>
</tr>
<tr>
<td></td>
<td>♦ Is simple in design and easy and inexpensive for a transit agency to install</td>
<td>♦ May cause drivers to make unsafe maneuvers when changing lanes in order to avoid a stopped bus</td>
</tr>
<tr>
<td></td>
<td>♦ Is easy to relocate</td>
<td></td>
</tr>
<tr>
<td>Bus Bay</td>
<td>♦ Allows patrons to board and alight out of the travel lane</td>
<td>♦ May present problems to bus drivers when attempting to re-enter traffic, especially during periods of high roadway volumes</td>
</tr>
<tr>
<td></td>
<td>♦ Provides a protected area away from moving vehicles for both the stopped bus and the bus patrons</td>
<td>♦ Is expensive to install compared with curbside stops</td>
</tr>
<tr>
<td></td>
<td>♦ Minimizes delay to through traffic</td>
<td>♦ Is difficult and expensive to relocate</td>
</tr>
<tr>
<td>Open Bus Bay</td>
<td>♦ Allows the bus to decelerate as it moves through the intersection</td>
<td>♦ See Bus Bay disadvantages</td>
</tr>
<tr>
<td>Queue Jumper Bus Bay</td>
<td>♦ Allows buses to bypass queues at a signal</td>
<td>♦ May cause delays to right-turning vehicles when a bus is at the start of the right-turn lane</td>
</tr>
<tr>
<td></td>
<td>♦ See Open Bus Bay advantages</td>
<td>♦ See Bus Bay disadvantages</td>
</tr>
<tr>
<td>Bus Bulb</td>
<td>♦ Removes fewer parking spaces for the bus stop</td>
<td>♦ Costs more to install compared with curbside stops</td>
</tr>
<tr>
<td></td>
<td>♦ Decreases the walking distance (and time) for pedestrians crossing the street</td>
<td>♦ See Curbside disadvantages</td>
</tr>
<tr>
<td></td>
<td>♦ Provides additional sidewalk area for bus patrons to wait</td>
<td></td>
</tr>
<tr>
<td></td>
<td>♦ Results in minimal delay for bus</td>
<td></td>
</tr>
</tbody>
</table>

Bus Stop Zone

A bus stop zone is the portion of a roadway marked or signed for use by buses when loading or unloading passengers. The lengths of bus stop zones vary among transit agencies and...
cities. Representative dimensions for bus stop zones are illustrated in Figure 5-25. If the bus zone is located in an area where parking is permitted, the zone length is marked to keep the area free of parked or stopped cars.

![Figure 5-25. Typical Types of and Dimensions for On-Street Bus Stops.](image)

Grade

Selection of the roadway grade is related to topography and existing development; however, the grade should be as flat as possible (<2 percent preferred) for efficient deployment of a wheelchair lift.
Grade Changes

The recommended grade change between a street and a driveway for buses is 6 percent or less.

Roadside Considerations

Buses generally travel in the traffic lane closest to the curb because of their need to make frequent stops. Therefore, consideration of the following bus clearance requirements in roadway design is important:

♦ Overhead obstructions should be a minimum of 12 ft [3.7 m] above the street surface.
♦ Obstructions should not be located within 2 ft [0.6 m] of the edge of the street to avoid being struck by a bus mirror.

Lane Width

A traffic lane used by buses should be no narrower than 12 ft [3.7 m] in width because the maximum bus width (including mirrors) is about 10.5 ft [3.2 m]. Desirable curb lane width (including the gutter) is 14 ft [4.3 m].

Curb Height

An appropriate curb height for efficient passenger-service operation is between 6 and 9 inches [152.4 and 228.6 mm]. If curbs are too high, the bus will be prevented from moving close to it, and the operations of a wheelchair lift could be negatively affected. If curbs are too low or not present, older persons and passengers with mobility impairments may have difficulty boarding and alighting.

Curb Radii

The corner curb radii used at intersections can affect bus operations when the bus makes a right turn. A trade-off in providing a large curb radius is that the crossing distance for pedestrians is increased, which increases the pedestrians’ exposure to on-street vehicles. This can influence how pedestrians cross an intersection. The additional time that a pedestrian is in the street because of larger curb radii should be considered for signal timing and median treatment decisions.

The design of corner curb radii should be based on the following elements:

♦ design vehicle characteristics, including bus turning radius;
♦ width and number of lanes on the intersecting street;
♦ allowable bus encroachment into other traffic lanes;
♦ on-street parking;
♦ angle of intersection;
operating speed and speed reductions; and
pedestrians.

Traffic Signals

Bus stops are frequently located at signalized intersections. Traffic signal design should accommodate buses and bus passengers. Basic signal design information is included in Chapter 8. The following should be considered in designing traffic signal systems in new developments or upgrading/redesigning signals at existing intersections when a bus stop may be installed:

- Location of bus stops should be coordinated with traffic signal pole and signal head location. Bus stops should be located so that buses do not totally restrict other vehicles’ visibility of a traffic signal. (These problems could be addressed by using a far-side stop at the intersection.)
- The use of a far-side, curbside stop at a signalized intersection can cause vehicles stopping behind the bus to queue into the intersection. At signalized intersections, if a far-side bus stop is needed, a bus bay is preferred to a curbside stop.
- Nearside stop areas are often located between the advance detectors for a traffic signal and the crosswalk. Detectors should be located at the bus stop to enable the bus to actuate the detector so that the signal controller can call or extend the green light. Without a detector, a bus is forced to wait until other traffic approaching from the same direction actuates the signal controller.
- Timing of traffic signals should also reflect the specific needs of buses. Longer clearance intervals may be needed on high-speed roadways with significant bus traffic so that a bus can accelerate from the bus stop into the intersection.

Sight Distance

Sight distance considerations for bus stops include the following:

- The stopped bus will affect sight distance for pedestrians using the parallel and transverse crosswalks at an intersection.
- The stopped bus will also affect sight distance for parallel traffic and cross traffic. For instance, at a near-side stop, vehicular right turns are facilitated and sight distance is improved when the bus stop is set back from the crosswalk.
- The bus affects the traffic stream as it enters or leaves a stop.
- A bus may stay at a bus stop for an extended period to permit a driver a break or because the bus is ahead of schedule. This is known as a timed stop. The longer stopping period could have a greater impact on sight distance.

A recently completed study on pedestrian crashes found that approximately 2 percent of pedestrian crashes in urban areas and 3 percent of pedestrian crashes in rural areas are related to bus stops. These crashes generally involved pedestrians who stepped into the street in front of a stopped bus and were struck by vehicles moving in the adjacent lane.
This situation develops when the line of sight between the pedestrian and an oncoming vehicle is blocked, or when the pedestrian simply does not look for an oncoming vehicle. This type of crash can be reduced by relocating the bus stop from the near side to the far side of an intersection, thus encouraging pedestrians to cross the street from behind the bus instead of in front of it. This makes pedestrians more visible to motorists approaching from behind the bus. Not only can far-side bus stops reduce the potential for bus stop crashes involving pedestrians, buses are also less likely to obscure traffic signals, signs, and pedestrian movements at intersections as opposed to near-side bus stops.

Waiting or Accessory Pad

A waiting or accessory pad is a paved area at a bus stop provided for bus patrons. It may contain a bench, bus shelter, or other amenities such as trash receptacles or bicycle racks. The size of the waiting pad depends on several factors which commonly include the anticipated number of waiting passengers, the length and width of shelters or benches (if to be present), and the length of the bus. A common dimension for a pad is 8 ft [2.5 m] by 10 ft [3 m]. Waiting pads are provided in addition to the sidewalk to preserve general pedestrian flow. When not adjoining to the sidewalk, a paved connection should be provided to the waiting pad.

The ADAAG\(^3\) provides requirements for the waiting pad to ensure proper wheelchair lift operations. Where new bus stop waiting pads are constructed at bus stops, bays, or other areas where a lift is to be deployed, they shall have:

- a firm, stable surface;
- a minimum clear length of 8 ft [2.4 m] (measured from the curb or vehicle roadway edge) and a minimum clear width of 5 ft [1.5 m] (measured parallel to the vehicle roadway) to the maximum extent allowed by legal or site constraints; and
- a connection to streets, sidewalks, or pedestrian paths by an accessible route.

The slope of the pad parallel to the roadway shall, to the extent practicable, be the same as the roadway. For water drainage, a maximum slope of 1:50 (2 percent) perpendicular to the roadway is allowed.

Access to Bus Stop

Landscaping, berms, security walls, large parking lots, and circuitous sidewalks can decrease the convenience of using transit by increasing the walking time between the origin or destination and the bus stop. Direct access to and from the bus stop is critical to the convenience of using transit. The transit agency can work with local jurisdictions or developers to ensure that direct sidewalks are installed near bus stops from the intersection or adjacent land uses. Additional information on sidewalks is contained in Chapter 5, Section 1, Sidewalks <link>.
Additional Sources of Information

TxDOT sponsored a research project to develop guidelines on buses and surface streets in recognition of the emphasis of integrating transit. The report was entitled *Guidelines for Planning, Designing, and Operating Bus-Related Street Improvements.*

In the mid-1990s, the Transit Cooperative Research Program (TCRP) sponsored the development of a national set of guidelines on bus stop design. TCRP Report 19: *Guidelines for the Location and Design of Bus Stops* was designed to assist transit agencies, local governments, and other public bodies in locating and designing bus stops that consider bus patrons’ convenience, safety, and access to sites as well as safe transit operations and traffic flow. The guidelines include information about locating and designing bus stops and checklists of factors that should be considered.

AASHTO through NCHRP sponsored the development of an Interim Guide on transit facilities in 2002. A draft of the *Geometric Design Guide for Transit Facilities on Highways and Streets – Phase I* was available in July 2002 and the final version is anticipated in 2005. It will contain guidelines on transit facilities on highways, streets, and off-line transit facilities.
Section 7
Lighting

Overview

Lighting may improve the safety of highway and street intersections, as well as efficiency of traffic operations. Statistics indicate that nighttime crash rates are higher than crash rates during daylight hours. This fact, to a large degree, may be attributed to lower visibility. In urban and suburban areas where there are concentrations of pedestrians and roadside and intersectional interferences, fixed-source lighting has been shown to reduce crashes.

The TxDOT Highway Illumination Manual19 is available on-line. The purpose of the manual is to provide procedures, guidelines, and information concerning highway illumination. It includes the following chapters:

- Introduction;
- Lighting Systems, Highway Eligibility, and Warrants;
- Master Lighting Plans;
- Lighting Agreements;
- Lighting Equipment;
- Lighting Design and Layout;
- Electrical Systems;
- Temporary Lighting; and
- Construction and Maintenance.

Eligibility and Warrants of Lighting Systems

Title 43, Texas Administrative Code, Section 25.11 defines two basic types of roadway lighting systems:

- continuous illumination and
- safety lighting.

The rules also describe instances in which continuous lighting may be classified as safety lighting. The rules specify the types of highways eligible for the spending of state funds on each type of illumination system. The Texas Department of Transportation can only install and maintain lighting systems on eligible roadways where the conditions warrant such installation.

\textit{Eligibility}. Eligibility requirements for each type of lighting system are described in the relevant sections of the TxDOT \textit{Highway Illumination Manual} link.
Warrants. The TxDOT *Highway Illumination Manual* includes warrants to justify the need for and expense of roadway lighting at eligible locations. The criteria are based on roadway conditions that are divided into cases. These cases are coded for ease of reference. The code consists of either "CL" (for continuous lighting) or "SL" (for safety lighting) followed by a dash and a number (for example: CL-2 or SL-4).

Other Advice on When to Consider Lighting

The TxDOT *Highway Illumination Manual* contains the specific requirements for warranting continuous and safety lighting. Other documents include general advice on when to consider roadway lighting.

The 2001 *Green Book* states that intersections with channelization, particularly multiple-road geometrics, should include lighting. Large channelized intersections especially need illumination because of the higher range of turning radii that are not within the lateral range of vehicular headlight beams. Illumination of intersections with fixed-source lighting accomplishes this need.

When lighting is installed on sidewalks or bicycleways (termed pedestrian lighting) along nearby streets and highways, it is essential that the street be lit to the same level as the sidewalk or bicycleway. Although cities or other entities are not obligated to light the entire roadway if they provide pedestrian lighting, it is desirable to mitigate any veiling glare that may be introduced by off-road lighting. Sources of off-road lighting can include automobile retail lots, parking lots, malls, or other brightly illuminated areas. The TxDOT *Highway Illumination Manual* should be consulted for further information.

The *Highway Design Handbook for Older Drivers and Pedestrians* recommends fixed lighting installations wherever feasible where any of the following conditions exist:

- The potential for wrong-way movements is indicated through crash experience or engineering judgment.
- Pedestrian volumes are high.
- Shifting lane alignment, turn-only lane assignment, or a pavement-width transition forces a path-following adjustment at or near the intersection.

Factors to consider in determining whether to install lighting include:

- traffic volumes (especially at low light or dark times),
- pedestrian and bicycle volumes,
- vehicle speed,
- nighttime crash rate,
- intersection geometrics,
- locations where severe or unusual weather or atmospheric conditions exist, and
- general nighttime visibility.
Location

The TxDOT Highway Illumination Manual contains guidelines for the placement of conventional lighting poles in relation to other roadway elements. These guidelines apply to all designated routes, whether the poles are installed by construction contract, state forces, municipalities, or others.

Trees

In areas with heavy tree growth, lighting systems may need to be evaluated during the summer months when the potential of blockage by foliage is at its greatest. More importantly, the placement and type of trees should be evaluated ahead of time. A regular pruning and maintenance program is also advised.

Other References Available

Intersection luminaire supports should be located and designed in accordance with current roadside safety concepts. Additional discussion and design guidance can be found in:

♦ AASHTO’s An Informational Guide for Roadway Lighting – This guide contains information for the lighting of freeways, streets, and highways other than controlled access facilities, tunnels and underpasses, and rest areas, signs, and maintenance.

♦ AASHTO’s Roadside Design Guide – This document presents a synthesis of current information and operating practices related to roadside safety. The roadside is defined as that area beyond the traveled way (driving lanes) and the shoulder (if any) of the roadway itself. The focus of this guide is on safety treatments that minimize the likelihood of serious injuries when a driver runs off the road. Chapter 4 provides information on the use of sign and luminaire supports within the roadside environment. Both small and large signs are included, as well as breakaway and non-breakaway supports.

♦ AASHTO’s Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals – This document provides breakaway and support requirements.
Section 8
Utilities

Overview

As dictated by both federal24 and state25,26 regulations, public utilities are allowed to install transmission lines along and across highway right of way in Texas. These public utilities include lines that transport natural gas, water, electricity, telecommunications, cable television, salt water, and common carrier petroleum and petroleum-related products. Additionally, privately owned lines are normally allowed to cross highway right of way. In many instances, these utilities are installed at or near an intersection.

General Location Guidelines

Generally speaking, when utilities are located within the right of way, they are to be located such that they can be installed and serviced without access from the roadway or ramps.27 What this means in Texas is that utility lines shall be located to permit access to the lines with minimum interference to highway traffic.25 Guidelines also stress the importance of minimizing the need for later adjustments to the utilities to accommodate them in future highway improvements.28

The Texas Utility Accommodation Policy25 (UAP) \(<\text{link}>\) has specific requirements regarding the installation of utility lines within TxDOT right of way. This policy draws on many resources as guidelines to establish standards for utility work or placement and reimbursement cost within the rights of way. When and if a TxDOT standard is found to be more stringent than any other standard, the TxDOT standard shall be the rule. For example, their design must meet not only the Texas requirements but those of various codes, rules, and regulations that dictate the design of specific utilities (e.g., National Electric Safety Code, American Society for Testing and Materials, etc.)25 Furthermore, utility horizontal and vertical installation should meet with clear roadside practices of TxDOT.25 The UAP also provides requirements for the placement of utility lines that may impact the design of an intersection. Basic requirements as they relate to various features of utility lines are discussed in the following sections. For additional information, refer to the UAP \(<\text{link}>\).

Typical Features

Any utilities located within highway or intersection ROW may have an impact on the design of that intersection. Their presence may include appurtenances that can present challenges to designing an accessible intersection. While TxDOT accommodates utilities within the ROW so that they do not adversely affect safety, design, construction, operation, or maintenance25, designers should be aware of certain features related to utilities that may impact the intersection. These features include:

\begin{itemize}
 \item poles,
 \item guy wires,
 \item manholes,
\end{itemize}
♦ markers,
♦ vents, and
♦ aboveground pedestals, equipment housings, or structures.

The placement of these features within the ROW of an intersection should consider pedestrian needs in addition to the UAP requirements.

Overhead Utilities

Overhead utilities typically include power lines, communication, and cable television lines. When installed, they must meet minimum vertical clearance requirements above the roadway. The UAP\(^{25}\) requires that the clearance above the roadway be no less than 22 ft \([6.7 \text{ m}]\) for power lines and 18 ft \([5.5 \text{ m}]\) for communication and cable television lines. Horizontal clearances to obstructions, which vary depending on the location and functional classification of the roadway, are dictated by the horizontal clearances outlined in Table 2-11 of the *Roadway Design Manual*\(^8\) and reproduced in Table 5-1 linked. Note that because of the need for specific placement to assist traffic operation, devices such as traffic signal supports, railroad signal/warning device supports, and controller cabinets are excluded from horizontal clearance requirements. These devices however, should be located as far from the travel lanes as practical. These general requirements may not necessarily meet those minimum clearances noted in Chapter 5, Section 4, *Street Furniture and Fixtures*, linked which summarizes the ADAAG/TAS requirements.\(^3,4,10\) In such cases, the most stringent requirements should dictate placement. Specific requirements for the location of poles linked and guy wires linked used in overhead utility installations are discussed below.

Further limitations to the location of overhead utilities are provided in state law.\(^{29}\) Health and safety statutes should be consulted for details, but the following requirements dictate that at least a 10-ft clearance \([3.1 \text{ m}]\) between signal hardware and high voltage lines be maintained:

♦ Equipment work cannot be performed within 10 ft \([3.1 \text{ m}]\) of an overhead high voltage line.
♦ Employees cannot come within 6 ft \([1.8 \text{ m}]\) of an overhead high voltage line.
♦ Work closer than these limits requires a 48 hr notification be provided to the operator of the overhead line.

Poles

According to the UAP, poles supporting longitudinal overhead lines at an uncurbed intersection in an urban area should be located anywhere from 1 to 3 ft \([0.3 \text{ to } 0.9 \text{ m}]\) from the ROW edge.\(^{25}\) At curbed intersections in urban areas, poles should be located adjacent to the ROW line. Where this is not practical, they should be placed as far behind the outer curbs as possible.\(^{25}\) If the pole is steel and has a base greater than 3 ft \([0.9 \text{ m}]\) in diameter, it should not be placed within the ROW except in cases of extreme hardship.\(^{25}\) These
requirements do not specifically consider the presence of sidewalks. Additional placement guidelines should follow those for the placement of street fixtures as outlined in Chapter 5, Section 4, which addresses ADAAG/TAS requirements. Figure 5-26 and Figure 5-27 are examples of light poles located along a street. In Figure 5-26, the utility pole is placed behind the sidewalk, while Figure 5-27 shows the light pole between the street and the sidewalk. Guidance presented in TRB State of the Art Report 911 (Utilities and Roadside Safety) is summarized in Chapter 5, Section 6 of this Guide.

Figure 5-26. Examples of Light Pole behind Sidewalk.

Figure 5-27. Examples of Light Pole between Sidewalk and Street.
Guy Wires

Utility companies should work to minimize the guy wires located within the ROW. However, in the event that they are used, they should preferably be within the pole line or otherwise located such that they do not violate horizontal clearance restrictions. Because of their color, thickness, and typical placement, guy wires can become a tripping hazard or a protruding object for pedestrians. Figure 5-28 illustrates guy wires that accommodate pedestrian movement on a sidewalk, and Figure 5-29 shows a guy wire located parallel to the sidewalk.

Underground Utilities

Underground utilities include power lines, communication lines, cable television lines, natural gas, water, petroleum, and other utilities that are ordinarily installed below ground. These utilities have aboveground appurtenances whose location and size are dictated by the UAP, including, but not limited to, manholes, markers, vents, and aboveground pedestals, equipment housings, or structures. General accommodation requirements for these features are as noted below.

In general, AASHTO guidelines require that any appurtenance that protrudes more than 3.9 inches [100 mm] above the ground line should not be in the clear zone unless no other feasible alternative exists. In such cases, the appurtenance should be breakaway or protected by appropriate traffic barriers.

Manholes or Access Covers

Manholes (also called access covers) are necessary features that provide access to underground utilities. However, they can affect accessibility when located within an intersection. The UAP does not permit manholes in the pavement or shoulders of high-volume roadways except on noncontrolled access highways in urban areas where they are allowed for existing permitted lines. Thus, because the manhole cover cannot be placed in the roadway, it may need to be located near or within the predicted pedestrian route to permit logical access to the utility. In these cases, the requirements set forth by the U.S. Access Board need to be considered in locating the access point. The Roadway Design Manual indicates that manholes should not be located within the curb ramp, maneuvering area, or landing. Figure 5-30 illustrates the presence of a manhole on the sidewalk at an intersection, while Figure 5-31 shows an alternative location for a manhole that does not adversely impact the pedestrian access route.
Figure 5-28. Guy Wire to Accommodate Pedestrian Movement.

Figure 5-29. Guy Wire Parallel to Sidewalk.
Figure 5-30. Example of Manhole in Sidewalk at Intersection.

Figure 5-31. Example of Manhole Outside Pedestrian Access Route.
Markers

Whenever installing underground lines such as high pressure gas and liquid petroleum, low pressure gas, and underground power and communications, utilities are required to place readily identifiable markers at each right-of-way line where it is crossed by the utility line and along the right-of-way line for longitudinal lines. As illustrated in Figure 5-32, these markers may vary in design, including a metal stake with a metal sign or a plastic marker or pole, all of which would have writing indicating the type of utility buried beneath. Beyond these general requirements, marker location is not specifically mandated. Therefore, markers could potentially be installed such that they impede intersection accessibility. For this reason, their location should follow mandated horizontal clearances and accessibility guidelines for the placement of street furniture.

![Figure 5-32. Example of Utility Marker at Intersection.](image)

Vents

The underground installation of pipelines requires vents periodically along the length of the line. AASHTO guidelines state that vent stand pipes for pipelines should be located at the right-of-way line and such that they do not impede pedestrian traffic. The UAP has similar requirements such that the vents shall be placed directly above the pipeline at the right-of-way line and shall not interfere with highway maintenance or be concealed, such as by vegetation. Vents are the only other aboveground appurtenance associated with gas and petroleum lines that are allowed within the right of way. Given that, they should be located away from the sidewalk and pedestrian areas of an intersection. Figure 5-33 illustrates a pipeline vent at the right-of-way line at an uncurbed intersection.
Pedestals, Structures, and Housings

In some instances, utility equipment is housed on-site within a structure that can be significantly larger than a single pole or other appurtenance. As with other installations, the UAP25 allows pedestals, structures, or housings to be installed within the right of way if they:

♦ will not significantly impede highway maintenance operations, including the height of the supporting slab above the ground line;
♦ are placed at or near the right-of-way line;
♦ will not reduce visibility and sight distance such that they create an unsafe condition, particularly at or near highway intersections;
♦ have dimensions that are minimized, with outside dimensions of the portion above ground not exceeding 36 inches [0.9 m] (depth), 60 inches [1.5 m] (length), and 54 inches [1.4 m] (height), respectively;
♦ have a supporting slab which does not project more than 3 inches [76 mm] above the ground line; and
♦ have an installation that is compatible with adjacent land uses.

Figure 5-34 and Figure 5-35 illustrate various types of equipment structures or housings located at or near intersections. As shown, all of the structures on housings are beyond the accessible areas of the intersections and should not present problems for pedestrians.
Figure 5-34. Example of Utility Pedestals and Structures at Intersection.

Figure 5-35. Example of Equipment Housing at Intersection.
Section 9
References

Chapter 6
Drainage

Contents:
Section 1 — Drainage Objectives... 6-2
Section 2 — Cross Slope ... 6-2
Section 3 — Profile .. 6-2
Section 4 — Curb and Gutter ... 6-2
Section 5 — Ditches ... 6-2
Section 6 — Relationship to Pedestrian Facilities 6-2
Section 7 — References... 6-2
Section 1

Drainage Objectives

Overview

According to the Texas Administrative Code:\(^1\)

“In general, it shall be the duty and responsibility of the department to construct, at its expense, a drainage system within state highway right of way, including outfalls, to accommodate the storm water that originates within and reaches state highway right of way from naturally contributing drainage areas.”

Drainage is an important consideration in the design of an intersection. The development of the drainage design for the roadway affects (or is affected by) roadway grades, roadway cross section, curb ramp placement, intersection detailed design, and intersection location.

Detailed design information for storm water drainage design is contained in Chapter 10 of TxDOT’s *Hydraulic Design Manual*;\(^2\) the material presented in this chapter represents those aspects of hydraulic design influencing or affected by intersection design.
Section 2
Cross Slope

Overview

The design of the pavement and roadway cross section depends to a large degree on compromises between hydraulic efficiency and driver, vehicle, and pedestrian needs. Because none of these considerations can be neglected, designers develop designs that consider all types of design constraints. Designers should also consider and accommodate the ultimate traffic control at the intersection (i.e., signalization if appropriate), especially with regard to the use of valley gutters that may or may not continue through the intersection.

Sidewalks

Sidewalks and other pedestrian facilities such as curb ramps should be designed so they do not accumulate water (requiring that slopes be provided for drainage) yet also accommodate pedestrian needs (requiring reasonably flat surfaces). Chapter 5, Section 1 of this report provides guidance on permissible sidewalk grades and cross slopes.

Pavement Cross Slopes

The cross slope on a roadway allows the pavement to drain, preventing water from infiltrating the pavement structure and allowing vehicles to use the roadway during storm events. Steeper cross slopes are more efficient from a hydraulic viewpoint but can pose safety problems if they are too steep or change too quickly. The discussion that follows is in reference to tangent sections; designers should consult the Roadway Design Manual and Chapter 3 of this manual to determine appropriate superelevation rates for horizontal curves.

Two-Lane Roadways. Two-lane roadways typically feature a centerline crown. The cross slopes are:

- Typical: 2 percent.
- Minimum: not less than 1 percent.
- Areas with heavy rainfall: can be increased to 2.5 percent on high-type pavements (i.e., asphalt or Portland cement concrete).
- Roadways with curb and gutter: the lower ranges of cross slopes should not be used, to limit the water flowing along the curb to the outer half of the lane.

Divided Roadways. Divided roadways generally have uniform cross slopes that have high points on the median side; occasionally, however, the high points are placed at the centerline of the pavement sections on each of the individual roadbeds. Sloping the pavement to the outer edge allows collecting water with inlets on only one side of the pavement, minimizing the number of storm sewer inlets and trunk lines.
Cross slopes of 1.5 to 2 percent are typically used on divided roadways and urban streets. Careful consideration to providing adequate drainage should also be used when designing superelevated roadways. The introduction of superelevation at horizontal curves can result in the construction of flat areas on the alignment if the superelevation is rotated through horizontal at the low or high point of a vertical curve.

Multilane Roadways. Roadways with three or more lanes per direction should desirably use a steeper slope on the outermost lane(s) than on the interior lanes. A slope of 2 percent (minimum 1 percent) is typically used on the inner lanes. Each successive pair of outside lanes may have their cross slope increased by 0.5 to 1 percent.

Crossover

The difference in cross slope (see Figure 6-1) between adjacent pavement surfaces should be limited to reduce adverse affects on the motorist:

- Cross slope difference between the shoulder and the travel lanes should not exceed 6 to 7 percent.\(^4\)
- Difference between lanes is normally limited to 4 percent because of the influence on drivers when they traverse the crown line.
- Difference between lanes in areas of high rainfall can be increased to 5 percent if maximum cross slopes are used.

![Crossover Points between Lanes and Shoulder](image)

Figure 6-1. Crossover Points between Lanes and Shoulder.
Section 3

Profile

Overview

Drainage affects the design of the vertical profile of roadways because it is desirable that concentrated water flows not cross major traffic movements (Figure 6-2). It is also disruptive for traffic to travel across sharp breaks in the profile of the roadway.

![Figure 6-2. Water Flow across Street at Intersection.](image)

Minor Roadway Grades Warped to Fit Major Roadway

When minor roadways intersect with major roadways, the grades should generally favor the major roadway. Figure 6-3 illustrates warping the grades on the minor roadway to fit the cross section of the major roadway. This provides a smooth profile on the major roadway, and is acceptable on the minor roadway if traffic is expected to stop or travel slowly through the intersection. Additional information on roadway grades at intersection is included in Chapter 3, Section 5 [link].

Sketches illustrating designs intended to prevent water from flowing across the intersection, preserve sight distance, and provide a reasonably smooth ride are shown in Figure 6-4 (major roadway with a centerline crown) and Figure 6-5 (major roadway superelevated).
Figure 6-3. Minor Street Intersecting Major Street.

Figure 6-4. Normal Crown on Major Roadway, Stop Condition on Minor Roadway.
Another way of setting intersection gradelines is to match centerline grades and create a “table top” in the intersection. Illustrated in Figure 6-6, this method creates an intersection that has sheet flow to one corner. Although most acceptable for use on roadways with narrow paved sections, (thus limiting the water accumulation) the design is also used for larger intersections. The resulting smooth profiles through the intersection for both roadways provide a smooth ride for motorists continuing through the intersection and are suitable for signalized intersections.

Figure 6-5. Superelevated Major Roadway, Stop Condition on Minor Roadway.

“Table Top” Design: Centerline Grades Matched and Flow Lines Adapted
Use of this design generally allows compliance with ADA requirements for cross slope in the crosswalk if the table is flat enough. Care should be taken to ensure that excessive amounts of water do not accumulate at one curb ramp. The use of contour plots to design and review the drainage and roadway tie-ins is recommended.

![Figure 6-6. “Table Top” Design.](image)

Matched Cross Sections

An intersection design technique that is not recommended is to match cross sections on both roadways. The design usually requires adjusting the centerline profiles and is illustrated in Figure 6-7. Resulting in an uncomfortable ride for motorists on both roadways, the design should be avoided.
Figure 6-7. Cross Section Held Constant on Both Roadways, Technique Not Recommended Because It Results in an Uncomfortable Ride on Both Roadways.
Section 4

Curb and Gutter

Overview

Curb and gutter is used to direct and control the movement of storm water, control access, and/or provide delineation or channelization.

Curb Type

Curbs should normally be used on low-speed facilities only. Curbs should only be used on high-speed facilities when needed for drainage and then they should be of the sloping type and located at the outer edge of the shoulder. The design characteristics of these types of curbs can be found in TxDOT’s Roadway Design Manual, Chapter 2, Section 6.<link>

Ponding

The use of curb and gutter at intersections introduces the issue of ponding. Because grades are complicated by the presence of side roads, the potential for ponding occurring due to a design or construction problem is increased. Designs should be reviewed for the potential of ponding; the most common technique used is the development of a contour plot at close elevation intervals that is then reviewed for “bird baths.” If ponding is determined to be likely, the designer should revise the intersection grade plan by:

♦ revising side street grades,
♦ changing cross slope on the main roadway or side street, or
♦ revising main roadway grades.

Ponding can also occur because of construction error. Because of the convergence of multiple gradelines and complicated curbing layouts, construction may not result in the exact grading the designer intended. Techniques used to provide better information to the inspector or contractor in the field include:

♦ provision of contour layouts,
♦ detailed curb and gutter grades (i.e., elevations every 25 ft [8 m] or closer) at corners and other critical locations, and/or
♦ elevation grid maps for intersections.

Raised Medians and Islands

Designers should consider the potential for raised medians and islands to trap or concentrate water. Breaks and/or inlets should be provided to eliminate concentrated flow or ponding (see Figure 6-8).
Storm Drain Systems

Storm drain systems are typically placed in curb and gutter sections to remove water from the roadway. Inlet placement and design should reflect the need to remove concentrated water flow and accumulations of water from the pavement. Chapter 10 of the Hydraulic Design Manual should be consulted for further detailed design information on storm drain inlets.

Inlet Placement. Inlets are normally placed to limit ponding (i.e., water flow in the outer part of the cross section against the curb). The Hydraulic Design Manual provides the following ponding limits.

- Limit ponding to one-half the width of the outer lane for the main lanes of interstate and controlled access highways.
- Limit ponding to the width of the outer lane for major highways, which are highways with two or more lanes in each direction, and frontage roads.
- Limit ponding to a width and depth that will allow the safe passage of one lane of traffic for minor highways.

With respect to intersections, inlets on curbed roadways should be placed:

- upstream of intersections and crosswalks to intercept the water in the gutter prior to entering the intersection.
♦ prior to the change in cross slope at any locations where the pavement crown is warped,¹ or
♦ away from the curb radius and curb ramps present at the intersection.

Carryover. Many designs of on-grade inlets utilize carryover to increase efficiency (see Chapter 10, Section 5 of the *Hydraulic Design Manual* [link]). In these designs, inlets are designed to intercept only a portion of the flow in the gutter at any one point. The rate of gutter flow not intercepted is called carryover. Although the use of carryover or “bypass flow” is generally desirable in storm drain design because it results in a more efficient hydraulic design, its use should normally be avoided at inlets upstream of intersections or driveways because it allows water to flow into the intersections or driveways.²

Inlet Type. The design of an intersection may also guide the selection of the storm drain inlet type.

Curb Opening Inlet. Probably the most common type of inlet is the curb opening inlet, shown in Figure 6-9 and Figure 6-10. Shown with a depressed gutter in front of the inlet, this depression increases the efficiency of the inlet but may have a detrimental effect on traffic if too deep. According to TxDOT’s *Hydraulic Design Manual²*, the depth of the depression (shown in Figure 6-9) should be:

♦ 0 to 1 inches (0 to 25 mm) where the gutter is within the traffic lane,
♦ 1 to 3 inches (25 to 76 mm) where the gutter is outside the traffic lane or in the parking lane, and
♦ 1 to 5 inches (25 to 127 mm) for lightly traveled city streets that are not on a highway route.

The use of depressed gutters should be limited in bicycle lanes to avoid including an obstacle in the path used by bicyclists.

![Figure 6-9. Depression at Curb Opening Inlet.](image)
Grate Inlets. Space limitations, unusual grades, or placement adjacent to various roadway features may lead to the use of grate inlets near intersections (Figure 6-11).

Because grates may represent a hazard for bicyclists, special consideration should be given to the design of the inlet. Although a parallel-bar grate is the most efficient type of gutter inlet, efficiency is reduced when crossbars are added for bicycle safety. Where bicycle traffic is a design consideration, the curved vane grate and the tilt bar or “vane” grate (see Figure 6-12) are recommended for both their hydraulic capacity and bicycle safety features. In certain locations where leaves may create constant maintenance problems, the parallel bar grate may be used more efficiently if bicycle traffic is prohibited.
Combination Inlets. Combination inlets usually consist of some combination of a curb-opening inlet, a grate inlet, and a slotted drain. In a curb and grate combination (Figure 6-13), the curb opening may extend upstream of the grate. In a grate and slotted drain combination, the grate is usually placed at the downstream end of the grate. The design of combination inlets, because they use grates, should have a similar consideration as grate inlets with regard to bicyclists.

Slotted Drain Inlet. If it is necessary to intercept sheet flow or place an inlet across a driveway or intersection, the use of a slotted drain may be desirable (Figure 6-14).
Drainage Structures Near Railroad Tracks

Drainage structures near railroad tracks have special design considerations because of the railroad loads imposed on the structures. Figure 6-15 provides the boundary of the area requiring this type of design. Designers should coordinate with the bridge planning engineer to ensure that any special requirements are met.

Figure 6-15. Diagram Showing Area Requiring Consideration for Railroad Loading.
Section 5

Ditches

Overview

Urban roadway sections sometimes include ditch sections on one or more of the intersection legs. Because of the likelihood of vehicle excursions at intersections it is even more critical that horizontal clearance and sideslope requirements be met at these locations. Design consideration should be given to clearance from both sets of travel lanes.

Horizontal Clearance

Horizontal clearance for rigid objects or steep slopes is discussed in Chapter 5, Section 2, Horizontal Clearance, of this manual <link>. Horizontal clearance requirements are provided in Chapter 2, Section 6, Horizontal Clearance, of the Roadway Design Manual³. Criteria are provided for rural, urban, and suburban roadways.

Ditches

Ditch front and back slopes should be designed in accordance with requirements given in the Roadway Design Manual³. Controls are provided for front slopes and back slopes in the following sections. Ditches may sometimes be used behind curbs. If so, the horizontal clearance requirements may be only 1.5 to 3 ft [0.5 to 1 m], but if practical, relatively flat slopes are used.

Front Slopes. Shown in Figure 6-16, front slopes should normally be constructed at 1V:6H or flatter.³ Steeper slopes up to 1V:4H still permit the use of typical maintenance equipment. Slopes up to 1V:3H may be used in constrained circumstances. Slopes steeper than 1V:3H are sometimes used at bridge headers or where stable soils are present but may require the use of riprap to prevent erosion.

If slopes steeper than 1V:3H are used in the horizontal clearance area, the use of longitudinal barriers should be considered. If slopes of 1V:3H to 1V:4H are used in the horizontal clearance area, obstructions should be avoided at the toe of the slope because vehicles are unlikely to recover and stop prior to reaching the bottom of the slope.

![Figure 6-16. Ditch Elements.](image-url)
Back Slopes. Back slopes of 1V:4H are typically used to facilitate mowing operations.\(^3\) If steep front slopes are used, flatter back slopes are used and vice versa to provide a more forgiving roadside environment. If rock formations are present, steeper (or even vertical) back slopes may be used.
Section 6

Relationship to Pedestrian Facilities

Overview

Drainage facilities should be designed to operate effectively and efficiently, but other considerations also influence design. Curb ramps provided for the disabled will not be usable for several hours or days after a rain event if their design and location is not considered in the drainage plan.

Sidewalk Characteristics

To prevent ponding water it is desirable to provide a cross slope on sidewalks, but this must be tempered by ADAAG/TAS requirements. A maximum cross slope of 2 percent is permitted for sidewalks. It is advisable to specify a 1.5 percent cross slope in the plans to allow for construction tolerances in the field.

Curb Ramps and Crosswalks

If present, storm drain inlets should be located upstream of curb ramps and crosswalks (see Chapter 6 Section 4). Hydraulic designs should not utilize carryover at these locations. Care should be taken to avoid ponding at curb ramp locations (see Figure 6-17).

Figure 6-17. Ponding at Curb Ramp (Older, Non-Compliant Curb Ramp).
Metal Grates

The use of metal inlet grates should be avoided in pedestrian areas. When avoidance is not practical, ADAAG/TAS requirements must be met with the grate under consideration, with any opening measuring less than 0.5 inches [1.3 cm] in the direction of pedestrian travel.
Section 7

References

Chapter 7

Street Crossing

Contents:

Section 1 — Curb Ramps and Blended Transitions ... 7-3
Section 2 — Crosswalks ... 7-15
Section 3 — References ... 7-21
Section 1
Curb Ramps and Blended Transitions

Overview

Curb ramps and blended transitions provide access between the sidewalk or the ground and the street for people who use wheelchairs and scooters, people pushing strollers and pulling suitcases, and children on bicycles. A curb ramp and level landing is to be provided wherever a new or upgraded public sidewalk crosses a curb. The TxDOT Roadway Design Manual states that curb ramps must be provided in conjunction with each project where the following types of work are performed:

♦ resurfacing projects, including overlays and seal coats, where a barrier exists to a sidewalk or path;
♦ construction of curbs, curb and gutter, and/or sidewalks;
♦ installation of traffic signals that include pedestrian signals; and
♦ installation of pavement markings for pedestrian crosswalks.

Curb ramps should be designed to provide the least slope consistent with the curb height, available corner area, and underlying topography. A level landing is necessary for turning, maneuvering, or bypassing the sloped surface. Proper curb ramp design is important to users either continuing along a sidewalk path or attempting to cross the street. Utility poles, traffic signs, signals, signal control boxes, drainage structures, pedestrian call buttons, and street name signs are to be carefully located so they do not obstruct the installation of curb ramps or the pedestrian’s ability to safely cross the road. Application 7-1 provides discussion on the selection of design elements at a specific intersection being considered for improvement.

TxDOT standard sheet “PED-02” may be referenced for additional information in the configuration of curb ramps. The sheet has been approved by the Texas Department of Licensing and Regulation.

Where Required

A curb ramp or blended transition should be provided wherever the pedestrian route crosses a curb, including:

♦ intersections;
♦ midblock crosswalks;
♦ medians and islands traversed by crosswalks, alleys, accessible parking aisles, passenger loading zones; and
♦ locations where the public sidewalk ends and pedestrian travel continues in the roadway.
A curb ramp or blended transition is not required where the pedestrian route crosses a driveway and the elevation of the pedestrian route is maintained.

At any intersection in the public right of way that has at least one corner served by a public sidewalk or a pedestrian route, all corners of the intersection served by a crosswalk should have curb ramps or blended transitions. This eliminates the possibility of a pedestrian traveling across the road to find no refuge at the other end of the crosswalk.

Curb Ramp Components

Although there are a variety of designs, each type of curb ramp comprises some or all of the following elements (see Figure 7-1).

♦ **Landing** – level area of sidewalk at the top of a perpendicular curb ramp or the bottom of a parallel curb ramp for turning. Landing slopes are not permitted to exceed 2 percent in any direction.

♦ **Flare** – sloped transition on the side of a perpendicular curb ramp. The maximum slope is 10 percent. The path along the flare has a significant cross slope and is not considered an accessible path of travel. When the sidewalk is set back from the street, returned curbs may replace flares where pedestrians would not be expected to cross the returned curb (i.e., a non-walking surface is provided).

♦ **Sloping Area** – sloped transition between the street and the sidewalk, with a maximum slope of 8.3 percent.

![Figure 7-1. Components of a Curb Ramp.](image)

Curb Ramp Types

The appropriate type of curb ramp to be used is a function of sidewalk and border width, curb height, curb radius, and topography of the street corner. Four types of ramps are commonly used in street corner designs:
perpendicular,
parallel,
combination, and
diagonal.

Detailed dimensions for each curb ramp type are shown on TxDOT’s PED² standard sheets.

Perpendicular Curb Ramps. The path of travel along a perpendicular curb ramp is oriented at a 90-degree angle to the curb face. It is aligned perpendicular to the curb where it crosses the curb, even if it crosses the curb within the radius of the corner. If a perpendicular approach is not provided, pedestrians who use wheelchairs could face a change in cross slope, resulting in one wheel being off the ground.

Perpendicular curb ramps are usually installed in pairs at a corner (see Figure 7-2). Two accessible perpendicular curb ramps are generally safer and more usable for pedestrians than a single diagonal curb ramp. An example of perpendicular curb ramps is shown in Figure 7-3.

![Figure 7-2. Perpendicular Curb Ramp.](image-url)
Parallel Curb Ramps. The path of travel along a parallel curb ramp is a continuation of the sidewalk. Figure 7-4 shows the schematic of a parallel curb ramp, while Figure 7-5 is a photograph of a parallel curb ramp. Parallel curb ramps provide an accessible transition to the street on narrow sidewalks. However, if the landing on parallel curb ramps is not sloped toward the gutter (no more than 2 percent), water and debris can pool there and obstruct passage along the sidewalk. Careful analysis of the hydraulics related to the landing, gutter slope, and roadway crown must be performed to avoid ponding water at the landing. Parallel curb ramps also require those wishing to continue along the sidewalk to negotiate two ramp grades, unless a wide buffer zone permits the sidewalk to continue behind the parallel curb ramp.

Planting or other non-walking surface if drop-off is not protected

Figure 7-4. Parallel Curb Ramps.
Combination Curb Ramps. When a curb ramp includes components of both perpendicular and parallel curb ramps, it is known as a combination curb ramp. Figure 7-6 shows examples of combination curb ramps.
Diagonal Curb Ramps. Diagonal curb ramps are single curb ramps installed at the apex of a corner to serve two crossing directions (see Figure 7-7). Diagonal curb ramps force pedestrians descending the ramp to proceed into the intersection before turning to the left or right to cross the street. A clear space of 4 ft × 4 ft [1.2 m × 1.2 m] is necessary to allow curb ramp users in wheelchairs enough room to maneuver into the crosswalk.

A designer’s ability to create a clear space at a diagonal curb ramp might depend on the turning radius of the corner. For example, a tight turning radius requires the crosswalk line to extend too far into the intersection and exposes pedestrians to oncoming traffic. Diagonal curb ramps also provide no directional orientation information to persons with visual impairments. Diagonal curb ramps should only be used as the last alternative. Special ADAAG and TAS requirements apply to diagonal curb ramps. Refer to ADAAG^3 and TAS^4 and the PED^2 standard sheet for more information.
Blended Transitions

An example of a blended transition is shown in Figure 7-8. As with curb ramps, blended transitions shall have the following:

- clear width (excluding flares) of 48 inches (1.2 m) minimum,
- detectable warning (2 ft [0.6 m] wraparound that requires prior approval by TDLR as being within compliance),
- close slope of less than 2 percent in any direction,
- no grade breaks, and
- clear maneuvering space in street of 4 ft × 4 ft [1.2 m × 1.2 m] minimum (see Figure 7-2).

Figure 7-8. Example of a Blended Transition.
Selection of Curb Ramp Type

Selection of the appropriate type of curb ramp at each location involves a variety of considerations. Curb ramps should be considered in the following order of preference: perpendicular, parallel or combination, and diagonal. When determining whether a particular type of curb ramp is feasible, the designer should make every attempt to locate other features such as sign and signal supports, curb inlets, and fire hydrants so that the most preferable type of curb ramp can be provided.

Placement

At marked crossings, the bottom of a curb ramp run should be wholly contained within the markings of the crosswalk. For perpendicular or diagonal curb ramps, there should be a minimum 4 ft × 4 ft [1.2 m × 1.2 m] maneuvering space beyond the curb line that is wholly contained within the crosswalk (marked or unmarked) and outside the path of parallel vehicular traffic. Intersections may have unique characteristics that can make the proper placement of curb ramps difficult, particularly in retrofit situations. Following are fundamental guidelines for consideration in dealing with curb ramp placement:

♦ Perpendicular curb ramps should be built 90 degrees to the curb face, and their full width at the toe (exclusive of flares) must be within the crosswalk. Aligning the ramp to the crosswalk, if possible, will enable the visually impaired pedestrian to more safely navigate across the intersection and exit the roadway on the adjoining curb ramp.

♦ All curb ramps need to avoid storm drain inlets, which can catch wheelchair casters or cane tips.

♦ Curb ramps need to be adequately drained. A puddle of water at the base of a ramp can hide pavement discontinuities. Puddles can also freeze and cause the user to slip and fall.

♦ Curb ramps must be situated so that they are adequately separated from parking lanes. Regulatory signs and parking enforcement can limit vehicles from blocking or backing across a crosswalk or curb ramp. Even better, curb extensions physically prevent parked cars from encroaching into the curb ramp. Additional information on curb extensions is in Chapter 5, Section 5 <link>.

Width

The minimum width of curb ramps is 4 ft [1.2 m] exclusive of the flared sides.

Landings

Landings are unobstructed level areas used for turning (including U-turns), accessing pedestrian signal call buttons, resting, passing, and waiting for a safe crossing time. They are needed in public sidewalks before pedestrians cross into the roadway, even if the public sidewalk and the roadway are at the same elevation. Landings provide a level area (less than 2 percent cross slope in any direction) for users to wait, maneuver into or out of a curb ramp, or to bypass the ramp altogether. A landing should have a minimum clear dimension of
5 ft × 5 ft [1.5 m × 1.5 m] square or a 5 ft [1.5 m] diameter circle. Landings should also be provided at raised medians or channelizing islands or a cut-through should be provided.

Grade

The maximum grade of a curb ramp is 8.3 percent, which is a 1:12 slope. Lesser grades should be used when possible.

Flares

Curb ramp flares are graded transitions from a curb ramp to the surrounding sidewalk or terrain. Flares are not intended to be part of the accessible routes and are typically steeper than the curb ramp with slopes. A maximum flare slope of 10 percent is permitted to help prevent possible tripping by any pedestrian.

Flares are only needed in locations where the ramp edge abuts a non-walking surface. A returned curb edge may be used where the sides of the curb ramp abut grass landscaping or travel across the ramp is blocked by obstruction. Returned curbs that align with the crosswalk are a useful orientation cue to provide direction for visually impaired pedestrians.

Cross Slope

The maximum cross slope is 2 percent. Flatter grades and slopes should be used where possible. Cross slope requirements also apply to the continuation of the pedestrian route through the crosswalk. Sidewalks immediately adjacent to the curb or roadway may be offset to avoid a non-conforming cross slope at driveway aprons by diverting the sidewalk around the apron as shown in Figure 7-9. See PED2 standard sheet for more information.
Counter Slopes

The counter slopes of gutter or road surfaces at the foot of a curb ramp may not exceed 1:20. When possible, the algebraic difference in grade between the curb ramp and the street should be ≤ 11 percent.

Surfaces

Surfaces of blended transitions, curb ramps, and landings should be stable, firm, and slip resistant. The Draft Guidelines for Accessible Public Rights of Way is recommending that gratings, access covers, and other appurtenances shall not be located on curb ramps, landings, blended transitions, and gutter areas within the pedestrian access route.

Detectable Warnings

A detectable warning is a standardized feature built in or applied to walking surfaces to warn visually impaired pedestrians before they enter a roadway or vehicular way. Detectable warnings alert visually impaired pedestrians that they should stop and determine the nature of the hazard before proceeding further. The two components of a detectable warning surface are texture and light reflective value contrast. A truncated dome surface is required on all curb ramps and blended transitions to mark the street edge.

TxDOT’s PED standard sheet contains provisions for the detectable warning surface. Although the standard depicts a brick paver product, other products are available for use. Contact the Design Division field section for more information.
The material used to provide visual contrast shall be an integral part of the walking surface and should contrast visually with adjoining surfaces by at least 70 percent.

A proposed change to ADAAG is to have the truncated domes installed in a 24 inch [610 mm] strip at the curb line (rather than full length) for the full width of the curb ramp. The use of this 24 inch [610 mm] strip has also been encouraged by the Federal Highway Administration. However, until TAS changes, the full width and depth requirement remains in effect in Texas. The shaded area on each of the curb ramps on the PED standard sheet indicates the proper placement of the detectable warning surface.
Section 2
Crosswalks

Overview

A crosswalk is the portion of roadway designated for pedestrians to use in crossing the street. It may be marked or unmarked. A legal crosswalk exists regardless of whether it is marked (see following section on Texas state law). Figure 7-10 illustrates examples of marked, unmarked, and midblock crosswalks.

The purposes for marked crosswalks are:

♦ to warn motorists to expect pedestrian crossings and
♦ to indicate the preferred crossing locations.6

Figure 7-10. Types of Crosswalks.7

Pedestrians are most vulnerable to injury from motor vehicles at intersections; therefore, designers should be sensitive to the needs of pedestrians in the design and operation of an intersection. Crosswalks should be designed to minimize exposure of pedestrians to motor vehicles. Where practical they should be designed at right angles, and the radius of curb returns should be no greater than is necessary for a reasonable design vehicle operating at a low speed. Over-designed curb radii increase crossing times for pedestrians and encourage higher speeds of turning vehicles that conflict with pedestrians. At high-volume intersections, designers often limit marked crossings to encourage pedestrians to cross at specific locations in an effort to minimize the number of pedestrian and vehicle conflict areas.

Considerations when marking crosswalks include the following:

♦ Crosswalk locations should be convenient for pedestrian access.

♦ Crosswalk markings alone are unlikely to benefit pedestrian safety. Ideally, crosswalks should be used in conjunction with other measures, such as curb extensions, to improve the safety of a pedestrian crossing. This is particularly true on multilane roads with average daily traffic above 10,000.

♦ Marked crosswalks can assist persons with low vision.
Curb ramps are to be within the crosswalk markings so that pedestrians do not have to leave the crosswalk to access the curb ramp.

Texas State Law

Definitions. Texas State law (Transportation Code of Texas, Sec. 541.302) defines a crosswalk as “(a) the portion of a roadway, including an intersection, designated as a pedestrian crossing by surface markings, including lines; or (b) the portion of a roadway at an intersection that is within the connections of the lateral lines of the sidewalks on opposite sides of the highway measured from the curbs or, in the absence of curbs, from the edges of the traversable roadway.” A very similar definition is included in the *Texas Manual on Uniform Traffic Control Devices.*

The law defines a **marked crosswalk** as a pedestrian crossing that is designated by surface markings and an **unmarked crosswalk** as the extension of a sidewalk across intersecting roadways (see Figure 7-10). Thus Texas State law recognizes both marked and unmarked crosswalks but makes no legal distinction between the two in assigning pedestrian right of way.

A **midblock crossing** is a pedestrian crossing that is not located at a roadway intersection (see Figure 7-10). If a midblock crossing is not designated by a marked crosswalk, then pedestrians must yield the right of way to motorists.

An **uncontrolled location** is a roadway intersection or other midblock crossing that is not controlled by either a traffic signal or a Stop sign. Uncontrolled locations can be the most challenging places to provide a safe pedestrian crossing.

Texas Law Pertaining to Pedestrian Crossings. Texas State law (Transportation Code of Texas, Sec. 552.003) includes the following regulations regarding pedestrian crossings:

♦ Vehicle operators must yield the right of way to pedestrians in a crosswalk if no traffic signal control is in place or in operation (Sec. 552.003(a)).

♦ A pedestrian may not suddenly proceed into the path of a vehicle so close that it is impossible for the vehicle operator to yield (Sec. 552.003(b)).

♦ A pedestrian must yield the right of way to vehicle operators when crossing the roadway at a place a) other than a marked or unmarked crosswalk at an intersection, or b) where a pedestrian tunnel or overhead pedestrian crossing has been provided (Sec. 552.005 (a)).

♦ When traffic control signals are in operation at adjacent intersections, pedestrians may cross only in a marked crosswalk (Sec. 552.005(b)).

♦ Vehicle operators emerging from or entering an alley, building entrance, or private road or driveway must yield the right of way to a pedestrian approaching on a sidewalk extending across said alley, building entrance, or private road or driveway (Sec. 552.006(c)).
Slopes

The Texas Accessibility Standards require that cross slope requirements of a sidewalk also apply to the continuation of the pedestrian route through the crosswalk. Cross slopes are to not exceed 1:50 (2 percent). The running slope in a crosswalk (cross slope of the roadway being crossed) should be ≤ 5 percent.

Crosswalk Markings

Information on crosswalk markings is provided in Chapter 9. Different styles of markings are available. Figure 7-11 illustrates the standard and ladder styles. As shown in the photos, the ladder markings are more visible to an approaching driver. Information on the relative placement of the curb ramp with the crosswalk markings is presented in Chapter 7, Section 1.

(A) Standard

(B) Ladder

Figure 7-11. Examples of Crosswalk Markings.
Other Crossing Treatments

In addition to installing marked crosswalks (or, in some cases, instead of installing marked crosswalks), there are other treatments that can be considered to provide safer and easier crossings for pedestrians at selected locations. Examples of these pedestrian improvements include:

♦ Provide raised medians (or raised crossing islands) on multilane roads.

♦ Install traffic signals and pedestrian signals where warranted, and where pedestrian crossing challenges exist.

♦ Reduce the exposure distance for pedestrians by:
 • reducing curb radii,
 • providing curb extensions (see discussion in Chapter 5, Section 5), or
 • providing refuge islands.

♦ Consider the installation of advance stop lines when marked crosswalks are used on uncontrolled multilane roads. The advance stop lines may be installed as much as 30 ft [9.1 m] prior to the crosswalk (with a STOP HERE FOR CROSSWALK sign) in each direction to reduce the likelihood of a multiple-threat pedestrian collision (condition where vehicle in near lane limits view between pedestrian and vehicle in second through lane). See Chapter 9, Section 3, Placement of Stop and Yield Lines for additional information.

♦ Locate bus stops on the far side of uncontrolled marked crosswalks.

♦ Install traffic-calming measures to slow vehicle speeds and/or reduce cut-through traffic. Each of these measures has positive and negative considerations and needs to be evaluated carefully. Some of these traffic-calming measures are better suited to local or neighborhood streets than to arterial streets. Measures may include the following:
 • raised crossings (raised crosswalks, raised intersections);
 • street-narrowing measures (chicanes, slow points, “skinny street” designs);
 • alternative intersection designs (traffic mini-circles, diagonal diverters); and
 • others (see ITE Traffic Calming, State of the Practice for further details).

♦ Provide adequate nighttime street lighting for pedestrians in areas with nighttime pedestrian activity where illumination is inadequate.

Application 7-2 discusses the process used for selecting appropriate treatments at an intersection.

Discussion on potential treatments for pedestrian crossings is included in:

♦ Application 7-3 for major street crossings,

♦ Application 7-4 for residential street crossings,

♦ Application 7-5 for signal crossings for pedestrians,

♦ Application 7-6 for signalized intersections, and
Safety Benefits of Marked Crosswalks

Five years of pedestrian crashes at 1000 marked crosswalks and 1000 matched unmarked comparison sites were studied for sites that did not have a traffic signal or Stop sign on the approaches. The sites were located across the United States. Detailed data were collected on traffic volume, pedestrian exposure, number of lanes, type of median, speed limit, and other site variables. The results revealed the following:

- On two-lane roads, the presence of a marked crosswalk alone at an uncontrolled location was associated with no difference in pedestrian crash rate when compared with an unmarked crosswalk.
- On multilane roads with volumes above 12,000 vehicles per day, having a marked crosswalk was associated with a higher pedestrian crash rate (after controlling for other site factors) compared with an unmarked crosswalk.
- Raised medians provided significantly lower pedestrian crash rates on multilane roads, compared with roads without a raised median.
- Older pedestrians were overrepresented in the crash data relative to their crossing exposure.

Based on the findings, improvements were recommended to provide for safer pedestrian crossings, including adding traffic signals (with pedestrian signals) when warranted, providing raised medians, and implementing speed-reducing measures.

The objective of another study was to determine the effect of crosswalk markings on driver and pedestrian behavior at unsignalized intersections. A before-and-after evaluation of crosswalk markings was conducted at 11 locations in 4 U.S. cities. Observed behavior included pedestrian crossing location, vehicle speeds, driver yielding, and pedestrian crossing behavior. The study indicated that drivers approach a pedestrian in a crosswalk somewhat slower and that crosswalk usage increases after markings are installed. No evidence was found indicating that pedestrians are less vigilant in a marked crosswalk. No changes were found in driver yielding or pedestrian assertiveness. The authors concluded that marking pedestrian crosswalks at relatively low-speed, low-volume, unsignalized intersections is a desirable practice based on the sample of sites used in the study.

Suggested Guidelines for Crosswalk Installation

Considerable controversy exists regarding the effectiveness of marked crosswalks in relation to pedestrian crash prevention. The TMUTCD indicates that marked crosswalks generally serve to alert road users of a pedestrian crossing point and to identify for the pedestrians the optimal crossing point. Guidelines on when to install marked pedestrian crosswalks were developed in an FHWA report entitled Safety Effects of Marked vs. Unmarked Crosswalks at Uncontrolled Locations.
Right-Turn Lane

For pedestrian crossings where the right-turn lane is channelized, it is recommended that:

1. An adjacent pedestrian refuge island conforming to TMUTCD, ADAAG, and the Green Book be provided. Additional information on the refuge island is in Chapter 4, Section 5 <link>.

2. The location of a crosswalk across the channelized area should be carefully considered. Some engineers think the crosswalk should be placed as close as possible to the approach leg to maximize the visibility of pedestrians to approaching drivers. However, pedestrians traveling along the cross street are likely to take the shortest path and cross near the downstream end of the turn lane. Additionally, visually impaired pedestrians will cross near the downstream end to remain parallel to the flow (and audible cues) of traffic.

Midblock Crossing

Where it is considered desirable to install midblock crosswalks, advance pedestrian warning signs should be considered to warn motorists of pedestrian crossing activity. Markings may be difficult to see during adverse weather conditions or if located even on a gentle crest vertical curve. Other actions that should also be considered when installing a midblock crosswalk include positioning the crosswalk near a streetlight (or installing additional lighting) and installing a pedestrian refuge island for the crosswalk (especially if more than three lanes total are to be crossed). Examples of treatments used at uncontrolled locations such as in-roadway warning lights, are available in Application 7-3 <link>.

A minimum enhancement that benefits pedestrians is a raised median island. This allows pedestrians who cross midblock to focus on one direction of traffic at a time, simplifying the crossing task. More information about medians can be found in Chapter 4, Section 5 <link>. Other treatments for midblock crossings are discussed in Application 7-4 <link>.

Median Island

Information regarding the use of a median as a pedestrian refuge is provided in Refuge Islands <insert link to Chapter 4 Section 5> and should be consulted for further information on refuge areas.
Section 3

References

Chapter 8
Signals

Contents:
Section 1 — General.. 8-3
Section 2 — Signal Faces... 8-3
Section 3 — Signal Support Systems... 8-3
Section 4 — Signal Cabinet Placement .. 8-3
Section 5 — Pedestrian Signals.. 8-3
Section 6 — Detectors.. 8-3
Section 7 — Right Turn on Red ... 8-3
Section 8 — References.. 8-3
Section 1
General

Overview

A traffic control signal, also called a traffic signal, is any highway traffic signal by which traffic is alternately directed to stop and permitted to proceed. The primary function of traffic control signals is to assign the right of way at intersecting streets where without such control an excessive delay or hazard to vehicles and/or pedestrians would result.

Advantages and Disadvantages

A properly designed, operated, and maintained traffic control signal can be a valuable device for the control of vehicle and pedestrian traffic. Table 8-1 lists some advantages and disadvantages of traffic control signals.

<table>
<thead>
<tr>
<th>Advantages of appropriate and justified traffic control signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ Provides for the orderly movement of traffic for all modes.</td>
</tr>
<tr>
<td>♦ Increases the traffic-handling capacity of the intersection if proper physical layouts and control measures are used, and if the signal timing is reviewed and updated on a regular basis (every 2 years) to ensure that it satisfies current traffic demands.</td>
</tr>
<tr>
<td>♦ Reduces the frequency and severity of certain types of crashes, especially right-angle collisions.</td>
</tr>
<tr>
<td>♦ Provides, if coordinated, for continuous or nearly continuous movement of traffic at a definite speed along a given route under favorable conditions.</td>
</tr>
<tr>
<td>♦ Interrupts heavy traffic at intervals to permit other traffic, vehicular or pedestrian, to cross.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disadvantages of improper or unjustified traffic control signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ Creates excessive delay.</td>
</tr>
<tr>
<td>♦ Encourages excessive disobedience of the signal indications.</td>
</tr>
<tr>
<td>♦ Causes increased use of less adequate routes as road users attempt to avoid the traffic control signal.</td>
</tr>
<tr>
<td>♦ Increases the frequency of certain types of collisions (especially rear-end collisions).</td>
</tr>
</tbody>
</table>

Need for Traffic Control Signal

Traffic signals assign right of way to various traffic movements, which result in significant influence on traffic flow and on the vehicles and pedestrian traffic that they control. Therefore, it is important that the selection and use of such an important traffic control device be preceded by a thorough engineering study of roadway and traffic conditions.

A traffic study consists of a comprehensive investigation of existing physical and operating conditions. Details on the information required for a study and how to obtain the data are contained in Chapter 3 of the TxDOT Traffic Signal Manual and in Section 4C.01 of the TMUTCD.
These warrants are minimum conditions that justify signal installations. Traffic signals should not be installed at any location unless one (or more) of the signal warrants is satisfied. Signals may be warranted at locations based on estimated traffic volumes associated with a new development, like an entrance to a new regional shopping mall. However, if traffic conditions at an intersection meet warranting criteria, traffic signals do not have to be installed at that location. Engineering judgment must be used to determine if traffic signal installations are both justified and appropriate.

Plan Requirement for PS&E

Information on the paperwork that needs to be submitted with a plans, specifications, and estimates package is in the Plans, Specifications, and Estimates Preparation Manual.<link>

Depending on the type and size of a project, some of the sheets may be combined or eliminated in specific PS&E packages. Following is the list of sheets generally included in a PS&E submission for a traffic signal:

♦ Title Sheet
♦ Estimate and Quantity Sheet
♦ Condition Diagram Sheet
♦ Plan Sheet
 • Existing geometry and adjacent development
 • Existing traffic control
 • Existing utilities
 • Existing right of way
 • Proposed highway improvements
 • Proposed installation including the proposed location of all major items of equipment; such as poles, foundations, luminaries, conduits, signal heads and faces, ground (or pull) boxes, detectors, controllers, etc.
 • Proposed additional traffic control such as striping, stop lines, signs, etc.
♦ Elevation Sheet
 • Traffic signal elevation sheets
 • Utilities elevation sheets
♦ Standard sheets or special detail sheets should include sufficient detail on the following:
 • Poles
 • Ground box
 • Wiring diagrams
 • Conduit and conductor tables
 • Detectors
 • Concrete foundations
• Power source
• Roadway illumination
• Down-guys
• Vehicle and pedestrian signal head mounting details
• Phasing sheet
• Work area protection
• Traffic control plan

TxDOT maintains the standard sheets on their Web site.5
Section 2
Signal Faces

Overview

The portion of the traffic signal that is most visible to the motorists and pedestrians is the signal head. The signal head is an assembly that generally is mounted over the traffic lanes or adjacent to the roadway that contains the displays for controlling which traffic stream enters the intersection. The different elements of a signal head are shown in Figure 8-1. A signal head is composed of different signal sections, with each signal section consisting of a housing, a signal lens, and a light source. Each signal section contains one of the signal indications displayed at an intersection; either a “ball” or “arrow” indication. The portion of the signal head that faces traffic and displays the indications to drivers and pedestrians is called the signal face.

![Signal Head Components](image)

Figure 8-1. Components of a Three-Section Traffic Signal Head.

The purpose of signal heads is to convey clear and concise information to drivers, enabling them to make proper decisions and to take appropriate action. Signal heads must be designed and installed with uniform size, color, arrangement, and placement. The TMUTCD specifies the signal requirements for each approach to an intersection or a midblock location. The user should consult the TMUTCD for the specific details.

Size of Vehicular Signal Lenses

The TMUTCD allows two sizes of vehicular signal lenses: 8 inch [203 mm] and 12 inch [305 mm]. Section 4D.15 of the TMUTCD provides specific situations where a 12 inch signal lens is to be used, as well as guidance where use of 12 inch signal lenses is recommended. In general, 12 inch lenses are installed at all new signalized locations, and they are required at intersections that have the following characteristics:

♦ one (or more) high-speed approach having vehicular speeds greater than 40 mph [64 km/h];

♦ additional visibility is needed because:
 • the signal is unexpected by motorists,
 • the signal location is isolated (especially in a rural area),
• the intersection is very wide, or
• there is a mixture of signal indications (i.e., arrow indications or lane-use control signals);

♦ limited sight distance exists on one or more of the approaches; or
♦ older drivers constitute a significant percentage of the driving population.

In some cases, different sizes of signal lenses may be used in the same signal face, but this practice is not encouraged.

Type and Number of Signal Faces

Following are requirements for the type and number of signal faces:

♦ A minimum of two signal faces is required for the major movement on the approach, even if the major movement is a turning movement. The two signal faces should be visible continuously from a point at least the minimum sight distance indicated in Table 8-2 in advance of and measured to the stop line.

♦ Left-turn signal faces are determined by the left-turn phasing selected (permissive only, protected only, or protected/permissive).

♦ Right-turn signal faces are determined by the right-turn phasing selected (permissive only, protected only, protected/permissive, or variable right-turn).

♦ If two or more right-turn lanes are provided for a separately controlled right-turn movement, or if a right-turn movement represents the major movement from an approach, two right-turn signal faces should be provided.

♦ Supplemental signal faces should be used if engineering judgment has shown that they are needed to provide adequate signal head visibility in advance of the signalized location. If supplemental signal faces are used, they should be located to provide optimum visibility for the movement to be controlled. Application 8-1 <link> describes a situation where supplemental signals were used.

<table>
<thead>
<tr>
<th>Table 8-2. Minimum Sight Distance Requirements.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Customary</td>
</tr>
<tr>
<td>85th Percentile Speed (mph)</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>60</td>
</tr>
</tbody>
</table>
Location of Signal Faces

Following is an overview of appropriate locations of signal faces. The designer should refer to the *TMUTCD*\(^1\) for specific details.

- At least one and preferably both signal faces should be located at:
 - not less than 40 ft [12 m] beyond the stop line;
 - not more than 120 ft [37 m] beyond the stop line if 8-inch signal lenses are used, unless a supplemental near-side signal face is provided;
 - not more than 150 ft [46 m] beyond the stop line if 8-inch signal lenses are used and a supplemental near-side signal face is provided;
 - not more than 180 ft [55 m] beyond the stop line if 12-inch signal lenses are used, unless a supplemental near-side signal face is provided; and
 - as near as practical to the line of the driver’s normal view, if mounted over the roadway.

- The Federal MUTCD\(^6\) summarizes the horizontal location of signal face as shown in Figure 8-2.

- Required signal faces for through traffic on any one approach are to be located not less than 8 ft [2.4 m] apart when measured horizontally perpendicular to the approach between the centers of the signal faces.

- If supplemental signal faces are used, then left-turn arrows are not used in near-right signal faces and right-turn arrows are not used in far-left signal faces. A farside, median-mounted signal face is considered a far-left signal for this application.
Visibility of Signal Indications

Visibility of signal indications to approaching vehicles is the primary consideration in signal head placement, aiming, and adjustment. In general, the signal face(s) for through traffic should be aimed to give the approaching driver as much opportunity as practicable to see the signal indications in advance of the stop line. Where grades, curves, or obstructions exist
(bridge beams, overhead sign bridges, etc.), special care must be taken to ensure that drivers have an opportunity to respond to the signal indication in a safe manner. Minimum sight distances are shown in Table 8-2.

Several problem areas can affect or degrade the visibility of signal indications. Following are known problem areas and potential solutions.

Sun Phantom. During periods of direct sunlight on the signal face, the driver may have difficulty determining which signal indication is actually illuminated because all appear to have the same intensity. Methods to reduce or eliminate this problem include:

- using louvers and visors to aid in directing the signal indication specifically to approaching traffic,
- careful aiming of the signal head,
- providing alternate illumination methods (e.g., fiber optic, neon),
- adding backplates, and
- installing supplementary signal heads if at different viewing angle.

Background Interference. When viewed against a bright background sky or background lighting such as intensive advertising displays, signal indications may lose a part of their contrast value and conspicuity. The signal indication may become lost in the midst of such visual clutter. The placement of a signal backplate will enhance signal conspicuity. Backplates make it easier for the motorist to distinguish traffic signal displays from tree or sky background (see Figure 8-3). The use of backplates enhances the contrast between the traffic signals and their surroundings for both day and night conditions, which is also helpful to older drivers. While a backplate would be helpful at any signal, areas of greatest need include:

- east-west approaches that experience sun glare, and
- any direction for a high-speed approach.

Because backplates add considerable wind loading to traffic signals, it is not considered feasible to place a backplate on a signal that is suspended by a single span wire. This problem can be overcome by installing a second span wire attached to the bottom of the signal. Backplates can attach easily to signals installed on mast arms.
Conflicting Signals. The TMUTCD\(^1\) notes that “In cases where irregular street design necessitates placing signal faces for different street approaches with a comparatively small angle between their respective signal lenses, each signal lens shall, to the extent practical, be shielded or directed by signal visors, signal louvers, or other means so that an approaching road user can see only the signal lens(es) controlling the movements on the road user’s approach.” The driver needs a clear view of signal indications to avoid confusion. For example, a driver in a through lane with a green ball display may become confused if confronted with a clear view of a red ball display for an adjacent left-turn lane. Another common example is found where closely spaced adjacent intersections are both signalized. The traffic signal located at the downstream intersection may encourage motorists from the upstream intersection to move forward in response to two “green” indications when the upstream intersection approach has two “red” indications. Signal head placement, shielding, or optical programming can reduce this problem. Special signal faces, such as visibility-limited signal faces, have been used such that the road user does not see signal indications intended for other approaches before seeing the signal indications for their own approach, if simultaneous viewing of both signal indications could cause the road user to be misdirected.

Glare. Signal indications that perform effectively during daylight hours are sometimes too intense at night, creating undesirable glare. Automatic dimming devices can reduce the brilliance of the signal.

Vertical Placement

The TMUTCD establishes minimum and maximum vertical clearances for both the bottom and top of the signal housing at an intersection, respectively. The bottom of the signal housing located over a roadway (including the brackets and any related attachments) must be a minimum of 15 ft [4.6 m] above the pavement, while the top of the housing should not be located more that 25.6 ft [7.8 m] above the pavement. The TxDOT Traffic Control Standard Sheets provide illustrations of vertical placement requirements.\(^5\)
Section 3
Signal Support Systems

Overview

There are two primary locations for mounting traffic signal heads at an intersection:

♦ beside the travel way with a post-top mounting and
♦ over the travel way with an overhead mounting, using span wires or poles with mast arms.

The five primary design considerations in selecting the type of mounting to be used are:

♦ conspicuity of the signal face,
♦ consistency of signal face locations along the corridor,
♦ clarity of message,
♦ safety of the road users, and
♦ minimized obstructions for pedestrians.

Post-Mounted Signal Systems

The basic configuration for post-mounted signals is shown in Figure 8-4. This is the typical configuration found in central business districts where numerous intersections are signalized, one-way streets are common, and the use of overhead installations create a “cluttered” environment. This type of design also is found in older sections of cities where streets and rights of way are narrow.

As streets become wider and curb returns become longer, the use of post-mounted signals become less desirable, especially when the streets allow two-way traffic. As shown in Figure 8-5, an attempt to provide signal heads within the cone of vision required by the *TMUTCD* (20 degrees from the center of the approach) with adequate separation between the two signal heads becomes more difficult. (The solid arrows in Figure 8-4 and Figure 8-5 indicate the location of signal heads and directions the heads are facing.)
Figure 8-4. Post-Mounted Signals.

Figure 8-5. Potential Sign Conspicuity Problems with Side-Mounted Signals.

Post-mounted signal installations may create design or operational concerns that include the following:

- Under normal conditions, especially where four-lane streets intersect narrow streets, it is difficult to meet the minimum distance requirements (40 ft [12.2 m]) of the TMUTCD.

- The signal heads are consistently near or outside the limits of the desirable cone of vision, even where minimum distance requirements can be met. The signal faces are,
therefore, in less conspicuous positions than if they were closer to the center of the cone.

♦ Where a curb return has a radius of over 10 ft [3 m], consideration should be given to using the two-post design, as shown in Figure 8-5. This will reduce the distance of a signal head from the center of the approach and increase its distance from the stop line.

♦ Because of the potential conspicuity problem with post-mounted signals as primary indications, each signal head location, the cone of vision, and the minimum distances should be plotted on a sketch before final design is selected to ensure that minimum distance requirements can be met.

♦ Moving the stop line further back from the approach or adding a crosswalk may bring the signal head within the cone of vision and may satisfy minimum distance requirements.

♦ In commercial areas, buildings may contain lighted displays or multicolor-lighted advertising signs that compete with the signal display and distract motorist attention. This is particularly critical at night. Although the signal face may be visible, it may not be sufficiently conspicuous to capture the driver’s attention if it is located at the edge of the driver’s cone of vision.

In view of the potential conspicuity problem, post-mounted signal heads as primary indications should only be allowed on narrow approaches with relatively low travel speeds.

If post-mounted signal heads are selected for installation at an intersection, the designers should:

♦ Locate support posts so they do not conflict with curb ramps, landings, and sidewalks.

♦ Minimize the use of median-mounted traffic signal supports posts.

♦ Install median-mounted traffic signal support posts only in medians 5 ft [1.5 m] (or greater) in width to maintain a 2-ft [0.6 m] clearance on each side of the signal head.

♦ Provide breakaway design for any traffic signal support posts mounted in the median.

♦ Verify visibility of the signal faces where vertical or horizontal curves affect the motorist’s view of the approach to the intersection.

Span Wire Traffic Signal Installations

There are a variety of ways to install the poles and span wires. The more common are:

♦ two-pole simple span and

♦ box span.

Two-Pole Simple Span. In the two-pole simple span, poles should be installed on the far right corners of the major roadway approaches as shown in Figure 8-6. Installing the poles on the far right of the major or wider approaches affords the best opportunity for meeting the requirement for minimum distance from the stop line. A potential challenge with this design is the location of the poles with respect to the curb ramps. Similar to post-mounted signal heads, it is difficult to meet the minimum sight distance requirement to signal faces at
intersections with minor roadways, however overall conspicuity is markedly improved. This type of installation is generally used as a temporary application and not used in a permanent setting.

Box Span. The box span uses four poles at the intersection corners with the span wire stretched between the poles to “box in” the intersection. Figure 8-7 shows a typical box-span layout. Signal faces are placed over the roadway on the far side of each approach. The box span permits the same flexibility in locating the signal heads with respect to approach lanes, as does the simple span, while overcoming the problems of requirements for minimum distance from the stop line.

A variety of signal phasing and pedestrian signal head requirements can be accommodated using the box-span concept.

The box span may have problems when applied to offset intersections or extremely wide intersections. It may be necessary to locate poles in odd locations or add additional poles to create a variety of angles to ensure that signals are visible and are located less than 120 ft [37 m] from the stop line if 8 inch lenses are used or less than 150 ft [46 m] from the stop
line if 12-inch lenses are used. Where these conditions exist, consideration should be given to suspending a span wire “box” using connector span wires to the poles. This balances pole loading and permits signal faces to be moved toward the approaches. Figure 8-8 shows a typical application of this modified box-span concept.

Mast Arm Signal Head Installations

Mast arm signal head mounting provides a means of installing some or all of the signal heads overhead, without span wire or overhead signal wiring. Mast arm mounting also can be easily used with post-mounted signals to meet all general visibility and clarity requirements.

Figure 8-9 and Figure 8-10 show the two distinct types of simple mast arm installations. In the first, the primary face is placed overhead and can be located to provide maximum conspicuity. The second head is mounted at a lower height on the pole itself and is easily seen from a stop bar position. The second type places both faces overhead in a primary sight line. Either type meets TMUTCD requirements.
If roadway widths are narrow, or if opposite approaches are slightly offset, or intersections with one-way streets (including frontage roads), two mast arms may be mounted on the same pole. Generally, this type of installation is not found at wide intersections. The advantage of installing two mast arms on a single pole is the cost savings associated with fewer pole (and foundation) installations.

As intersection approach widths increase, and as mast arms are lengthened to reach the desired point in the approach, cost may become a factor. A mast arm is a simple cantilever structure and increased loadings on the mast arm (both static and dynamic) caused by longer mast arms may require substantially stronger signal poles, stronger mast arms, and larger foundations. Mast arm lengths up to 60 ft [18 m] are common, and longer mast arms are available. Designers should consider a signal bridge where long mast arms are required.
Advantages and Disadvantages

Table 8-3 lists advantages and disadvantages of the various signal support systems.

Table 8-3. Advantages and Disadvantages of Signal Support Systems (Based on Information in *Traffic Engineering Handbook*).

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-Mounted</td>
<td></td>
</tr>
<tr>
<td>♦ low installation costs,</td>
<td>♦ require underground wiring that may offset initial cost advantages,</td>
</tr>
<tr>
<td>♦ generally considered most aesthetically acceptable,</td>
<td>♦ may not provide locations that meet minimum conspicuity requirements,</td>
</tr>
<tr>
<td>♦ provide good visibility where there are wide medians with left-turn lanes and protected phasing exists, and</td>
<td>♦ may not provide mounting locations such that a signal face with clear meaning is provided,</td>
</tr>
<tr>
<td>♦ unlimited vertical clearance for the roadway.</td>
<td>♦ can have height limitations that may provide problems at an approach on a vertical curve, and</td>
</tr>
<tr>
<td>♦ require underground wiring that may offset initial cost advantages,</td>
<td>♦ are subject to vehicular impact if installed close to the roadway particularly in medians.</td>
</tr>
<tr>
<td>♦ may not provide locations that meet minimum conspicuity requirements,</td>
<td></td>
</tr>
<tr>
<td>♦ may not provide mounting locations such that a signal face with clear meaning is provided,</td>
<td></td>
</tr>
<tr>
<td>♦ can have height limitations that may provide problems at an approach on a vertical curve, and</td>
<td></td>
</tr>
<tr>
<td>♦ are subject to vehicular impact if installed close to the roadway particularly in medians.</td>
<td></td>
</tr>
</tbody>
</table>

Span Wire	
♦ low installation costs,	♦ poor signal head locations with respect to the stop bar for small minor roadways;
♦ minimum number of poles to clutter sidewalk area,	♦ sometimes considered aesthetically objectionable because of signal head clutter over the roadway; and
♦ ease of installation with little or no underground work required,	♦ poor pedestrian visibility of signal faces.
♦ ability to combine with utility poles,	
♦ capability for good lateral placement of signal heads for maximum conspicuity, and	
♦ ability to use long spans so that poles may be placed outside the clear zone.	
♦ poor signal head locations with respect to the stop bar for small minor roadways;	
♦ sometimes considered aesthetically objectionable because of signal head clutter over the roadway; and	
♦ poor pedestrian visibility of signal faces.	

Box Span	
♦ easy installation with little or no underground work;	♦ requirement of four posts, which is more costly installation than simple span design,
♦ allowance of excellent lateral placement of signal faces for maximum conspicuity;	♦ addition of two poles to intersection clutter, and
♦ allowance of good signal placement with respect to the stop bar;	♦ can be seen as aesthetically unpleasing, as with all span wire mount.
♦ substantially lower span length and loading than with the simple two-pole span;	
♦ convenient pole locations for supplemental signal heads, pedestrian signal heads, and pedestrian detectors; and	
♦ ability to use “internal boxes” to reduce signal head to stop bar distance at extremely wide intersections.	
♦ requirement of four posts, which is more costly installation than simple span design,	
♦ addition of two poles to intersection clutter, and	
♦ can be seen as aesthetically unpleasing, as with all span wire mount.	

Mast Arm	
♦ allowance of excellent lateral placement and placement relative to the stop bar for maximum conspicuity;	♦ generally the highest purchase and installation costs,
♦ potential to provide post locations for supplementary signals or pedestrian signal heads and pedestrian push buttons;	♦ proper placement of signal heads may be difficult on very wide approaches, and
♦ generally accepted as the most aesthetically pleasing method for installing overhead signals, particularly in developed areas;	♦ it may be difficult to keep the mounting poles out of the clear zone on very wide approaches.
♦ rigid mountings provide the most positive control of signal movement in wind; and	
♦ provides rigid platform for Video Imaging Vehicle Detection System (VIVDS) installation.	
Pole Placement

The primary safety concern regarding signal supports is pole placement. Poles should be located:

♦ as far away from the roadway as practical or
♦ behind existing traffic barriers.

Locating and placing signal foundations often is difficult due to existing underground utilities, especially when unexpected utilities are found during construction.

The TxDOT Roadway Design Manual\(^8\) notes that because of the need for specific placement to assist traffic operations, devices such as traffic signal supports, railroad signal/warning device supports, and controller cabinets are excluded from horizontal clearance requirements. However, these devices should be located as far from the travel lanes as practical. Other non-breakaway devices should be located outside the prescribed horizontal clearances or these devices should be protected with a barrier. Chapter 5, Section 2 <link> provides additional information on horizontal clearance.

Particular design care is needed in areas:

♦ with high-speed traffic,
♦ without shoulders or parking lanes,
♦ on the outside of a curve, or
♦ that feature heavy turning movements.

Additionally, the following items should be considered when placing signal supports and cabinets:

♦ Signal supports should be placed as far as practical from the edge of the traveled way without adversely affecting the visibility of the signal indications.

♦ The signal support or controller cabinet should not obstruct the sidewalk or pedestrian access from the sidewalk to the crosswalk.

♦ The signal housing and other equipment should not protrude more than 4 inches \([102 \text{ mm}]\) into the pedestrian area if located between 27 and 80 inches \([686 \text{ and } 2032 \text{ mm}]\) above the surface. Refer to TxDOT PED Standard Sheet for more information.\(^9\)

♦ Pole supports for overhead signal installations should not be placed in medians due to increased chance of being hit and potential for interference with crossing pedestrians.

References that provide additional considerations on pole placement include the following:

♦ American Association of State Highway and Transportation Officials Roadside Design Guide,\(^{10}\)
♦ The Americans with Disabilities Act Accessibility Guidelines,\(^{11}\) and
♦ The Texas Accessibility Standards.\(^{12}\)
Application 8-2 discusses issues considered during the development of a signal design for an intersection.

Intersection Design Considerations for Traffic Signal Accommodation

According to the TMUTCD, traffic signals must be warranted before they are installed at an intersection. Therefore, most traffic signal installations are constructed after an intersection has been designed and constructed. Many traffic signals are installed at intersections that have long operated with Stop sign control, but because of increased traffic volumes, Stop signs are no longer adequate to provide efficient and safe operations.

There is little doubt, however, that intersections of two urban arterials will eventually be signalized. Also, there are other intersections identified by traffic engineers as eventually needing traffic signals at some time in the future. If the designer of an intersection recognizes that the intersection being designed likely will be signalized, there are design features that can be incorporated into the geometric design of the intersection that will expedite or assist in the eventual installation of traffic signals. These design features to consider include the following:

♦ right of way that accommodates the following:
 • anticipated underground supports for the ultimate location of the support poles (especially if long length mast arms will be the ultimate design for the signal),
 • desired clearance to the ground-mounted controller, and
 • sidewalk location including how the signal supports and controller will affect the design near the intersection;

♦ underground conduit that preserves the space for signal wiring and that fits within existing utilities; and

♦ placement of underground utilities so that adequate space is reserved for signal pole foundations.

Application 8-3 discusses a situation where the anticipated signal at an intersection is considered.
Overview

There are three basic categories of controller cabinets (see Figure 8-11):

- pole-mounted,
- pedestal-mounted, and
- base-mounted.

Cabinets are constructed primarily of sheet aluminum or steel, and the style and size depend on the type and amount of equipment needed for the signalized location. Where mounting space is limited, such as on a narrow sidewalk, two small cabinets may be used in place of a single large cabinet. Accessory cabinets, usually smaller in size, may house an overflow of components where mounting space is at a premium or where later alterations of operation require more equipment space.7

Figure 8-11. Types of Controller Cabinet Mountings.7

Cabinet Placement

Reference should be made to the following documents when placing a cabinet:

- AASHTO Roadside Design Guide10,
- TxDOT PED Standard Sheet9,
- U.S. Access Board Americans with Disabilities Act Accessibility Guidelines11,
- U.S. Access Board Draft Guidelines for Accessible Public Rights-of-Way,13 and
- Texas Accessibility Standards.12
Additionally, the following items should be considered when placing signal supports and cabinets.

The cabinet should be placed:
♦ where it is not likely to be damaged by errant vehicles;
♦ where it is easily accessible by maintenance staff;
♦ in a location to provide a good view of the entire intersection;
♦ near a power source;
♦ where it will not be in conflict with pedestrians, bicyclists, or other road users;
♦ so that the front door faces away from the intersection to give technicians the clearest view of the approaches;
♦ in a well-drained area; and
♦ to minimize sight obstructions for vehicles making right turn on red.

Where a sidewalk does not exist, there should be a paved pad on which the technicians can stand while working on the equipment.

The cabinet should not:
♦ restrict sidewalk areas,
♦ impede access to curb ramps and sidewalks,
♦ be located near the curb return or on channelization islands, or
♦ protrude more than 4 inches [102 mm] from the base support into a pedestrian area (see Figure 8-12 for an example of additional curb or foundation to provide the maximum 4 inch [102 mm] overhang).

![Figure 8-12. Detection Barrier for Vertical Clearance < 80 inches [2032 mm].](image-url)
Section 5
Pedestrian Signals

Overview

Pedestrian signal heads provide special types of traffic signal indications exclusively intended for controlling pedestrian traffic. These signal indications consist of the illuminated symbols of:

- A WALKING PERSON, symbolizing WALK, and
- An UPRAISED HAND, symbolizing DON’T WALK.

The need for separate pedestrian signal heads and accessible pedestrian signals should be determined by engineering judgment, and meet the requirements of the accessibility guidelines.9,11,12

Use of Pedestrian Signal Heads

The TMUTCD states that pedestrian signal heads should be used under any of the following conditions:

- if it is necessary to assist pedestrians in making a safe crossing or if engineering judgment determines that pedestrian signal heads are justified to minimize vehicle-pedestrian conflicts;
- if pedestrians are permitted to cross a portion of a street, such as to or from a median of sufficient width for pedestrians to wait, during a particular interval but are not permitted to cross the remainder of the street during any part of the same interval; and/or
- if no vehicular signal indications are visible to pedestrians, or if the vehicular signal indications that are visible to pedestrians starting or continuing a crossing provide insufficient guidance for them to decide when it is safe to cross, such as on one-way streets, at T-intersections, or at multiphase signal operations. [Note, the 2003 MUTCD has added the word “reasonably” before safe in this condition.]

Size, Location, and Height of Pedestrian Signal Heads

Pedestrian signal indications should be conspicuous and recognizable to pedestrians at all distances from the beginning of the controlled crosswalk to a point 10 ft [3 m] from the end of the controlled crosswalk during both day and night. Pedestrian signal heads are to be positioned and adjusted to provide maximum visibility at the beginning of the controlled crosswalk.

TxDOT requires that pedestrian signals have visors so that the sign is not readily visible outside of the crosswalk. (This helps encourage more pedestrians to cross in the crosswalks.) Pedestrian signal locations should be designed so that pedestrians will have a clear view of the signals as they reach the intersection. After the pedestrian signals are installed, each crosswalk should be inspected to ensure that traffic signs, trees, utility poles, and other
obstacles do not block the view of the signal indication. It may be advisable to install pedestrian signals in the medians on wide streets, particularly where there are high numbers of older or visually impaired pedestrians.

Pedestrian Push Button Detectors

When pedestrian actuation is used, pedestrian push button detectors should be:

- easy to use;
- conveniently located near each end of the crosswalk, and in close proximity to the curb ramp landing; and
- fully accessible to disabled pedestrians.

Pedestrian Push Button Signs. Signs are to be mounted adjacent to or integral with pedestrian push button detectors, explaining their purpose and use. The *TMUTCD* identifies signs that may be used. At certain locations, a sign in a more visible location may be used to call attention to the pedestrian push button. Push buttons should clearly indicate which crosswalk signal is actuated by each push button. The ADAAG draft rule includes the following proposed requirements:

- Pedestrian signal devices will provide tactile and visual signs on the face of the device or its housing or mounting indicating crosswalk direction and the name of the street containing the crosswalk served by the pedestrian signal. Additional requirements for the signs included in the draft rule are:
 - Signs are to include a tactile arrow aligned parallel to the crosswalk direction (the draft ADAAG provides minimum dimensions).
 - Signs are to include street name information aligned parallel to the crosswalk.
 - Where provided, graphic indication of crosswalk configuration will be tactile.

Two Crosswalks. If two crosswalks, oriented in different directions, end at or near the same location, the positioning of pedestrian detectors and/or the legends on the pedestrian detector signs should clearly indicate which crosswalk signal is actuated by each pedestrian detector. At signalized intersections with accessible pedestrian signals where two pedestrian push buttons are provided, the push buttons should be separated by a distance of at least 10 ft [3 m]. This enables pedestrians who have visual disabilities to distinguish and locate the appropriate push button.

Additional Pedestrian Detectors. If the pedestrian clearance time is sufficient only to cross from the curb or shoulder to a median having sufficient width for pedestrian storage, and the signals are pedestrian actuated, an additional accessible pedestrian detector shall be provided in the median. The use of additional pedestrian detectors on islands or medians where a pedestrian might become stranded should be considered.

Mounting Height. Pedestrian push buttons should be installed at a mounting height of approximately 42 inches [1.1 m] maximum above the sidewalk.
Illumination. If used, a pilot light or other means of detection indication installed with a pedestrian push button should not be illuminated until actuation. Once it is actuated, it should remain illuminated until the pedestrian’s green or WALKING PERSON (symbolizing WALK) signal indication is displayed.

Accessible Pedestrian Signals. Information on characteristics of a pedestrian push button for an accessible pedestrian signal installation is included in the following section on accessible pedestrian signals <link>.

Size and Contrast. Push buttons and tactile arrows should be 2 inches [51 mm] across, and have high visual contrast. Tactile arrows should point in the same direction as the associated crosswalk.11

Wheelchair Detectors

Wheelchair detectors have been shown to be beneficial in areas where a significant number of powered wheelchair users are found. An inductive loop may be used for this purpose if it is designed so that both of the wheels of most wheelchairs will be on top of, or nearly on top of, the loop wires. Microwave, ultrasonic, and mat detectors also may be used as detectors.

Accessible Pedestrian Signals

Accessible pedestrian signals (APSs) provide information in non-visual format (such as audible tones, verbal messages, and/or vibrating surfaces). When used, accessible pedestrian signals are to be used in combination with pedestrian signal timing and comply with the TAS.12

Installation. The TMUTCD notes that installation of accessible pedestrian signals at signalized intersections should be based on an engineering study, which should consider the following factors:

♦ potential demand for accessible pedestrian signals;
♦ a request for accessible pedestrian signals;
♦ traffic volumes during times when pedestrians might be present, including periods of low traffic volumes or high right-turn-on-red volumes;
♦ complexity of traffic signal phasing; and
♦ complexity of intersection geometry.

In addition, accessible pedestrian signals may be required by ADAAG in the future at all new or updated pedestrian signal installations, or when existing traffic signal installations are upgraded.

Activations. At accessible pedestrian signal locations with pedestrian actuation, each push button shall activate both the walk interval and the accessible pedestrian signals.
Push Button Location. Push buttons for accessible pedestrian signals should be located as follows:

- adjacent to a level all-weather surface, accessible to a wheelchair occupant and connected to an accessible route to the curb ramp;
- within 5 ft [1.5 m] of the crosswalk extended;
- within 10 ft [3 m] of the edge of the curb, shoulder, or pavement; and
- parallel to the crosswalk to be used.

Figure 8-13 illustrates an example of a placement for push buttons. This placement allows someone needing the vibrotactile information regarding the crossing signal to have that available while remaining lined up and ready to cross. A disadvantage of this placement is that a wheelchair could have wheels on the curb ramp when accessing the push button. Each intersection has unique elements and designers should consider the best location for push buttons for the specific geometrics at each corner, with emphasis on convenience for visually disabled pedestrians and also those with mobility impairments.

![Diagram of recommended placement for pedestrian push buttons](image)

Locator Tone. A push button locator tone is a repeating sound that informs approaching pedestrians that they are required to push a button to actuate pedestrian timing and that enables visually impaired pedestrians to locate the push button.

Audible Tones. Audible tones are sounds that inform a pedestrian that the “WALK” indication has been illuminated. Audible pedestrian tones should be carefully selected to avoid misleading pedestrians who have visual disabilities.
According to the TMUTCD, when accessible pedestrian signals have an audible tone(s), they should have a specific tone for the walk interval, and be audible from the beginning of the associated crosswalk. If the tone for the walk interval is similar to the push button locator tone, the walk interval should have a faster repetition rate than the associated push button locator tone. The accessible walk signal tone should be no louder than the locator tone, except when there is optional activation to provide a louder signal tone for a single pedestrian phase. Accessible pedestrian signals that provide verbal messages may provide similar messages in languages other than English. Verbal messages can provide a visually impaired pedestrian with the same key information necessary to make their crossing.

The name of the street to be crossed may also be provided in accessible format, such as Braille or raised print.

Vibrotactile Pedestrian Devices. A vibrotactile pedestrian device communicates information about pedestrian timing by touch through a vibrating surface. Vibrotactile pedestrian devices, where used, shall indicate that the walk interval is in effect and for which direction it applies through the use of a vibrating directional arrow or some other means.

Pedestrian Intervals and Signal Phases

WALKING PERSON (symbolizing WALK). When pedestrian signal heads are used, a WALKING PERSON (symbolizing WALK) signal indication should be displayed only when pedestrians are permitted to leave the curb or shoulder.

UPRAISED HAND (symbolizing DON’T WALK). A pedestrian clearance time should begin immediately following the WALKING PERSON (symbolizing WALK) signal indication. A flashing UPRAISED HAND (symbolizing DON´T WALK) signal indication should be displayed during the pedestrian clearance interval. The remaining portions of the pedestrian clearance time should consist of the yellow change interval and any red clearance interval (prior to a conflicting green being displayed), during which a flashing or steady UPRAISED HAND (symbolizing DON´T WALK) signal indication should be displayed.

Signal Lenses Not Illuminated. At intersections equipped with pedestrian signal heads, the pedestrian sign indications shall be displayed except when the vehicular traffic control signal is being operated in the flashing mode. At those times, the pedestrian signal lenses shall not be illuminated.

Walk Interval. The walk interval is the time period during which a pedestrian facing the WALKING PERSON signal indication may start to cross the roadway in the direction of the signal indication. Ideally, the walk interval should be at least 7 seconds in length so that pedestrians will have adequate opportunity to leave the curb or shoulder before the pedestrian clearance time begins. However, if it is desired to maximize the length of an opposing signal phase, and if pedestrian volumes are minimal, walk intervals as short as 4 seconds may be used.
Pedestrian Clearance Time. Current engineering practice is to set the pedestrian clearance time to be sufficient to allow a pedestrian crossing in the crosswalk who left the curb or shoulder during the WALKING PERSON (symbolizing WALK) signal indication to walk to:

- the center of the farthest travel lane or
- to a median of sufficient width to accommodate pedestrian storage.

Typically, the walk speed used to determine pedestrian clearance time is 4 ft/sec [1.2 m/sec]. However, even when this practice was developed, this walking speed was about the average walking speed of the pedestrians tested. More recently, engineers are recognizing that the elderly population is growing rapidly and the use of the 4 ft/sec [1.2 m/sec] walking speed does not provide them sufficient crossing times. Pedestrians with some disabilities also require additional crossing times. Therefore, to provide adequate crossing times for all individuals, the use of slower walking speeds and longer crossing lengths is recommended. A pedestrian crossing speed of 3.5 ft/sec [1.07 m/sec] is now generally preferred for design purposes. Also preferred is to use the far edge of the farthest travel lane rather than the center of that lane.

Other considerations for determining pedestrian clearance times include:

- Draft revisions to the ADAAG require a walking speed of 3.0 ft/sec [0.9 m/sec] be used and increasing the length of crossing for calculating crossing times.
- Walking speeds as slow as 2.5 ft/sec [0.76 m/sec] may be appropriate at some locations.
- The National Committee on Uniform Traffic Control Devices is reviewing a proposal to time the walk indication for a pedestrian to reach the far curb rather than just the center of the farthest travel lane.

Passive pedestrian detection equipment, which can detect pedestrians occupying the crosswalk and extend the length of the pedestrian clearance time for that particular cycle, may be used instead of lower walking speeds per the TMUTCD.

- The *Highway Design Handbook for Older Drivers and Pedestrians* states that to accommodate the shorter stride and slower gait of less capable (15th percentile) older pedestrians, and their exaggerated “start-up” time before leaving the curb, pedestrian control-signal timing based on an assumed walking speed of 2.8 ft/s [0.85 m/s] is recommended.
- Some actuators can provide additional time by depressing the pedestrian button for a specified period of time.
- In all situations, engineering judgment along with an understanding of the types of users at the intersection is needed to determine the most appropriate design parameters.

Crossing to Median. Where the pedestrian clearance time is sufficient only for crossing from the curb or shoulder to a median of sufficient width for pedestrian storage, additional measures should be considered, such as median-mounted pedestrian signal or additional signing.
Extra Crossing Time. Extra crossing time may be needed at signals with school crossing guards or with high pedestrian volumes to clear the queues of pedestrians waiting to cross. These locations should be evaluated on a case-by-case basis.

Other Improvements. Improvements that can be made to expedite pedestrian movements at intersections include:

- incorporating a pedestrian phase in the signal sequence, rather than on-demand, in locations with high pedestrian use;

- placing pedestrian push buttons in locations that are easy to reach from the level landing at curb ramps, facing the sidewalk and clearly in line with the direction of travel (this will improve operations, as many pedestrians push all buttons to ensure that they hit the right one);

- motion detectors (both infrared and video) are being experimented with; these automatically change the signal phase when a pedestrian approaches.
Section 6
Detectors

Overview

Detectors are used to sense the passage or the presence of all road users within a specified zone. Data developed from detectors may be used for a variety of functions, including the following:

♦ actuation of traffic signal controllers;
♦ calculation of traffic speed, traffic density, and traffic and pedestrian volumes;
♦ emergency vehicle preemption;
♦ incident detection; and
♦ special vehicle priority control.

Generally, the selection of detectors to be used at a signalized intersection is based primarily on the operational conditions at the intersection and the type of phasing selected for the signal operation. The design of the intersection will have a direct effect on the signal phasing selected, but minimal effect on the detectors used at the location. Nevertheless, an understanding of signal design and operation, including an understanding of detectors and their functions, is important to the intersection designer. Also, the type of detector to be used may need to be accommodated during the initial design of the intersection so the pavement surface does not have to be cut later for detector installation.

Detection

Pulse detection is the sensing of a vehicle arrival within the detection zone with a short single pulse. The detector output will not indicate the presence of the vehicle in the detection zone even if the vehicle stops in the detection zone.

Presence detection is the sensing of a road user (vehicle or pedestrian) while in the detection zone, whether stopped or moving. Presence detectors will continuously send a signal of a user’s presence as long as the user is in the detection zone. Most presence detectors can be adjusted to ignore a road user stopped within the detection zone after a period of time and then to detect new users as they enter the zone. Presence detectors can also be adjusted to put out a single pulse instead of a continuous indication of the user.

Detector Type

The detector system is the backbone of a traffic management and data collection system. Without accurate and reliable detectors that generate real-time data, system operators cannot make the best decisions. Detectors can generally be grouped in the following two categories:
Intrusive detector systems. Intrusive detector systems require intrusion into or onto the pavement or roadway during installation or maintenance. Examples of intrusive detectors are inductive loops (ILDs) and road tubes.

Non-intrusive detector systems. Non-intrusive detector systems substantially reduce interference with traffic operations because they do not need to be installed into or on the roadway. Non-intrusive systems are typically installed over the roadway or beside the roadway. Examples include video image systems, infrared devices, and acoustic systems.

Selection of Detector

The selection of a particular detector type depends on:

- the function to be performed (i.e., traffic control signal actuation);
- the need for passage detection, presence detection, or both;
- the roadway characteristics;
- pavement condition; and
- the level of maintenance skill available.

Care should be taken to ensure that the installation, operation, and maintenance capabilities of the operating agency are consistent with the requirements of the selected unit.

There is currently no single detector that can meet TxDOT’s total detection and data collection needs. If accuracy under all weather and lighting conditions were the only criteria for selection, the inductive loop would still be the detector of choice. However, on high-volume urban freeways and streets, installing and maintaining in-pavement systems have become both costly and present safety concerns to installation and maintenance personnel.

Video image systems are becoming very popular in urban areas. Video detection provides more flexibility in locating or relocating detection areas, is not affected by maintenance activities on roadways, and has proven to be very effective in detecting all types of vehicles. Video detection is less effective when rigid supports for video equipment cannot be found close to the intersection and when detection is needed for distances far from the intersection. Additional information on using video detection is available in the following two TxDOT reports: Intersection Video Detection Field Handbook\(^\text{16}\) and Intersection Video Detection Manual.\(^\text{17}\)

The answer to the dilemma as to which detector is best will involve engineering judgment, and considering whether and to what extent accuracy can be compromised.

Pedestrian Detectors

Push Button. See Chapter 8, Section 5, Pedestrian Signals <link> for a discussion of push button detectors. Push button detectors are by far the most common pedestrian detectors. Pedestrians expect to see push buttons when pedestrian signals are installed. Therefore,
pedestrians may have to be informed of the presence of another type of detector and be instructed to position themselves to be detected at the crossing.

Mats. Mats are pressure detectors placed at a point where pedestrians gather to await a signal to begin crossing a roadway. Because mats are activated by pressure, they are effective for wheelchairs of all sizes and types as well. Mats require no action on the part of the pedestrian, so locating a push button and pressing it are unnecessary. Mats also hold the promise of being less subject to vandalism than push buttons.

Other Pedestrian Detectors. Microwave, video, and ultrasonic detectors will also detect pedestrians. However, usage of these devices is minimal.

Preemption

Preemption by Emergency Vehicles. Various mechanisms may be used to preempt traffic signals so that emergency vehicles are provided the right of way as soon as practical. This type of preemption is typically used at intersections adjacent to fire stations and on commonly traveled routes. Communication with the traffic signals may be provided by direct wire, modulated light, or radio. The agency requesting the preemption is normally responsible for supplying the interconnect and any additional hardware required for the preemption.³

Preemption by Railroad Equipment. Traffic signals near railroad grade crossings can be connected to the railroad equipment to initiate a traffic signal preemption sequence. The railroad installs sensors on the tracks that send an electrical input to the traffic signal controller as the train passes over the sensors. Preemption of a traffic signal by the railroad signals is required if the traffic signal is at an intersection that is within 200 ft [60.96 m] of a railroad grade crossing. Preemption should be considered wherever traffic may back up over the crossing due to traffic signals or other traffic congestion.³

Traffic signal preemption requires an agreement with the railroad, and additional information is provided in the *Traffic Operations Manual, Railroad Operations Volume.*¹⁸

Multiple Preemptions. Multiple preemptions are allowed at the same location. Priority must be given to each preempt. Railroad preemption always overrides emergency vehicle preemption.

Detectors. Detectors assigned to detect vehicles that require preemption or priority response by the intersection controller or signal system are of two general types: emitter/receiver and position-of-vehicle. Emitter/receiver types are used extensively for preemption because of their communications range and message-content capability. Preemption response times must be based on the worst-case starting position of the controller, making long-range notification highly desirable.

Priority

Under priority control the green phase is extended beyond its normal termination in order to assist the priority vehicle in moving through the intersection.
Bus Priority. Individual vehicles are equipped or positioned so that the signal controller recognizes their presence. If the signal is displaying green when the vehicle arrives, the green phase will be extended to a preset maximum or until the vehicle clears the intersection, whichever is first.

Light Rail Priority. Individual cars or sets of rail cars are detected by their position so that the signal controller recognizes their presence. If the signal is displaying green when they arrive, the green phase will be extended to a preset maximum or until the vehicles clear the intersection, whichever is first. A separate signal phase may be called to serve the light rail line, allowing it a leading departure or a lagging departure. This phase is skipped when no light rail vehicle is calling for service.7

Bicycle Detectors

Bicycles are especially difficult for detectors that depend on the disturbance of magnetic fields because most bicycles have minimal amounts of metal. As a result, bicycles often require specialized detectors, such as an inductive loop-detector configuration known as a quadrupole, microloop sensors in sets of two or more, and microwave or ultrasonic detectors; video detection is another alternative that is quite promising. Some cities have successfully used special markings to indicate bicycle stop positions that are more likely to result in the detection of the bicycle. Figure 8-14 illustrates the use of detectors for bicyclists.

Where traffic signals function with “on-call” detection (with loop detectors), there are several improvements that can be made to benefit cyclists:

♦ placing loop detectors in bicycle lanes on side streets to trip the signal;

♦ placing loop detectors in bicycle lanes to prolong green phase when a bicyclist is passing through (the upcoming yellow phase may not allow enough time for a cyclist to cross a wide intersection); and

♦ increasing the sensitivity of existing loop detectors in bicycle lanes, and painting stencils to indicate to cyclists the most sensitive area of the loop.
Loop detectors in bike lane on side street
Loop detectors in bike lane prolongs green phase
Stencil placed to indicate most sensitive area of loop

Figure 8-14. Signalized Intersection Sensitive to Bicycles (Based on Oregon Bicycle and Pedestrian Plan).
Section 7

Right Turn on Red

Overview

Texas law allows vehicles to turn right after coming to a stop when facing a red indication at a signalized intersection if:

- The turn can be completed in a safe manner.
- There are no signs prohibiting a right turn during the red indication.
- There are no pedestrians in the crosswalk on the half of the roadway in which the vehicle is traveling.

The right-turn-on-red maneuver provides an opportunity to increase the operational efficiency of a traffic signal by reducing the demand for a green indication. The use of RTOR is especially effective at locations with an exclusive right-turn lane.

Right Turn on Red at a Pedestrian Crossing

Where RTOR is permitted and pedestrian crosswalks are marked, the *TMUTCD* states that the word message TURNING TRAFFIC MUST YIELD TO PEDESTRIANS should be used. The information should be posted in an overhead or roadside location that is easily visible to the motorist prior to initiating the turning maneuver.\(^\text{15}\)

A recent study\(^\text{20}\) indicates that traffic signs prohibiting RTOR during specified hours were effective at increasing driver compliance with stop lines. The number of drivers turning right on red without stopping was reduced from 39 percent to 19 percent.

Prohibition of Right Turn on Red

Factors that impact the decision to prohibit RTOR include:\(^\text{1,21}\)

- sight distance (see Chapter 3, Section 1 for information on determining needed intersection sight distance <link>);
- pedestrian traffic;
- bicycle traffic;
- conflicting traffic volumes;
- signal phasing;
- site conditions;
- operational experience (i.e., safety problems);
- presence of dual right-turn lanes, at least from the inside lane; and
- skewed intersections (angle less than 75 degrees or greater than 105 degrees).
To reduce confusion with the meaning of the red arrow (right-turn), it is recommended that a steady red ball be used at signalized intersections where a right turn is prohibited. The NO TURN ON RED sign (R10-11a, R10-11b, or R10-11c) should supplement the red ball indication. The sign should be installed near the appropriate signal head.

Recommended Practice

The Institute of Transportation Engineers is developing a Recommended Practice on the Prohibition of Turns on Red. The purpose of the ITE Recommended Practice is to promote safe movement of vehicular traffic, pedestrians, bicyclists, and other road users while providing for efficient movement of traffic. It notes that because each intersection should be evaluated on an individual basis, the guidelines presented within the Recommended Practice are qualitative and nonspecific. The ITE Web site (http://www.ite.org/standards/index.asp) can be checked to determine whether the Recommended Practice has been adopted by ITE.
Section 8

References

Chapter 9
Markings

Contents:

Section 1 — General .. 9-3
Section 2 — Longitudinal Pavement Markings ... 9-3
Section 3 — Transverse Markings: Lines ... 9-3
Section 4 — Transverse Markings: Words and Other Symbols 9-3
Section 5 — Raised Pavement Markers ... 9-3
Section 6 — References ... 9-3
Section 1
General

Overview

Roadway markings are an expected, integral, and critical element of the roadway transportation system. They have been proven to be an effective, cost-efficient, and safety-enhancing element of the roadway delineation system. Roadway markings are located directly within the user’s cone of vision, and they provide continuous information that helps the road user to correctly position the vehicle in the roadway.

Markings have two general purposes:
♦ to provide guidance for highway users and
♦ to optimize roadway efficiency.

Proper vehicle guidance promotes highway safety. In some cases, markings are used to supplement the regulations or warnings of other traffic control devices such as signs or traffic signals. In other cases, markings are the only means of effectively conveying certain regulations, warnings, and information in clearly understandable terms without diverting the driver’s attention from the roadway. In addition, the capacity of a highway is often increased by the orderly and proper regulation of traffic flow, which results from correct application of pavement markings.

As with all traffic control devices, markings must be readily recognized and understood and comply with the TMUTCD. TxDOT recently sponsored the development of a Pavement Marking Handbook that ties information together on selecting, specifying, and inspecting markings. The Handbook is targeted toward two audiences: engineering personnel and field personnel. The portion for engineering personnel provides information on selecting pavement marking materials for various applications. The portion for field personnel provides information on pavement marking installation and inspection. The appendices of the handbook provide additional information about TxDOT specifications, procedures, and standards applicable to pavement markings.

Types of Markings

Roadway markings are generally classified as either:
♦ longitudinal markings,
♦ transverse markings, or
♦ other delineation.

Longitudinal markings are generally placed parallel to the roadway (see Figure 9-1), and they serve to provide positive guidance by defining the limits of a road user’s field of safe travel (such as lane lines, centerlines, and edge lines). Longitudinal markings are also used to inform road users of areas where it is not safe or where they are not permitted to travel.
(such as no passing zones, gore areas, islands, and painted medians). Additional information on longitudinal markings is in Chapter 9, Section 2.

Transverse markings are generally those that are placed perpendicular to the roadway. They will be white unless otherwise specified in the TMUTCD. Transverse lines should be proportioned to provide visibility equal to that of longitudinal lines because of the low approach angle at which pavement markings are viewed. Pavement marking letters, numerals, and symbols are to be installed in accordance with the Standard Alphabets for Highway Signs and Pavement Markings Reference Guide. Transverse markings include:

- stop and yield lines,
- crosswalk lines,
- parking space markings, word and symbol markings (see Figure 9-2 for an example),
- speed measurement markings,
- curb markings,
- preferential lane word and symbol markings, and
- other symbol markings.

Additional information on transverse pavement markings is discussed in more detail in Sections 3 and 4 of this chapter.

In addition to markings applied to the surface of a roadway, delineation such as post-mounted delineators, object markers, and colored pavements are part of the marking system. Information on raised pavement markers is in Section 5.
Retroreflectivity

Retroreflectivity is the scientific principle of returning light back to its source. Under most circumstances, vehicle headlights provide the major source of light available during night driving. As shown in Figure 9-3, the light rays from headlight beams shining on a nonreflective marking are reflected in all directions, and only a very small proportion of the light is returned directly back to the light source (driver’s vehicle) and to the driver’s eye. When the light rays shine on a retroreflective marking, much more light is returned to the vehicle’s light source, and the markings are therefore more visible to the driver.

There are two common retroreflective techniques used for markings and delineators:

- spherical (glass beads) and
- corner cube (prismatic).

Glass beads are most commonly used and were the earliest form of retroreflectors used for night visibility. They can also be imbedded in preformed or thermoplastic tapes.

Corner-cube reflectors utilize a trihedral-angled mirror reflection. In this system, three mirrored surfaces are arranged at a proper angle to receive the rays of headlights on one of the three mirrors. Light rays are reflected to a second mirrored surface, then to the third, and finally outward back toward the light source on a path parallel to the entering direction. The corner-cube delineators are many times brighter than those made from retroreflective sheeting (glass beads), and white retroreflectors of either type are brighter than yellow. To obtain wide-angle retroreflection, the different manufacturers use various configurations of the optical elements.3
Color and Patterns of Pavement Markings

The United States uses the following colors for pavement markings:

- Yellow is used to separate opposing traffic on two-way roadways and as the left edge line on one-way roadways (such as divided highways). Yellow also delineates the separation of two-way left-turn lanes and reversible lanes from other lanes. In this manner, the color yellow always defines the leftmost side of the travel path for a vehicle (with the exception of reversible lanes).
- White lines delineate the separation of traffic flows in the same direction or mark the right edge of the pavement.
- Red markings delineate roadways not to be entered or used by the viewer of those markings.
- Blue may be used to supplement white parking spaces markings for designating spaces for persons with disabilities or as a background color for the wheelchair symbol pavement marking.
Widths and patterns provide the following:

- Solid lines are restrictive in character.
- Broken lines are permissive in character.
- Line width indicates the degree of emphasis.
- Double lines indicate maximum restrictions or prohibitions.
- Dotted lines provide guidance.

Specified applications of some of the most important U.S. pavement marking applications are listed in Table 9-1. The basic application configurations of pavement markings are shown in the *TMUTCD* and should be consulted for specific application information.

<table>
<thead>
<tr>
<th>Type of Marking</th>
<th>Function</th>
<th>Marking</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal Lines</td>
<td>Separate opposing traffic</td>
<td>Broken or solid centerline</td>
<td>Yellow</td>
</tr>
<tr>
<td></td>
<td>Indicate no passing zone</td>
<td>Solid line</td>
<td>Yellow</td>
</tr>
<tr>
<td></td>
<td>Separate lanes traveling in the same direction</td>
<td>Broken or solid lane lines</td>
<td>White</td>
</tr>
<tr>
<td></td>
<td>Indicate right edge on one or two-way road</td>
<td>Solid edge line</td>
<td>White</td>
</tr>
<tr>
<td></td>
<td>Indicate left edge on one-way road</td>
<td>Solid edge line</td>
<td>Yellow</td>
</tr>
<tr>
<td>Transverse Lines</td>
<td>Indicate stopping location on intersection approach</td>
<td>Stop line</td>
<td>White</td>
</tr>
<tr>
<td></td>
<td>Indicate pedestrian crossing area</td>
<td>Crosswalk</td>
<td>White</td>
</tr>
</tbody>
</table>

Note: Only some of the most important markings are listed. There are other types of markings.

Visibility of Markings

Light-colored pavements may not provide sufficient contrast with the markings. Black may be used in combination with yellow, white, red, or blue markings. When used in combination with other colors, black is not considered a marking color, but only a contrast-enhancing system for the markings.

Materials and Costs of Pavement Markings

The performance and costs of different materials vary greatly. It is also important to recognize that there are some materials that are more appropriate for a set of circumstances than other materials. The useful life of a pavement marking material often varies widely based on many factors. Materials should be selected that will meet or exceed the performance requirements at the lowest cost. To maximize cost-effectiveness, material selection should be based on:

- roadway surface type,
- amount of traffic disruption expected when reapplying materials,
- traffic volumes, and
- expected remaining service life of the pavement.
The TxDOT *Pavement Marking Handbook*\(^2\) provides information that is intended to help the engineer or designer select the appropriate marking material for a given roadway and to develop the appropriate specifications. It must be noted that engineering judgment should always apply in the material selection process. Supporting pavement marking material information, including TxDOT specifications and test methods, is included in the appendices of the Handbook.

A majority of the pavement markings placed on TxDOT roadways over the past five years fall into one of three categories: thermoplastic, water-based paint, and preformed tape. However, other materials exist that have shown positive performance either in Texas or elsewhere. The *Pavement Marking Handbook* contains in-depth descriptions of several commercially available materials and typical uses.
Section 2
Longitudinal Pavement Markings

Overview

Longitudinal markings are continuous along a length of roadway, and as such, they provide a constant stream of information that cannot be provided by signs or signals. They are to be positioned so that they are near the center of the driver’s visual field.

A curb, by definition, incorporates some raised or vertical element. Curbs serve any or all of the following purposes: drainage control, roadway edge delineation, potential to build in restricted right of way, aesthetics, delineation of pedestrian walkway, reduction of maintenance operations for shoulders and ditches, and assistance in orderly roadside development. High-visibility treatments, such as reflectorized paints or other reflectorized surfaces or applied thermoplastics, can make curbs more conspicuous.

Widths and Patterns of Longitudinal Pavement Markings

The widths and patterns of longitudinal pavement markings are specified in the *TMUTCD*.1

Standards for Longitudinal Pavement Markings

The standards for various longitudinal pavement markings are included in the *TMUTCD* in the following sections.

- The standards for Yellow Centerline and Left Edge Line Pavement Markings and Warrants are included Section 3B.01.
- The standards for No-Passing Zone Pavement Markings and Warrants are included in Section 3B.02.
- The standards for Other Yellow Longitudinal Pavement Markings are included in Section 3B.03.
- The standards for White Lane Lines and Right Edge Line Pavement Markings and Warrants are included in Section 3B.04.

Extensions through Intersections or Interchanges

Where highway design or reduced visibility conditions make it desirable to provide control or to guide vehicles through an intersection or interchange, dotted line markings should be used to extend longitudinal line markings through an intersection or interchange area. These conditions may include:

- offset intersections,
- skewed intersections,
- complex intersections,
multileg intersections, curved roadways, or where multiple turn lanes are used.

Pavement markings extended into or continued through an intersection or interchange area are:
- the same color as the line markings they extend and
- at least the same width as the line markings they extend.

Where greater restriction is required, solid lane lines or channelizing lines should be extended into or continued through intersections.1

Figure 9-4 shows an example of pavement markings for offset lanes. This situation should be avoided unless there are significant constraints. Preferably the approaches would be realigned so that the vehicles travel a straight path through the intersection.

Figure 9-4. Typical Pavement Marking with Offset Lane Lines Continued through the Intersection.1

Figure 9-5 shows an example of dotted line markings for a left turn. These markings are commonly called cat tracks or puppy dog tracks. Application 9-1 shows the typical signs and markings for a dual left turn.
Figure 9-5. Typical Dotted Line Markings to Extend Longitudinal Lane Line Markings.

Other Longitudinal Pavement Markings

The TMUTCD\(^1\) also includes information on Lane Reduction Transition Markings (Section 3B.09), Approach Markings for Obstructions (Section 3B.10), and Preferential Lane Longitudinal Markings for Motorized Vehicles (Section 3B.23).

Curb Markings

Curb markings are most often used to indicate parking regulation or to delineate the curb. The colors of marked curbs are to conform to the general principles of markings. In areas where curb markings are frequently obliterated by snow and ice accumulation, signs are to be used with the curb markings.

Guidance for curb markings includes:

♦ When curb markings are used without signs to convey parking regulations, a legible word marking regarding the regulation (such as “No Parking” or “No Standing”) should be placed on the curb.
♦ Retroreflective solid yellow markings should be placed on the noses of raised median and curbs of islands that are located in the line of traffic flow where the curb serves to channel traffic to the right of the obstruction.
♦ Retroreflective solid white markings should be used when traffic may pass on either side of the island.
♦ Where the curbs of the islands become parallel to the direction of traffic flow, it is not necessary to mark the curbs unless an engineering study indicates the need for this type of delineation.

♦ Curbs at openings in a continuous median island need not be marked unless an engineering study indicates the need for this type of marking.

The *Highway Design Handbook for Older Drivers and Pedestrians*\(^6\) recommends that island curb sides and curb surfaces should be treated with reflectorized paint or other types of pavement marking material.
Section 3

Transverse Markings: Lines

Overview

Stop and yield lines are used for added emphasis and visibility to supplement Stop and Yield signs.

Crosswalk markings are used to guide pedestrians to an appropriate crossing location and to warn road users of a pedestrian crossing location. Additional information on crosswalks is included in Chapter 7—Street Crossing, Section 2.<link>

Marking of parking space boundaries encourages more orderly and efficient use of parking spaces where parking turnover is substantial. Parking space markings tend to prevent encroachment into fire hydrant zones, bus stops, loading zones, approaches to intersections, curb ramps, clearance spaces for islands, and other zones where parking is restricted.

Details on the use and dimensions for transverse markings are in the TMUTCD.¹

Stop Lines

If used, stop lines:

♦ should consist of solid white lines extending across approach lanes to indicate the point at which the stop is intended or required to be made;

♦ should be used to indicate the point behind which vehicles are required to stop in compliance with a Stop sign, traffic control signal, or some other traffic control device;

♦ should be 12 to 24 inches [305 to 610 mm] wide;

♦ should be placed to allow sufficient sight distance for all approaches to an intersection; and

♦ should be placed at least 40 ft [12 m] in advance of the nearest signal indication at midblock signalized locations.

The Older Driver Design Handbook⁶ recommends the use of 24-inches [610 mm] wide stop lines at the end of channelized left-turn lanes as a countermeasure to wrong-way movements.

Yield Lines

If used, yield lines:

♦ consist of a row of isosceles triangles pointing toward approaching vehicles extending across approach lanes to indicate the point at which the yield is intended to be or required to be made,
may be used to indicate the point behind which vehicles are required to yield in compliance with a Yield sign,

should have individual triangles having a base 12 to 24 inches [0.3 to 0.6 m] wide and a height equal to 1.5 times the base, and

should have a 3 to 12 inch [76 to 305 mm] space between the triangles.

Typical yield line layouts are shown in Figure 9-6.

![Figure 9-6. Typical Yield Line Layouts.](image)

Placement of Stop and Yield Lines

Stop and yield lines should be placed at the desired stopping or yielding point but should be placed no more than 30 ft [9 m] and no less than 4 ft [1.2 m] from the nearest edge of the intersecting traveled way or a marked crosswalk.

Motorists should be discouraged from stopping in or too close to crosswalks. Stop or yield lines:

- May be used as a guide to indicate the optimal stopping location for motorists.
- May be used in advance of marked crosswalks to help encourage motorists to stop further back from the crosswalk. This helps reduce the potential for pedestrian-related collisions that occur on streets with multiple lanes of traffic when one driver stops to
let a pedestrian cross in the crosswalk and the pedestrian is struck by a trailing vehicle in the adjacent lane.

♦ Are intended to be used at locations where motorists are required to stop.
♦ May be used on approaches to traffic signals, Stop signs (with or without marked crosswalks), or uncontrolled marked crosswalks.

Crosswalk Width

The width for marked crosswalks should not be less than 6 ft [1.8 m]. The Draft Guidelines for Accessible Public Rights-of-Way proposes a minimum width of 8 ft [2.4 m]. If no markings are present, per the TMUTCD, the width of the sidewalk or path extended between the curbs (or, in the absence of curbs, from the edge of the traversable roadway) defines a legal crosswalk. Where markings are present, the legal crosswalk is defined by such markings.

Crosswalk Markings

Crosswalk markings provide guidance for pedestrians who are crossing roadways by defining and delineating paths on approaches to and within signalized intersections and on approaches to other intersections where traffic stops. Crosswalk markings also serve to alert road users of a pedestrian crossing point across roadways not controlled by traffic signals or Stop signs. At non-intersecting locations, crosswalk markings legally establish the crosswalk.

When crosswalk lines are used, they consist of solid white markings that extend across the full length of the crossing. The standard line markings are not to be less than 6 inches [152 mm] nor greater than 24 inches [610 mm] in width. The approach on the left side of the figure in Figure 9-7 illustrates standard crosswalk lines.

For added visibility, the area of the crosswalk may be marked with white diagonal lines at a 45-degree angle to the line of the crosswalk (commonly called diagonal markings) or with white longitudinal lines parallel to traffic flow (commonly called zebra markings). When diagonal or longitudinal lines are used to mark a crosswalk, the transverse crosswalk lines may be omitted. Figure 9-7 illustrates diagonal and zebra marking styles.
High visibility markings may be most beneficial at locations where:

- substantial numbers of pedestrians cross without any other traffic control device,
- physical conditions are such that added visibility of the crosswalk is desired, or
- a pedestrian crosswalk might not be expected.

If used, the diagonal or longitudinal lines should be 12 to 24 inches [305 to 610 mm] wide and spaced 12 to 24 inches [305 to 610 mm] apart. The spacing design should avoid the wheel paths.

At unsignalized or uncontrolled crossings, or areas such as school zones or areas where there is a substantial pedestrian presence, special emphasis markings should be used to increase visibility (i.e., zebra, diagonal). High contrast markings can also aid people with low vision. Additional discussion on crosswalk markings is in Chapter 7, Section 2 <link>.

When an exclusive pedestrian phase that permits diagonal crossing is provided at a traffic control signal, markings as shown in Figure 9-8 may be used for the crosswalk.
Crosswalk Marking Materials

It is important to ensure that crosswalk markings are visible to motorists, particularly at night. Crosswalks should not be slippery or create tripping hazards. Even though granite or cobblestones are aesthetically appealing materials, they are generally not appropriate for crosswalks. One of the best materials for marking crosswalks is inlay tape, which is installed on new or repaved streets. It is highly reflective, long-lasting, slip-resistant, and does not require a high level of maintenance. Although initially more costly than paint, both inlay tape and thermoplastic are more cost-effective in the long run. Inlay tape is recommended for new and resurfaced pavement, while thermoplastic may be a better option on rougher pavement surfaces. Both inlay tape and thermoplastic are more visible and less slippery than paint when wet.

Parking Space Markings

Parking space markings are white. No parking zones should be provided at a minimum of 20 ft [6.1 m] from the crosswalk line farthest from the intersection or at 30 ft [9 m] for signalized intersections. Parking space markings are illustrated in Figure 9-9. They are also discussed in Chapter 4, Section 7 (Shoulders and Parking). Additionally, TxDOT Standard PM (AP) provides details of accessible parking markings and required signing. The International Symbol of Accessibility parking space markings may be placed in each parking space designated for use by persons with disabilities. A blue background with white border may supplement the wheelchair symbol.
Figure 9-9. Typical Parking Space Markings.

1.

NO PARKING ZONE

20 ft [6.1 m] min.

8 ft [2.4 m]

22 to 26 ft [6.7-7.9 m]

30 ft [9 m] min. Approach to signal

8 ft [2.4 m]

20 ft [6.1 m] min.

12 in

Extension enables driver to see limits of stall

8 ft [2.4 m]

20 ft [6.1 m] min.

20 ft [6.1 m] min.

20 ft [6.1 m] min.

NO PARKING ZONE

NO PARKING ZONE

NO PARKING ZONE

20 ft [6.1 m] min.

20 ft [6.1 m] min.

20 ft [6.1 m] min.
Section 4

Transverse Markings: Words and Other Symbols

Overview

Word and symbol markings on the pavement are used for the purposes of:

♦ guiding,
♦ warning, or
♦ regulating traffic.

Symbol messages are preferable to word messages.

Examples of typical lane use control word and symbol pavement markings are shown in Figure 9-10.

Word and symbol markings may include, but are not limited to:

♦ Regulatory:
 • STOP (The word STOP on the pavement is to be accompanied by a stop line and Stop sign. Do not place the word Stop on the pavement in advance of a stop line unless every vehicle is required to stop at all times.)
 • RIGHT (LEFT) TURN ONLY (see example in Figure 9-11)
 • 25 MPH (40 KPH)
 • Arrow symbols

♦ Warning:
 • STOP AHEAD
 • YIELD AHEAD (The YIELD AHEAD work pavement marking or Yield Ahead Triangle Symbol is not to be used unless a YIELD sign is in place at the intersection.)
 • Yield Ahead Triangle Symbol
 • SCHOOL X-ING
 • SIGNAL AHEAD
 • PED X-ING
 • SCHOOL
 • R X R
 • BUMP
 • HUMP
Guide:
- US 40
- STATE 135
- ROUTE 40

Legend:
- Direction of travel
- Optional marking
- Line extensions may be solid or broken
- Required where through lane becomes mandatory turn lane

Figure 9-10. Typical Lane Use Control Word and Symbol Markings.
Color and Size of Word and Symbol Markings

Word and symbol markings are white, except as otherwise noted in this section. Letters and numerals should be at least 6 ft [1.8 m] in height.

Other words or symbols may also be used under certain conditions.

Word and symbol markings:

♦ should not exceed three lines of information;
♦ should read in the direction of travel if the word message consists of more than one line of information;
♦ should be installed so that the first word of the message is nearest to the road user;
♦ should have a longitudinal space between word or symbol message markings, including arrow markings, of at least four times the height of the characters for low-speed roads, but not more than ten times the height of the characters under any conditions;
♦ should provide effective guidance and avoid misunderstandings through the minimization of the number of different word and symbol markings;
♦ should be no more than one lane in width, except for the option for the SCHOOL word marking (the SCHOOL word marking may extend to the width of two lanes, in which case the characters should be 10 ft [3.1 m] or more in height);
♦ should be proportionally scaled to fit within the width of the facility upon which they are applied; and
may be smaller than suggested but to the relative scale on narrow, low-speed bicycle paths.

Markings Where through Lanes Become Mandatory Turn Lanes

Where through traffic lanes approaching an intersection become mandatory turn lanes, lane-use arrow markings are used and accompanied by standard signs (see Figure 9-10). Signs or markings should be repeated as necessary to prevent vehicle entrapment and to help the road user select the appropriate lane in advance of reaching a queue of waiting vehicles.

Lane use, lane reduction, and wrong-way arrow markings are discussed in the *TMUTCD*. Lane-use arrow markings may be used to convey either guidance or mandatory messages. Lane-use arrow markings are often used to provide guidance:

- in turn bays,
- where turns may or may not be mandatory, and
- in two-way left-turn lanes.

The ONLY word marking may be used to supplement lane-use arrow markings (see Figure 9-10 and Figure 9-12).

![Figure 9-12. Typical Elongated Letters for Word Pavement Markings.](image)

Preferential Lane Word and Symbol Markings

Preferential lanes may be designated to identify a wide variety of special uses that includes, but is not limited to:

- bicycle lanes,
- high-occupancy vehicle (HOV) lanes,
- bus-only lanes, and
- taxi-only lanes.
Information for preferential markings for HOV lanes, bus-only lanes, and taxi-only lanes are included in the TMUTCD. Where a bicycle lane is established, the preferential lane use marking consists of a bicycle symbol or the word marking BIKE LANE as shown in Figure 9-13. Further discussion regarding bicycle lanes is provided in Chapter 4, Section 6 and the TMUTCD. An example of traffic control devices for a bicycle lane is presented in Application 9-1.

Figure 9-13. Typical Intersection Pavement Markings with Designated Bicycle Lane with Left-Turn Area, Heavy Turn Volumes, Parking, One-Way Traffic, or Divided Highway.

Other Symbol Markings

Information on Markings for Roundabouts, Markings for Other Circular Intersections, Speed Hump Markings, and Advance Speed Hump Markings is included in the TMUTCD.
Section 5

Raised Pavement Markers

Overview

A raised pavement marker (RPM) is a device that:

♦ has a height of at least 0.4 inches [10 mm],
♦ is mounted on or in a road surface, and
♦ is intended to be used as a positioning guide or to supplement or substitute for pavement markings.1

Raised pavement markers are highly effective when used in addition to pavement markings. As shown in Figure 9-14, raised pavement markers provide excellent night visibility. Raised pavement markers can be used to:

♦ show roadway alignment,
♦ replace pavement markings, or
♦ supplement other pavement markings.9

Color

The color of RPMs is to conform to the color of the markings for which they serve as a positioning guide, or for which they supplement or substitute, under both daylight and nighttime conditions. White, yellow, red, and blue RPMs are currently in use. White and yellow RPMs have the same meaning as pavement markings of the same color. Red retroreflective RPMs convey the message “wrong way.” Blue retroreflective RPMs are used by towns and cities to indicate the location of a nearby fire hydrant.

Retroreflectivity or Illumination

Retroreflective RPMs consist of one or more retroreflective lenses and a base. The lens may be made of cube-cornered acrylic, tempered glass, or glass beads. Bases are made of plastic, ceramic, or metal. The lenses and bases are available in yellow, white, red, or a combination of two colors.3

Retroreflective and internally illuminated raised pavement markers are available in monodirectional and bi-directional configurations. The bi-directional marker is capable of displaying the applicable color for each direction of travel. Nonretroreflective raised pavement markers should not be used alone (without supplemental retroreflective or internally illuminated markers) or as a substitute for other types of pavement markings.
Directional configurations should be used to:

- maximize correct information,
- minimize confusing information provided to the road user, and
- avoid confusion resulting from visibility of markers that do not apply to the road user.

Retroreflective RPMs provide excellent visibility at night and in the rain, and they also provide motorists with an auditory warning. Snowplowable versions can be used in cold weather climates. Nonreflective RPMs are typically used along with other types of marking material to provide additional guidance.³

Figure 9-14. Nighttime Visibility with Raised Pavement Markers.⁹

Spacing

The spacing of RPMs used to supplement or substitute for other types of longitudinal markings should correspond with the pattern of broken lines for which the markers supplement or substitute.
Sections on Raised Pavement Markers as Vehicle Positioning Guides with Other Longitudinal Markings (Section 3B.12), Raised Pavement Markers Supplementing Other Markings (Section 3B.13), and Raised Pavement Markers Substituting for Pavement Markings (Section 3B.14) are included in the *TMUTCD*.

Application

Guidelines for materials and applications are included in the *Roadway Delineation Practices Handbook*.

Advantages and Disadvantages

RPMs have the following advantages over standard painted markings:

- Retroreflective RPMs provide increased retroreflectivity under wet weather conditions.
- The vehicle vibration and audible tone produced by vehicles crossing over the RPMs creates a secondary warning.
- The capability of providing directional control of retroreflected color permits their use in conveying a wrong way message.
- Nonretroreflective RPMs can be used as transverse rumble strips.

Disadvantages of RPMs are:

- Their initial cost is high, which tends to limit application only to roadways where additional delineation is needed and where the surface will not soon be subject to major repair, replacement, or excavation.
- RPMs are also vulnerable to snowplows, although snowplow markers have been developed.
Section 6

References

Chapter 10

Signs

Contents:

Section 1 — General... 10-3
Section 2 — Street Name Signs.. 10-3
Section 3 — Pedestrian Signs... 10-3
Section 4 — Regulatory Signs for Intersections... 10-3
Section 5 — Warning Signs for Intersections ... 10-3
Section 6 — Guide Signs for Intersections... 10-3
Section 7 — References.. 10-3
Section 1

General

Overview

The *TMUTCD* sets certain design features according to the functional category of signs:

- Regulatory signs inform the road user of a law, regulation, or legal requirement.
- Warning signs alert the road user of a condition that may be hazardous on or adjacent to the roadway.
- Guide signs provide directional or navigational information to the road user.
- Information signs provide the road user with information about facilities, services, businesses, and attractions on or near the roadway.

Properties of a sign’s design include its shape, size, color, symbol, or message. Adherence to these principles as described in the *TMUTCD* will provide the road user with consistency in reading and understanding traffic signs. Sign placement and position are described in detail in Part 2 of the *TMUTCD*. Additional information regarding signs and sign installation is included in the *Traffic Control Devices Handbook*. The TxDOT Sign Crew Field Book also provides information on sign placement; however, it is for rural conditions.

Signs should be used only where justified by engineering judgment or studies. Roadway geometric design and sign application should be coordinated so that signing can be effectively placed to give the road user necessary regulatory warning, guidance, and other information.

Placement of Signs in Urban Areas

The road user in urban areas is faced with numerous traffic control devices, ranging from a variety of speed limits and parking controls to turning prohibitions. As a result, there is a delicate balance with providing the road user with sufficient information but not overwhelming the user with too much information. The need to provide information in a timely manner is critical since the road user may have to negotiate heavy traffic volumes and may not be able to change lanes or decide quickly on when and where to make turns. Additional concerns in urban areas include:

- Traffic control devices must compete with advertising signs for the attention of the road user.
- The placement of traffic control becomes a challenge because of narrow rights of way.
- The presence of sidewalks adjacent to the curb makes sign and signal placement difficult.
- The vertical clearance to the bottom of signs becomes a critical concern: the required 7 ft [2.1 m] minimum above the surface on which the sign is mounted is necessary to provide visibility above parked vehicles and for pedestrians. However, vans or similar vehicles may still block the visibility of the devices.
Devices must be installed sufficiently far from the curb to prevent the devices from being damaged or from damaging vehicles.

The spacing of signs is a concern due to the amount of information being conveyed to the urban road user. A common problem is the placement of a sign near an intersection as it may block the approach visibility to a Stop sign.

Overhead sign installations should be considered because of the complexity of problems as noted above. However, overhead signs may cause some concerns about clutter and negative aesthetic impacts.²

Signs should be located so that they do not protrude into the pedestrian area (Figure 10-1).

Signs need to be placed so that they are not obstructed by signal poles, illumination poles, or other signs.

The curb and sidewalk adjacent to disabled parking spaces should be kept free of signs or other obstacles to allow room for lift deployment from a vehicle.

![Figure 10-1. Sidewalk Free of Protruding Objects.](image)

Dimensions

The standard sign dimensions in the *TMUTCD¹* and in the *Standard Highway Sign Designs for Texas⁶* book are to be used unless engineering judgment determines that other sizes are appropriate. Where engineering judgment determines that sizes smaller than the standard dimensions are appropriate for use, the sign dimensions are to not be less than the minimum dimensions specified in the *TMUTCD¹* and in the *Standard Highway Sign Designs for Texas⁶* book. Where engineering judgment determines that sizes larger than the standard dimensions are appropriate for use, standard shapes and colors are to be used and standard proportions are to be retained as much as practical.
Increases above standard sizes should be used where greater legibility or emphasis is needed. Wherever practical, the overall sign dimensions should be increased in 6 inch [152 mm] increments.

Symbols

In recent years, the use of symbols has become popular for certain types of signs, particularly warning signs. Figure 10-2 shows examples of symbol signs. The major advantages to symbols are greater overall readability, increased glance readability, and the ability to transcend language barriers. The effective use of symbols is preferable over word message signs in most situations. Two basic types of symbols are used:

♦ lines and arrows and
♦ pictographs.

![Figure 10-2. Symbol Sign Examples.](Image)

The TMUTCD specifies that only the symbols shown in that document, or their mirror image, can be used for traffic signs. When considering devices not included in the TMUTCD, a request for experimentation is to be submitted and approved before installation of the device.

Word Messages

All word messages are to use standard wording and letters as shown in the TMUTCD, the Standard Highway Sign Designs for Texas book, and the Standard Alphabets for Highway Signs and Pavement Markings except as noted in section 2A.06 in the TMUTCD. Guidance for word messages includes:

♦ Word messages should be as brief as possible.
♦ Lettering should be large enough to provide the necessary legibility distance. A specific ratio, such as 1 inch [25 mm] of letter height per 40 ft [12 m] of legibility distance, should be used.
♦ Abbreviations (see Section 1A.14 of the TMUTCD) should be kept to a minimum and should include only those that are commonly recognized and understood, such as AVE (for Avenue), BLVD (for Boulevard), N (for North), or JCT (for Junction).
♦ All sign lettering is to be in capital letters as provided in the Standard Alphabets for Highway Signs and Pavement Markings Reference Guide, except for word messages on street name signs and destinations on guide signs which may be composed of a combination of lowercase letters with initial uppercase letters.
Section 2
Street Name Signs

Overview

Street name signs should be installed in urban areas at all street intersections regardless of other route signs that may be present and should be installed in rural areas to identify important roads that are not otherwise signed.

Street name signs provide critical guidance information to the motorists. Generally, through-traffic road users utilize route markings for guidance until they are required to leave the route to reach their destination. At that point street name signs become critical. Proper placement of street name signs along with the inclusion of block numbers also assists with wayfinding and timely response by police, fire, and emergency medical services.

Advance Street Name Signs

As a supplement to the street signs, advance street name signs provide information to the road user in time to safely position the vehicle in the proper lane to make a turn. Advance street name signs should use white letters on a green background and show the name of the upcoming street, the distance to the street, or a message such as NEXT SIGNAL or NEXT INTERSECTION. Figure 10-3 is an example of an advance street name sign. The Traffic Control Devices Handbook recommends the use of advance street signs at:

◆ signalized intersections where spacing allows,
◆ other major highways and arterial streets, and
◆ where there are exclusive turn lanes.

Figure 10-3. Example of an Advance Street Name Sign.
Lettering for Street Name Signs

The *TMUTCD* provides the following guidance for lettering:1

- Lettering on street name signs should be at least 6 inches [152 mm] in height in capital letters, or 6 inch [152 mm] uppercase letters with 4.5 inch [114 mm] lowercase letters. Larger letter heights should be used for street name signs mounted overhead.
- For local roads with speed limits of 25 mph [40 km/h] or less, the lettering height may be a minimum of 4 inches [102 mm].
- Supplementary lettering to indicate the type of street (such as Street, Avenue, or Road) or the section of a city (such as NW) may be in smaller lettering, at least 3 inches [76 mm] high. Conventional abbreviations (see Section 1A.14 of the *TMUTCD*) may be used except for the street name itself.
- A symbol or letter designation may be used to identify the governmental jurisdiction.
- If a symbol or letter designation is used, the width of the symbol or letter designation is not to exceed the letter height of the sign.
- The symbol or letter designation should be positioned to the left of the street name.

Color, Retroreflectivity, and Illumination for Street Name Signs

Guidance for color and retroreflectivity includes:1

- The street name sign is to be retroreflective or illuminated to show the same shape and similar color both day and night. The legend and background are to be of contrasting colors.
- Street name signs should have a white legend on a green background. A border, if used, should be the same color as the legend.
- Street name signs may also be internally illuminated to provide additional visibility.

Placement of Street Name Signs

Guidance for placement includes:1

- In business districts and on principal arterials, street name signs should be placed at least on diagonally opposite corners so that they will be on the far right side of the intersection for traffic on the major street.
- In residential areas, at least one street name sign per street should be mounted at each intersection. They should be mounted with their faces parallel to the streets they name.
- When combined with a warning sign, the color of the supplemental street name sign should be a black message and border on a yellow background.
- Street name signs may be installed at both midblock and intersection locations.
- To optimize visibility, street name signs may be mounted overhead (see examples in Figure 10-4 and Figure 10-5). On intersection approaches, a supplemental street name
sign (see Section 2C.45 of the TMUTCD) may be installed separately or below an intersection-related warning sign.

Street name signs may also be placed above a regulatory or Stop sign with no required vertical separation (see Figure 10-6).

Figure 10-4. Overhead Street Name Sign on Mast Arm Post.

Figure 10-5. Example of Overhead Street Name Sign.
Additional Recommendations for Older Drivers

The following recommendations on street name signs are included in the *Highway Design Handbook for Older Drivers and Pedestrians*:

- To accommodate the reduction in visual acuity associated with increasing age, a minimum letter height of 6 inches [152 mm] is recommended for use on post mounted street name signs (D3).
- The use of overhead-mounted street name signs with minimum letter heights of 8 inches [203 mm] is recommended at major intersections.
- Wherever an advance intersection warning sign is erected (e.g., W2-1, W2-2, W2-3, W2-4), it is recommended that a supplemental street name sign accompany it.
- The use of redundant street-name signing for major intersections is recommended, with an advance street name sign placed upstream of the intersection at a midblock location, and an overhead-mounted street name sign posted at the intersection. Wherever practical, the midblock sign should be mounted overhead.
- When different street names are used for different directions of travel on a crossroad, the *Highway Design Handbook for Older Drivers and Pedestrians* states names should be separated and accompanied by directional arrows on both midblock and intersection street name signs, as shown in Figure 10-7.
Figure 10-7. Signing for Different Street Names for Different Directions of Travel, Two Examples.
Section 3
Pedestrian Signs

Overview

Pedestrian signing is used in an attempt to reduce the potential for vehicle-pedestrian conflicts and to facilitate enforcement. A variety of signs are used to give direction to pedestrians and to provide information to drivers about pedestrians.

Sign Colors

Colors for pedestrian signs include the following:

♦ Pedestrian regulatory signs are white with black wording with red added for additional emphasis.
♦ Pedestrian warning signs are yellow or fluorescent yellow-green.
♦ Fluorescent yellow-green signing has been reserved as an option for pedestrian, bicycle, and school crossings to give them greater emphasis. TxDOT has chosen to further reserve the color for only school zones in order to give the most emphasis to areas where young children cross.

Comprehension of Pedestrian Laws and Traffic Control Devices

A questionnaire survey of over 4700 people for the American Automobile Association indicated that pedestrian laws and traffic control devices are poorly understood. For example, 83 percent of the drivers did not know the difference between an advance pedestrian crossing and a pedestrian crossing symbol sign. The study also found that pedestrians did not know many of the basic rules of the road: only 64 percent of drivers knew that they should walk on the left side of the road, facing traffic, when there are no sidewalks.

Pedestrian Crossing Signs (Warning Signs)

Crossing signs may be used to alert road users to locations where unexpected entries into the roadway might occur. The TMUTCD includes the following comments on crossing signs:

♦ Crossing signs are used adjacent to the crossing location.
♦ If the crossing location is not delineated by crosswalk pavement markings, the Crossing signs are to be supplemented with a diagonal downward pointing arrow plaque (W16-7P) showing the location of the crossing. If the crossing location is delineated by crosswalk pavement markings, the diagonal downward pointing arrow plaque is not required. (See Figure 10-8.)
♦ Crossing signs may be supplemented with supplemental plaques with the legend AHEAD, XX FEET [XX METERS], or NEXT XX MILES [NEXT XX KILOMETERS] to provide advance notice of crossing activity to road users.
♦ When a fluorescent yellow-green background is used, a systematic approach featuring one background color within a zone or area should be used. Mixing of standard yellow and fluorescent yellow-green backgrounds within a selected site area should be avoided.

♦ Crossing signs should be used only at locations where the crossing activity is unexpected or at locations not readily apparent.

![Crossing signs example](Figure 10-8. Example of Crossing Signs (W11-2) with Supplemental Plaques (W16-7P).)

Additional Recommendations for Older Drivers

The *Highway Design Handbook for Older Drivers and Pedestrians* makes the following recommendations regarding pedestrian signage at signalized intersections:

♦ To accommodate the shorter stride and slower gait of older pedestrians and their exaggerated “start-up” time before leaving the curb, pedestrian control signal timing based on a lower assumed walking speed is recommended. Information on walking speed is discussed in Chapter 2, Section 2.

♦ It is recommended that a placard explaining pedestrian control signal operations and presenting a warning to watch for turning vehicles be posted at the near corner of all intersections with a pedestrian crosswalk, using the design shown in Figure 10-9.

♦ It is recommended that at intersections where pedestrians cross in two stages using a median refuge island, the placard depicted in Figure 10-9a be placed on the median refuge island and that a placard modified as shown in Figure 10-9b be placed on the near corner of the crosswalk.
Chapter 10 — Signs
Section 3 — Pedestrian Signs

Figure 10-9. Placards Explaining Signal Operations.

a. Placard Sign for Intersections
b. Modified Placard for Use With Median Refuge Islands.
Section 4
Regulatory Signs for Intersections

Overview

Regulatory signs inform users of traffic laws, regulations, or restrictions applicable to a given roadway location, over a length of roadway, during specific time periods, or under specific circumstances. Some of the regulatory signs in the TMUTCD¹ do not actually describe a law, regulation, or restriction but describe controls related to the operation of a facility.³

The TMUTCD states that regulatory signs are to:
♦ be installed at or near where the regulations apply;
♦ clearly indicate the requirements imposed by the regulations;
♦ be designed and installed to provide adequate visibility and legibility in order to obtain compliance; and
♦ be retroreflective or illuminated to show the same shape and similar color by both day and night (unless otherwise specifically stated in the TMUTCD¹), when the illumination requirement is not satisfied by street, highway, or strobe lighting.

The TMUTCD also specifies the shapes, colors, and sizes for regulatory signs in the following sections:
♦ Design of Regulatory Signs (Section 2B.02) and
♦ Size of Regulatory Signs (Section 2B.03).

Regulatory signs should be used conservatively; if used to excess, the signs tend to lose their effectiveness.

Types of Regulatory Signs

Regulatory signs can be classified into several different types and categories according to the purpose of the sign. Regulatory signs related to intersections are discussed briefly in the following sections.

Stop Sign Applications

A Stop sign (R1-1) is used to indicate that traffic is always required to stop. At intersections where all approaches are controlled by Stop signs, a supplemental plaque (R1-3 or R1-4) is to be mounted below each Stop sign. The TMUTCD¹ (Section 2B.04) provides the description and size for Stop signs and supplemental plaques, and the design and application of stop beacons are described in Section 4K.05.
Stop signs should not be used unless engineering judgment indicates that one or more of the following conditions exist:

♦ at the intersection of a less important road with a main road where application of the normal right-of-way rule would not be expected to provide reasonably safe operation;
♦ at a street entering through a highway or street;
♦ at an unsignalized intersection in a signalized area; and/or
♦ where high speeds, restricted view, or crash records indicate a need for control by the Stop sign.

Additional information regarding Stop signs is included in Sections 2B.04, 2B.05, and 2B.06 of the *TMUTCD*. Figure 10-10 illustrates some typical placements of Stop signs.

Multiway Stop Applications

Multiway stop control can be useful as a safety measure at intersections if certain traffic conditions exist, including approximately equal approach volumes or restricted sight distance. Multiway stops require all entering traffic to stop regardless of the situation. Stopping all vehicles obviously has an adverse impact on fuel consumption and efficiency. Additionally, excessive use of multiway stops can also lead to poor compliance.

Information on the use of multiway stops is included in Section 2B.07 of the *TMUTCD*.

Yield Sign Applications

The Yield sign assigns right of way at intersections where it may not be necessary to stop before proceeding into the intersection. Vehicles controlled by a Yield sign need to slow down or stop when necessary to avoid interference with conflicting traffic. Yield signs work well at T-intersections and ramp locations. However, their use at four-legged neighborhood intersections is diminishing.

The *TMUTCD* contains new yield line markings, which are distinguishably different from stop lines (see Chapter 9, Section 3). The *TMUTCD* provides additional information on Yield signs and yield lines in Sections 2B.08, 2B.09, 2B.10, and 3B.16.
Figure 10-10. Typical Locations for Stop Signs at Intersections.¹
Turn Prohibition Signs (R3-1 through R3-4)

Turn prohibition signs are installed where turns are prohibited except as noted below. Further guidelines include:

♦ Turn prohibition signs (see example in Figure 10-11) should be placed where they will be most easily seen by road users who might be intending to turn.

♦ If No Right Turn signs (R3-1) are used, at least one should be placed either over the roadway or at a right corner of the intersection.

♦ If No Left Turn signs (R3-2) are used, at least one should be placed either over the roadway, at a left corner of the intersection, on a median, or in conjunction with the Stop sign or Yield sign located on the near right corner.

♦ If No Turns (R3-3) signs are used, two signs should be used, one at a location specified for a No Right Turn sign and one at a location specified for a No Left Turn sign.

♦ If No U-Turn signs (R3-4) are used, at least one should be used at a location specified for No Left Turn signs.

♦ If advance signing is used, care must be taken so that no alley or public driveway exists between them and the intersection where the turning movement is prohibited.

However, if signals are present:

♦ The No Right Turn sign may be installed adjacent to a signal face viewed by road users in the right lane.

♦ The No Left Turn (or No U-Turn) sign may be installed adjacent to a signal face viewed by road users in the left lane.

♦ A No Turns sign may be placed adjacent to a signal face viewed by all road users on that approach, or two signs may be used.

![Image](image-url)

Figure 10-11. Turn Prohibition Example from TMUTCD.¹

Intersection Lane Control Signs (R3-5 through R3-8)

If used, intersection lane control signs:

♦ require road users in certain lanes to turn (see Figure 10-12),

♦ permit turns from a lane where such turns would otherwise not be permitted,
require a road user to stay in the same lane and proceed straight through an intersection, or

indicate permitted movements from a lane.

Intersection lane control signs have three applications:

- Mandatory Movement Lane Control signs (R3-5, R3-5a, and R3-7),
- Optional Movement Lane Control signs (R3-6), and
- Advance Intersection Lane Control signs (R3-8 series).

When used, intersection lane control signs should be:

- mounted overhead (with an option for ground mounting if the number of through lanes on an approach is two or less),
- placed over a projection of the lane to which it applies, and/or
- placed in advance of expected queues to allow time to move into the correct lane.

Use of an overhead sign for one approach lane does not require installation of overhead signs for the other lanes of that approach.

Intersection lane control signs may be omitted where:

- turning bays have been provided by physical construction or pavement markings, and
- only the road users using such turn bays are permitted to make a similar turn.

More specific information on Mandatory Movement Lane Control signs (R3-5, R3-5a, and R3-7), Optional Movement Lane Control signs (R3-6), and Advance Intersection Lane Control signs (R3-8 series) is provided in Sections 2B.18, 2B.19, 2B.20, and 2D.21 of the TMUTCD.

Application 10-1 includes an example of the lane control signs that could be used for dual left-turn lanes.

Figure 10-12. Intersection Lane Control Sign Example from the TMUTCD.
One Way Signs

One Way signs are primarily intended to inform unfamiliar drivers of the one-way direction of the traffic on the intersecting roadway but also to remind familiar drivers. They are generally placed near right and far left of the roadway. The TMUTCD contains information on their placement.

Do Not Enter and Wrong Way Signs

The Do Not Enter sign is intended to prohibit traffic from entering a restricted roadway. It is commonly used on ramps to controlled access facilities and one-way roadways. The Wrong Way sign is intended to supplement Do Not Enter signs. It should be used where there is no physical discouragement to prevent the wrong way travel. Such conditions include crossroads of divided highways and exit ramps that have intersecting crossroads.

Do Not Enter signs are typically placed back-to-back with Stop and Yield signs when limited right-of-way conditions exist (see Figure 10-13). The Do Not Enter signs should be placed so that they do not obscure the shape of the Stop or Yield sign as in the example shown in Figure 10-13. Otherwise, the driver on the cross street may not realize whether the approach is stop controlled. Figure 10-14 is an example location where the Stop sign is obscured by the Do Not Enter Sign.

![Figure 10-13. Back-to-Back Mounting of Do Not Enter Signs on Stop and Yield Signs.](image-url)
Divided Highway Crossing Signs

The Divided Highway Crossing sign may be used to advise roadway users that they are approaching an intersection with a divided highway. Additional guidance includes:¹

- When used at a four-legged intersection, the R6-3 sign is used.
- When used at a T-intersection, the R6-3a sign is used.
- The Divided Highway Crossing sign may be located on the near right corner of the intersection and may be mounted beneath a Stop or Yield sign or on a separate support.

Parking, Standing, and Stopping Signs (R7 and R8 Series)

Signs governing the parking, stopping, and standing of vehicles cover a wide variety of regulations. Typical examples of parking, stopping, and standing signs are shown in Figure 10-15, and additional guidance is provided in Sections 2B.35 through 2B.37 of the TMUTCD.¹
Preferential Lane Signs

Preferential lanes in urban areas are lanes designated for special traffic uses such as light rail, buses, taxis, or bicycles. Preferential lane treatments might be as simple as restricting a turning lane to a certain class of vehicle during peak periods or as sophisticated as providing a separate roadway system within a highway corridor for certain vehicles. Guidance for preferential lanes follows:

♦ Preferential lane assignments may be made on a full-time or part-time basis.
♦ Preferential lane sign spacing should be determined by engineering judgment based on prevailing speed, block length, distances from adjacent intersections, and other considerations.
♦ The symbol and word message that appear on a particular Preferential Lane sign will vary based on the specific type of allowed traffic and on other related operational constraints that have been established for a particular lane.
♦ At the end of a preferential lane, a Lane Ends sign (R3-12a, R3-15a, or R3-16a) is used.

The R3-11b (ground mounted) or R3-14a (overhead) word message signs should be used in situations where a preferential lane is designated exclusively for bus and/or taxi use. The R3-11b sign should be located adjacent to the preferential lane, and the R3-14a sign should be mounted directly over the lane.

Additional Recommendations for Older Drivers

The Highway Design Handbook for Older Drivers and Pedestrians\(^8\) (referred to as the Older Driver Handbook) includes several recommendations regarding signing for older drivers. Following are recommendations related to signing at intersections.

Traffic Control for Left-Turn Movements at Signalized Intersections. The Older Driver Handbook recommends:

♦ The use of redundant upstream signing (R10-12) is recommended to advise left-turning drivers of permitted signal operation.
♦ It is also recommended that the signing afford at least a 3 second preview (at operating speeds in the left-turn lane) before the intersection, using either overhead or median sign placement.

Traffic Control for Right-Turn/RTOR Movements at Signalized Intersections. The Older Driver Handbook recommends:

♦ The signing of prohibited RTOR movements is recommended, with sign placement on the overhead mast arm and on the opposite corner of the intersection. Figure 10-16 shows appropriate signs in the TMUTCD.

♦ Where RTOR is permitted and a pedestrian crosswalk is marked on the intersecting roadway, the word message TURNING TRAFFIC MUST YIELD TO PEDESTRIANS should be used per section 2B.40 of the TMUTCD. An overhead or roadside location that is easily visible to the motorist prior to initiating the turning maneuver should be considered.

![Figure 10-16. Signing for Prohibited Right Turn on Red (TMUTCD).](image)

One-Way/Wrong-Way Signage. The TMUTCD includes typical signing arrangements for one-way signing for divided highways (less than and greater than 30 ft [9.1 m] medians and at intersections) in Section 2A.16 <link>. The Older Driver Handbook recommends:

♦ Approaches to divided highways should be consistently signed. Use of the Divided Highway Crossing sign (R6-3) is the recommended current practice, but this sign may be replaced or supplemented with new treatments when they are demonstrated through research to provide improved comprehensibility to motorists.

♦ For divided highways with medians of 30 ft [9.1 m] and under, use four One Way signs (the TMUTCD shows typical locations in Figure 2A-3).

♦ For medians over 30 ft [9.1 m], use eight One Way signs (the TMUTCD shows typical locations in Figure 2A-4).

♦ For T-intersections, use a near-right side One Way sign and a far-side One Way sign. The preferred placement for the far-side sign is opposite the extended centerline of the approach leg as shown in TMUTCD Figure 2A-6. Where the preferred far-side location is not feasible because of blockage, distracting far-side land use, or an excessively wide approach leg, etc., engineering judgment should be applied to select the most conspicuous alternate location for a driver who has not yet initiated the wrong-way turning maneuver.
♦ For intersections of a one-way street with a two-way street, place One Way signs at the near-right/far-left locations, regardless of whether there is left-to-right or right-to-left traffic.

♦ As a general practice, use Do Not Enter and Wrong Way signs at locations where the median width is 20 ft [6 m] and greater; consideration should also be given to the use of these signs for median widths narrower than 20 ft [6 m], where engineering judgment indicates a special need.

Stop- and Yield-Controlled Intersection Signage. System-wide recommendations to improve the safe use of intersections by older drivers, where the need for stop control or yield control has already been determined, include the following:

♦ Use standard size 30 inch [762 mm] Stop (R1-1) and standard size 36 inch [914 mm] Yield (R1-2) signs, as a minimum.

♦ For Stop (R1-1) and Yield (R1-2) signs, use a minimum in-service sign background (red area) retroreflectivity level of 12 cd/m²/lux for roads with operating speeds under 40 mph [64 km/h], and 24 cd/m²/lux for roads with operating speeds of 40 mph [64 km/h] or higher.

♦ Use a supplemental warning sign panel mounted below the Stop (R1-1) sign, as illustrated in Figure 10-17, for two-way stop-controlled intersections selected on the basis of accident experience; where the sight triangle is restricted; or wherever a conversion from four-way stop to two-way stop operations is implemented. (Note: The *TMUTCD*¹ considers this application of the Cross Traffic Does Not Stop sign to be a regulatory use.)

![Cross Traffic Does Not Stop](image)

Figure 10-17. Supplemental Panel to Mount below Stop Sign.

♦ Use a Stop Ahead sign (W3-1a) where the distance at which the Stop sign is visible is less than the AASHTO stopping sight distance (SSD) at the operating speed, plus an added preview distance of at least 2.5 seconds. (Stopping sight distance dimensions are available in the TxDOT *Roadway Design Manual*¹⁰.) Consideration should also be given to the use of transverse pavement striping or rumble strips upstream of stop-controlled intersections where engineering judgment indicates a special need due to sight restrictions, high approach speeds, or other geometric or operational characteristics likely to violate driver expectancy.

Devices for Lane Assignment on Intersection Approach. The *Older Driver Handbook* recommends:

♦ The consistent placement of lane-use control signs (R3-5, R3-6) overhead on the signal mast arm at intersections as a supplement to pavement markings and shoulder- and/or median-mounted signage. (See Figure 10-18.)

♦ The consistent posting of lane-use control signs plus application of lane-use arrow pavement markings at a preview distance of at least 5 seconds (at operating speed) in
advance of a signalized intersection, regardless of the specific lighting, channelization, or delineation treatments implemented at the intersection. Signs should be mounted overhead wherever practical, but they may be shoulder- and/or median-mounted in other cases.

Figure 10-18. Placement of Overhead Lane-Use Control Signs.
Section 5

Warning Signs for Intersections

Overview

Warning signs are intended to improve the overall safety of the roadway environment by providing the driver with a warning of conditions that might not be apparent or expected. Such conditions, known as potential hazards, do not indicate a defective condition or unsafe situation; they are merely used to describe a condition that may be unfamiliar or unknown to the driver and may present the potential for injury or damage if the proper response is not performed.3

Guidelines for the design and use of warning signs are contained in Chapter 2C of the 2003 Edition of the *TMUTCD*.1 The new version includes many changes in the chapter on warning signs, and one of the most significant changes is a more thorough treatment of supplemental plaques. Another significant change is the introduction of signs with metric measurements.

The *TMUTCD* states that the use of warning signs is to be based on an engineering study or on engineering judgment. Additionally, the use of warning signs should be kept to a minimum as the unnecessary use of warning signs tends to breed disrespect for all signs.1 Warning signs should be removed or covered for seasonal or temporary activities at times when the activities do not exist.1

Signs related to intersections are discussed in the following sections. Part 2 of the *TMUTCD* provides additional information on warning signs along with guidelines for their installation.

Intersection Control Warning Signs

Intersection control devices are commonly used to provide orderly assignment of right of way at intersections. The four types of intersection control are: Yield signs, Stop signs, intersection control beacons, and traffic control signals. In some cases, these control devices may not be visible far enough in advance to allow a vehicle to take the appropriate action at the intersection. Most of the advance traffic control signs are intended to improve this situation by providing the driver with advance warning so that the vehicle can be stopped before entering the intersection (if a stop is necessary). The signs used to warn of the type of intersection control include:

- Stop Ahead (W3-3 or W3-1a),
- Yield Ahead (W3-2 or W3-2a),
- Signal Ahead (W3-3 or W3-3a),
- Be Prepared To Stop (W4-3), and
- Cross Street Traffic Does Not Stop (W4-4).
The Cross Traffic Does Not Stop sign is intended to provide drivers with an indication of the difference between two-way and multiway stop-controlled intersections. It is a new sign in the 2003 *TMUTCD*, and it can be used as a regulatory or a warning sign. As a warning sign, it can be used below a Stop Ahead sign in advance of a stop-controlled intersection (either a two-way stop controlled or a T-intersection) to warn drivers that intersecting traffic will not stop. When used in this manner, the plaque should be black on yellow. The sign may also be used below the Stop sign as a regulatory sign in which case it would be black on white.\(^1\)

The *TMUTCD* requires the use of intersection control warning signs when the control devices (Stop signs, Yield signs, or signals) are not visible for a sufficient distance to permit the road user to respond to the device. The visibility obstructions may be permanent or intermittent (such as foliage). If intermittent, engineering judgment should be used to determine if an advance warning sign is needed. The *TMUTCD* also allows these warning signs to be used to provide additional advance emphasis of the primary traffic control device, even if visibility is adequate.

Merge, Added Lane, Lane Ends Signs

A Merge sign (W4-1) may be used to warn road users on the major roadway that merging movement might be encountered in advance of a point where lanes from two separate roadways converge as a single traffic lane and no turning conflict occurs.

The Added Lane sign (W4-3) should be installed in advance of a point where two roadways converge and merging movements are not required. When possible, the Added Lane sign (W4-3) should be placed such that it is visible from both roadways; if this is not possible, an Added Lane sign should be placed on the side of each roadway.

The Lane Ends Merge Left (Right) sign (W9-2) should be used to warn of the reduction in the number of traffic lanes in the direction of travel on a multilane highway.

Intersection Warning Signs

A Cross Road (W2-1), Side Road (W2-2 or W2-3), T-Symbol (W2-4), or Y-Symbol (W2-5) sign may be used on a roadway, street, or shared-use path in advance of an intersection to indicate the presence of an intersection and the possibility of turning or entering traffic. The Circular Intersection sign (W2-6) accompanied by an educational word message plaque may be installed in advance of a circular intersection.

Crossing Signs

Entry or Crossing signs are used to provide advance notice of an entry or cross or to indicate the location of a crossing. Warning signs for pedestrian crossings are discussed in Section 3 of this chapter. A Fire Station warning sign (W11-8) may be necessary where a fire station is located in close proximity to an intersection. Section 2C.37 of the *TMUTCD*\(^1\) provides additional information.
Section 6
Guide Signs for Intersections

Overview

Guide signs are essential to:

♦ Direct road users along streets and highways.
♦ Inform road users of intersecting routes.
♦ Direct road users to cities, towns, villages, or other important destinations.
♦ Identify nearby rivers and streams, parks, forests, and historical sites.
♦ Give road users information that will help them in the most simple, direct manner possible.

The major emphasis of conventional guide signing is on highway class, number, and cardinal direction. This information is provided at the intersection where the maneuver is performed. Destination information (for cities) is provided in advance of the intersection and is not repeated at the intersection. However, drivers have become accustomed to using destination information to navigate on freeways and have carried that preference onto conventional highways. Therefore, while the emphasis of conventional guide signing remains on class, number, and direction, destination information is a critical element of the signing system and must be given equal consideration.4

Types of Guide Signs

The TMUTCD1 provides detailed information on the following guide signs in Part 2, Chapter 2D:

♦ Route Sign Assembly,
♦ Junction Assembly,
♦ Advance Route Turn Assembly,
♦ Directional Assembly,
♦ Confirming or Reassurance Assemblies,
♦ Trailblazer Assembly,
♦ Destination and Distance,
♦ Street Name (discussed in Chapter 10, Section 2 <link>), and
♦ Traffic Signal Speed signs.
Section 7
References

Chapter 11
Influences from Other Intersections

Contents:
Section 1 — Influences from Other Intersections .. 11-3
Section 2 — Highway Railroad Grade Crossing .. 11-3
Section 3 — Driveways .. 11-3
Section 4 — Midblock Median Treatment .. 11-3
Section 5 — Signal Interconnection .. 11-3
Section 6 — References ... 11-3
Section 1
Influences from Other Intersections

Overview

The presence of nearby intersections can influence intersection design and traffic operations significantly. Queuing, crossing movements, and signal coordination may all be adversely impacted, depending primarily on the traffic control present and distance separating the intersections.

Queuing

Intersections that are closely spaced and have significant queuing can easily exceed the amount of available storage space. As shown in the text of the TxDOT Roadway Design Manual Chapter 3, Section 2, Speed Change Lane and Sections 4-2 and 4-3 of these guidelines, the required length of a turn lane consists of a taper, deceleration length, and storage length. These lengths are found in Table 3-3 of the TxDOT Roadway Design Manual.

If left- or right-turn lanes are provided, spacing between intersections may reduce the effectiveness of those turn lanes by requiring a reduced length that may not accommodate the queues. If the queues exceed the available storage space, vehicles may block through lanes or nearby intersections. Consideration may be given to the use of dual left-turn lanes if the left-turn queue exceeds the available space between intersections.

Crossing Movements

It is desirable that opposing intersections are either directly aligned or separated by an adequate distance to require two separate movements in a crossing maneuver, thus eliminating “jog” crossing movements. Intersections that are offset by only a minimal amount encourage undesirable driver behavior when drivers proceed from one street to the other in one maneuver (see Figure 11-1). Minimum separation distances of 200 to 400 ft [61 to 122 m] have been recommended. If those separation distances cannot be attained, realignment should be investigated to see if the crossroads can be aligned. Application 11-1 provides an example of the realignment of a jog intersection to form a single intersection.
Signal Coordination

Motor Vehicles. Signal coordination helps reduce motorist delay by keeping platoons moving through adjacent traffic signals <insert link to Traffic Signals Manual, Chapter 4, Section 2>. The spacing of signalized intersections along a corridor directly affects the possibility of providing signal coordination. If signals are too close or their spacing is not regular, they can eliminate the possibility of providing coordination in both directions along the corridor.

Progression can sometimes be obtained if the intersections are not located at the optimum points. However, reductions in available green time to the crossing roadway may be required (resulting in increased delay at the intersection) or progression may be provided in only one direction. Further information on signal interconnection can be found in Signal Interconnection in this chapter <insert link to 11-5>.

Bicyclists. Traffic signals are timed to accommodate smooth motor vehicle flows at a desired operational speed. In urban areas, this ranges from 15 to 45 mph [24 to 72 km/h]. These speeds are higher than typical bicycling speeds (10 to 20 mph [16 to 32 km/h]). Signal timing can create difficulties for bicyclists who are using their momentum to maintain a constant speed with the existing signal timing. They may be able to maintain their speed through two or three signals and then have to stop, wait, and start over again at the next signal. This can tempt bicyclists to “jump” or to “run” red signal indications. Figure 8-14 illustrates a signalized intersection sensitive to bicycles.

Where bicycle use is high, signal timing can account for the convenience of bicyclists. For example, the traffic signals in downtown Portland, Oregon, are timed for speeds of 12 to 16 mph [19 to 26 km/h], allowing bicyclists to ride with traffic.
Chapter 11 — Influences from Other Intersections

Section 2 — Highway Railroad Grade Crossing

Overview

Intersections near highway railroad grade crossings present a number of challenges to designers. Successful designs require consideration of:

♦ appropriate grades,
♦ clearance between the intersection and the grade crossing,
♦ channelization, and
♦ illumination.

TxDOT and local policies regarding the use of four-quadrant gates and quiet zoning should be reviewed.

Grades

The close proximity of an intersection to a highway railroad grade crossing complicates the process of selecting appropriate grades that may serve both the intersection and the grade crossing. Compromises in grades may have to be made because of conflicts between the intersection and the grade crossing, although the designer should strive to provide the best design possible.

When roadways are widened toward railroad tracks, frequently the effect is to make any grades present more severe (see Figure 11-2). The problem is compounded because railroad track elevations tend to rise over time due to re-ballasting operations.

Figure 11-2. Effect of Widening Roadway and Raising Railroad on Grades.

If a high-profile or “hump” crossing is present, it should be reviewed to determine whether a problem could result from vehicles striking the crossing with their undercarriage. According
to the \textit{Green Book},5 it is desirable that the crossing surface be as level as possible. If low-clearance vehicles are used as a design vehicle and if the vertical alignment cannot practically be made level, the \textit{Green Book} provides a suggested alignment.

\section*{Potential for Vehicles to Strike Railroad Tracks}

If the crossing cannot reasonably be made to meet these guidelines, it should be evaluated further to determine whether a design vehicle can cross without hanging up. Software programs have been developed and are available to simulate the movement of trucks over grade crossings. Users enter roadway profile data and graphically review vehicle movement over the roadway to determine where hang-up problems can occur.

The selection of a specific design vehicle depends upon local conditions, but one design vehicle that has been suggested has:

\begin{itemize}
 \item a wheelbase of 36 ft [11 m],
 \item a clearance of 5 inches [127 mm], and
 \item an overhang of 0 ft [0 m] front and rear.6
\end{itemize}

Typical dimensions for other selected type-specific design vehicles are shown in Table 11-1, although the dimensions may vary somewhat depending on the manufacturer. The \textsc{HANGUP}7 software may be obtained from the Federal Highway Administration.

\begin{table}[h]
\centering
\begin{tabular}{ |c|c|c|c|c|c| }
\hline
Vehicle Type & Length (ft) [m] & Overhang (ft) [m] & Wheelbase (ft) [m] & Clearance (ft) [mm] \\
& & Front & Rear & & \\
\hline
Low-Boy SemitrailerA, B & 48 [14.6] & 0 & 0 & 29 [8.8] & 6 [152.4] \\
\hline
\end{tabular}
\caption{Potential Low-Clearance Design Vehicles.8}
\end{table}

A Based on design vehicle used by TxDOT Pharr District for design of typical railroad crossings.
B Based on specifications for BlackHawk 5000p Series Trailer, Etnyre Trailer Company, Oregon, Il.
C Based on specifications provided by Wilson Trailer Company, Sioux City, Ia.

For existing crossings that have a high potential for problems with low-clearance vehicles, guidelines for low ground clearance in the \textsc{TMUTCD}9 should be followed:

\begin{itemize}
 \item Whenever conditions are sufficiently abrupt to create a hang-up for long wheelbase vehicles or trailers with low ground clearance, the Low Ground Clearance (W10-5) warning symbol sign shall be installed in advance of the crossing (Figure 11-3).
 \item Because the new warning symbol may not be readily recognizable by the public, the \textsc{TMUTCD} states that it shall be accompanied by an educational plaque, LOW GROUND CLEARANCE, which is to remain in place for at least three years after initial installation.
\end{itemize}

The sign should be placed on each approach to the crossing far enough in advance that low-clearance vehicles can turn around before reaching the crossing. The \textsc{TMUTCD} guidelines state that a supplemental message such as “Ahead,” “Next Crossing,” or “Use Next
Chapter 11 — Influences from Other Intersections
Section 2 — Highway Railroad Grade Crossing

Crossing” (with appropriate arrows) should be placed at the nearest intersecting road where a vehicle can detour or at a point on the roadway wide enough to permit a U-turn.

![Figure 11-3. Low Ground Clearance Highway-Rail Grade Crossing Sign (W10-5).](image)

Clearance Distance

The separation distance between a railroad grade crossing and an intersection affects both passive devices (i.e., signs and pavement markings) and active devices (i.e., gates and traffic signals). The need for additional signs warning drivers of their proximity to the railroad grade crossing and for consideration of traffic signal preemption are controlled by the clearance distance between the railroad grade crossing and the intersection.

Although it may appear cheaper or easier to widen a highway toward parallel railroad tracks because of ROW availability, this can result in significant operational problems if inadequate room is available for vehicle storage between the highway and the railroad.

Signs

The *TMUTCD* requires a number of signs and devices for highway railroad grade crossings. Designers should consult Part 8 of the *TMUTCD*, Traffic Controls for Highway-Rail Grade Crossings, to determine the overall signing recommendations for the grade crossing. A review of those elements affected by the presence of a nearby intersection is provided here.

Signing to alert drivers on the parallel roadway to the nearby presence of the grade crossing shall be provided if a separation distance is less than 100 ft [30 m] (see Figure 11-4). The signs should be placed in accordance with standard distance and viewing recommendations in the *TMUTCD*.
Figure 11-4. Alternative Warning Signs for Use on Roadways Parallel to Railroad Tracks.

If traffic signals are preempted by approaching trains (required if train tracks are within 200 ft [61 m] of a signalized intersection), all turning movements toward the tracks should be prohibited during the preemption. Standard traffic signs or active signs can be used (see Figure 11-5) (i.e., changeable message signs, appropriate traffic signal displays, etc.).

Figure 11-5. Turn Prohibition Sign.

If engineering judgment determines a likelihood for vehicles stopping on the tracks, the Do Not Stop On Tracks sign should be used (Figure 11-6). If the design vehicle cannot be stored between the intersection and the railroad tracks, a storage space sign should be used (Figure 11-7).

Figure 11-6. Stop on Tracks Prohibition Sign.
Signal Preemption

Intersections with traffic signals near highway railroad grade crossings with active railroad grade crossing devices (i.e., flashing lights or gates) should be reviewed to determine whether the signals and active devices should be interconnected. Conflicts between the traffic control signals and the highway-rail grade crossing flashing-light signals could result in the entrapment of vehicles on the highway-rail grade crossing.

If less than 200 ft [61 m] separates a traffic signal from an active railroad grade crossing device, interconnections between the devices should be provided to allow signal preemption. Under certain circumstances, traffic queues may develop that are longer than 200 ft [61 m]; in these situations signal preemption may be warranted even though the TMUTCD may not require it. Prediction methods for this circumstance can be found in Design Guidelines for At-Grade Intersections Near Highway-Railroad Grade Crossings. Signal preemption is used to prevent trapping motorists by coordinating the messages provided by the traffic signal and grade crossing devices. The ITE Recommended Practice on signal preemption and the TMUTCD should be consulted to determine an appropriate design for the intersection. The Traffic Operations Division has developed worksheets that may be used to assist signal preemption design.

Channelization

Channelization at highway railroad grade crossings can help to restrict vehicles from leaving their lane and driving around lowered gates, as well as providing a mounting point for traffic control devices. A design developed to facilitate these goals is shown in Figure 11-8.
Illumination

Consideration for illuminating railroad grade crossings should be given when an engineering study determines that:

♦ Better nighttime visibility of the train and the highway-rail grade crossing is needed (for example, where a substantial amount of railroad operation is conducted at night).

♦ Where train speeds are low and highway-rail grade crossings are blocked for long periods.

♦ Crash history indicates that drivers experience difficulty in seeing trains or traffic control devices during hours of darkness.

Recommended lighting design details are contained in the American National Standards Institute’s (ANSI) “Roadway Lighting” available from the Illuminating Engineering Society.
Pedestrians

Railroad track crossings must be defined by detectable warnings when sidewalks cross or adjoin the tracks unless curbs, railings, or other elements separate the pedestrian areas and the train. The detectable warnings should be placed outside the dynamic envelope of the train (the clearance required for the train and its cargo overhang). Further, the TMUTCD requires that a No Train Horn sign (W10-9) shall be installed at each highway-rail grade crossing where there is a Federal Railroad Administration authorization for trains to not sound a horn. The sign should be mounted as a supplemental plaque below the Advance Warning (W10-1) sign. For more information contact the Traffic Operations Division Railroad Coordinator.

Bicyclists

Railroad crossings can be problematic for bicyclists if they are not at right angles to the rails. The greater the crossing deviates from a 90 degree angle to the rails, the greater is the potential for trapping the bicyclist’s front wheel beside the rail. When crossing angles are less than 45 degrees, additional paved shoulder width or path should be provided to allow bicyclists to cross at a safer angle (further information is provided in AASHTO’s Guide for the Development of Bicycle Facilities).

Other Issues

Quiet Zoning. Some communities have enacted “quiet zoning” ordinances that restrict the use of train whistles at highway-railroad grade crossings. According to the Federal Railroad Administration’s proposed rule each crossing in a quiet zone must be equipped with automatic gates and flashing lights that conform to the standards contained in the TMUTCD. Further, the TMUTCD requires that a No Train Horn sign (W10-9) shall be installed at each highway-rail grade crossing where there is a Federal Railroad Administration authorization for trains to not sound a horn. The sign should be mounted as a supplemental plaque below the Advance Warning (W10-1) sign. For more information contact the Traffic Operations Division Railroad Coordinator.

Four-Quadrant Gates. According to Part 8 of the TMUTCD, four-quadrant gate systems may be installed to improve safety at highway-rail grade crossings based on an engineering study when less restrictive measures, such as automatic gates and median islands, are not effective. A four-quadrant gate system consists of automatic gates used as an adjunct to flashing-light signals to control all lanes at the highway-rail grade crossing. For more information consult the TMUTCD or contact the Traffic Operations Division Railroad Coordinator.
Section 3
Driveways

Overview

Driveways provide necessary access to adjacent land and are an integral part of the roadway. Their design and location should be carefully considered for impacts on roadway and intersection safety and operations. Given the large number of potential conflict points present in most intersections (see Figure 11-9), the addition of driveways close to those intersections is frequently undesirable. Functionally, driveways are intersections and may be evaluated as such.

The regulation of driveways through access management principles can benefit:16

♦ safety:
 • as access density increases, crash rates increase;
 • roadways with nontraversable medians are safer at higher speeds and at higher traffic volumes than undivided roadways or those with continuous two-way left-turn lanes;

♦ operations:
 • as access points increase, free flow speeds are reduced;
 • capacity can be reduced;

♦ economics:
 • increased travel times reduce market area for businesses;
 • poor quality of access can adversely affect property values and investment.

TxDOT’s access management policies are contained in the *Access Management Manual*.16 Local agencies that choose to handle access permitting for state highway system roadways within their jurisdiction can either develop or use their own access management guidelines or use the guidelines in TxDOT’s manual.
Conflict Points
- 16 Crossing
- 8 Diverge
- 8 Merge
- 32 Total

Figure 11-9. Intersection Conflict Points.

Adverse Impacts

Driveways that are too close to the operational area of an intersection contribute adversely to its safety and operation. Increases in the number of conflict points can complicate the operation of the intersection such that safety is compromised.

Driveways on side streets that are too close to the primary roadway (see Figure 11-10) function poorly because of the high probability that they will be blocked by vehicles stopping at the intersection. The presence of additional lanes can greatly complicate the problems illustrated in Figure 11-10, as vehicles attempt to weave through multiple lanes of traffic to access driveways.

A number of possible treatments or improvements may be provided to alleviate the impacts of driveways on intersections, including (but not limited to):

- Convert driveways to right in, right out.
- Provide adequate spacing between ramps and downstream intersections.
- Purchase access rights.
- Encourage the use of shared driveways.
- Encourage the use of rear access.
Vehicles turning onto a side street from the primary roadway can experience problems if they encounter vehicles entering the side street from a driveway that is too close to the roadway. Vehicles engaged in the turning movement are more concerned with clearing potential traffic on the primary roadway and in the guidance of the vehicle, limiting available attention for vehicles entering from close driveways.

Access Spacing Criteria

Access points that are too closely spaced can have adverse safety, operational, and economic impacts. The *Access Management Manual* provides minimum connection spacing guidance. These spacing guidelines range from 200 to 510 ft [61 m to 155 m], depending on the type of roadway and the posted speed. TxDOT’s *Access Management Manual* should be reviewed for more information regarding access spacing criteria.
If clearance between driveways cannot be obtained through joint access with a neighboring property, consideration may be given for alternative locations with TxDOT approval. Reduced spacings can be used to keep from land-locking a property, or to replace or re-establish access to on-system roadways under construction or rehabilitation. Conditions such as limiting the traffic volumes using the driveway may be included in the driveway permit.
Section 4
Midblock Median Treatment

Overview

Medians offer opportunities to restrict movements and control access. Although raised or depressed medians are typically installed to restrict crossings, additional crossing points may need to be installed if major intersections are too widely spaced. Designs that provide access for specific movements are available if necessary.

U-Turns

Median openings may be constructed specifically for U-turns. Because U-turns may be more common on roadways with raised medians, this type of treatment may enhance traffic operations at signalized intersections if used judiciously. Uses include:

♦ Prior to intersection: accommodate U-turns to reduce interference with turn- and through-movements.
♦ Downstream of minor crossing points: allow access to minor roadways and driveways through U-turns. Acceptable performance is attained with low traffic volumes only due to the necessary weaving movements.
♦ Gap in area of long, unbroken median: provide access for highway maintenance, emergency vehicles, tow-trucks, etc.

Median designs to accommodate U-turns should equal or exceed the characteristics shown in Exhibit 9-92 of the 2001 AASHTO Green Book.

Left Turns

Median openings designed to permit left turns only may be used at locations where it is desirable to provide limited access. Figure 11-11 illustrates such an installation. The channelization restricts through movements, thereby limiting use of the median opening to left-turning vehicles.
Figure 11-11. Channelized Median Opening to Restrict through Movements.
Section 5

Signal Interconnection

Signal coordination, or interconnection, attempts to accommodate platoons with minimal stops and delays. The movement of platoons of traffic through a signalized area makes more efficient use of the potential capacity of the roadway network. Additionally, traffic demand can be steered from one area to another by the signal system settings. For example, requiring multiple stops or long delays on the major roadway for minor roadway traffic can discourage the use of specific routes in favor of ones which the road users perceive as being easier to travel.17 Also, trip times are generally repeatable along the same route with signal interconnection. The success of interconnection is influenced by the following factors:

♦ signal spacing,
♦ prevailing speed of traffic,
♦ signal timing (cycle length and split),
♦ volume,
♦ platoon dispersion, and
♦ midblock storage or contributions of traffic (such as parking garages).18

Grouping Intersections

The decision of how to group intersections into a system is complex. The objective is to assemble those intersections requiring similar timing strategies in terms of controller cycle lengths and controller offset coordination into groups of reasonable size. A number of factors need to be considered, including:

♦ Geographic relationship: distance between intersections, natural and artificial boundaries such as rivers, and controlled-access facilities.

♦ Traffic/capacity ratio: Larger traffic volumes benefit more from coordination. While saturated flows may exist for periods of each day, the rest of the day may be well served by progression. Coordination should also improve the capacity of the roadway.

♦ Traffic flow characteristics: If traffic arrivals on the major roadway are random throughout the controller cycle, the red display on the major roadway will produce the same stops and delays regardless of its position within the controller cycle. If traffic arrivals on the major roadway are by platoon, the benefits of coordination are enhanced.17

Signal Spacing

Signal spacing of less than 1500 ft [457 m] should be reviewed to ensure that the following factors are addressed or are not applicable.

♦ Closely spaced signals with overhead indications. When a driver is nearing the upstream stop line, the downstream indications may be easier for a driver to see than the
upstream indications. The driver may mistakenly continue past red indications on the upstream signal if the downstream indication is green.

♦ Intersections on higher speed roadways. If the upstream indications are green when the downstream indications are red, an approaching driver may not begin to slow in time to avoid colliding with a vehicle stopped in the queue of the downstream signal.

♦ Coordination of closely spaced signals. Obtaining effective coordination without excessive green time on a coordinated roadway becomes more problematic as the spacing decreases.\(^{17}\)

Signal Coordination

Traffic control signals should be coordinated, preferably with interconnected controller units, when they are within 0.5 mi \([805 \text{ m}]\) of one another along a major route or in a network of intersecting major routes. However, signal coordination need not be maintained across boundaries between signal systems that operate on different cycle lengths.\(^9\) Traffic operations modeling techniques should be used to determine whether progression can be provided for specific circumstances.

The key to efficient system operation is the predictability with which a platoon of densely spaced traffic passes along the roadway. Arriving too early requires a stop and restart, and arriving too late means that some or most of the green display is not used. When a platoon disperses and is no longer densely spaced, the platoon takes more time to pass through an intersection. The maintenance of platoon flow is contingent upon:

♦ traffic characteristics,
♦ topography,
♦ condition of the roadway surface and shoulders, and
♦ roadside friction.

Effective coordination of traffic signals can in most cases be achieved for distances in excess of 0.5 mi \((805 \text{ m})\). The traffic will generally maintain a cohesive platoon structure under these circumstances: the roadway is a well-designed facility, without driveways, with opportunities for passing, and with the provision for left turns. While no specific rules with regard to distance between signals can be given, there are many examples of effective coordination where signals are spaced up to 1 mi \([1.6 \text{ km}]\) apart, although if the following conditions are not met then effective coordination may not be achieved:

♦ Roadside frictions are minimal.
♦ Speeds are fairly high.
♦ The traffic control signals are visible for some distance in advance of the intersection.

Conversely, if the design of a facility is such that traffic cannot flow in an unimpeded manner, it may not be possible to identify a platoon at the downstream intersection and coordination may not be effective.
Where undesirable platoon dispersion takes place, the operational characteristics of an area should be field reviewed to determine if traffic signals, not otherwise needed, would prove beneficial in keeping the platoons together between existing signals. The TMUTCD⁹ provides that the spacing of such signals should not be less than 1000 ft [305 m].

Methods of Interconnection

There are two basic ways to interconnect the signals: direct means and indirect means. Direct methods employ a physical connection between controller assemblies, while indirect methods rely on an air path or time-based approach. These methods include:

- electrical cables (wires),
- telephone-type cables,
- coaxial cables,
- fiber-optic cables,
- microwave, and
- radio.

Preemption and Priority Control

Traffic control signals may be designed and operated to respond to certain classes of approaching vehicles by altering the normal signal timing and phasing plan(s) during the approach and passage of those vehicles. The alternative plan may be as simple as extending a currently displayed green interval or as complex as replacing the entire set of signal phases and timing. Examples include:

- preemption control, typically given to emergency vehicles and to vehicles such as boats and trains; and
- priority control, typically given to certain non-emergency vehicles such as buses and light-rail vehicles.⁹

Refer to Chapter 11, Section 2 <link> for discussion on signal preemption at highway-rail grade crossings.
Section 6

References

