A Walkable Community
is much more than just sidewalks...
Your Town, USA

- Medians Provide Refuge For Pedestrians
 (In Experimental Use)
- In-pavement Lighting (Activated)
- Speed Hump
- Speed Table
- 22' 12'
- 2% Grade
- Curb Ramp
- 8.33% Grade
- Landing (3') min.
- Far Side Bus Stop
- Parking
 - 100mm (4 in) Solid Stripe
 - 150 mm (6 in) Solid White Stripe
 - 1.5 m (5 ft) Min.
- Bike Lane
 - On-Street Parking (With Bike Lane)
 - 150 mm (6 in)
 - 0.9 m (3 ft) Min.
 - 1.5 m (5 ft) Min.
- Parking Prohibited (With Bike Lane)
 - Microwave & Infrared Detectors
 - Animated Eyes
 - Pedestrian Signal
 - (Experimental)
 - Pedestrian Signal
 - (Experimental)
 - 10'
 - Recommended
 - 4' Min.
 - 4" Yellow line
 - 3'
 - Min.
 - 5'
 - Recommended
 - Walking
 - Graded Area
 - Cross Section
 - Shared Use Path
 - Sidewalk Width
 - (Rec. For Urban Areas)
 - Planter Strip
 - Rest Area
 - 150 mm (6 in)
 - 1.8 m (6 ft)
 - Optional
 - 1.8 m (6 ft)
 - 1.8 m (6 ft)
 - 1.8 m (6 ft)
- Your Town, USA

Your Town, USA is much more than just sidewalks...
General Engineering Countermeasure

Crash Group / Problem

| Countermeasures with the extension (eg B3) are referenced on the other side |

Countermeasures with the extension (eg B3) are referenced on the other side

What is the Focus of this brochure?

This brochure’s “Walkable Community” focuses on the design of safe and pedestrian-friendly facilities. A Crash Group/General Engineering Countermeasure Matrix identifies potential solutions for use by safety practitioners. This matrix is particularly useful as an analytical tool to identify potential countermeasures, which may be implemented at a location to address a specific pedestrian crash type. Some of the engineering countermeasures are illustrated in the map (other side) as referenced. Moreover, this matrix should be used in conjunction with local site data, including the number of pedestrian crashes and types, traffic and pedestrian volumes, vehicle speeds, and road width to develop the most suitable countermeasure. Conscious planning, effective education programs, and consistent safety and law enforcement also contribute to improving our communities for pedestrians. A “walkable” community is much more than just sidewalks.

Pictures:

Figure 1: Pedestrian’s chances of death hit by a motor vehicle

Reducing traffic speeds not only reduces the severity of pedestrian crashes, but may reduce their occurrence. Faster vehicle speeds result in increased braking distance, and also increase the time a vehicle will travel during the 2.5 second perception/reaction time as shown in Figure 1.

Figure 2: Relationship between safe stopping distance and travel speed

For more information (or copies) contact: Lawrence Boodlal, P.E. at (202) 366-0894, e-mail lawrence.boozlal@phaa.dit.gov or visit the website at http://ontheway.to. The brochure is disseminated under the sponsorship of the Department of Transportation’s Federal Highway Administration.

Author:

Leverson Boodlal, P.E.

Notes:

- **One important factor in pedestrian crashes is SPEED...**
- **Countermeasures with the extension (eg B3) are referenced on the other side**
- **When designing pedestrian facilities it is important to understand the needs and characteristics of the pedestrian and those which affect their travel. Some of these needs and characteristics are highlighted in this section.**
- **Table 1: Crossing Distances, Speeds and Time**
- **Table 2: Efforts of curb radius on pedestrian crossing times and distances**
- **Table 3: Common Pedestrian Characteristics**
- **Table 4: Countermeasures with the extension (eg B3) are referenced on the other side**
- **Figure 1:** Pedestrian’s chances of death hit by a motor vehicle
- **Figure 2:** Relationship between safe stopping distance and travel speed