Pedestrian Safety Countermeasures Deployment and Evaluation: Las Vegas Case Study

Shashi Nambisan
Director, InTrans & Professor of Civil Engineering
Iowa State University (shashi@iastate.edu)

Srinivas Pulugurtha, The University of North Carolina at Charlotte
Mukund Dangeti, University of Nevada, Las Vegas
Vinod Vasudevan, University of Nevada, Las Vegas

FHWA’s
Pedestrian Safety Web Conference
Washington, DC
May 28, 2009
Goals

• Improve pedestrian safety, minimize risk
• Identify, develop, deploy, and evaluate countermeasures
• Case Study: Las Vegas metro area, Nevada
Introduction

• Significant growth for 20+ years
• Wide, fast street grid network
 ➢ High posted & operational vehicle speeds
• Widely used transit system
• High risk conditions for pedestrians
• Demographics
 ➢ Population ~ 1.8 million
 ➢ Diversity: age, race
• 85 percent of the crashes involved locals
Methodology

• Identify candidate locations
 ➢ GIS based analysis
 ➢ Site characteristics
 ➢ Problem characteristics

• Develop, deploy, & evaluate countermeasures
 • Measures of effectiveness
Study Design

• Before and after Studies
• Comparative studies (with control group)
• Data collection (~18,000 pedestrians)
• Statistical analyses
 ➢ Parametric
 ➢ Non-parametric
Study Locations

- Top priority / high risk locations
 - Crash index and crash rank
- Site selection: 18 locations
 - Includes 4 control locations
 - Excluded the resort Corridor (The “Strip” and its proximity)
- Different jurisdictions
 - City of Las Vegas
 - City of North Las Vegas
 - Clark County
 - Nevada Dept of Transportation (State)
Study Locations

Major Streets
High Pedestrian Risk Locations
Control Points
Selection of Countermeasures

• Site characteristics
 ➢ Geometric conditions
 ➢ Operating conditions
 ➢ Light conditions
 ➢ Demographics
 ➢ Land-use

• Costs
Countermeasures

- Engineering based countermeasures
- ITS based countermeasures
- Others
Advanced Warning Signs / Yield Markings
High Visibility Crosswalk Treatment
In-Roadway Knockdown Signs
Portable Speed Trailer
Turning Vehicles Yield to Pedestrians
Danish Offset and Median Refuge
Pedestrian Activated Flashers
Pedestrian Buttons that Confirm “Call”

“Call”
Pedestrian Channelization
ITS No-Turn on Red Blank out Signs
Pedestrian Countdown Timers with Animated Eyes
Measures of Effectiveness / Statistical Tests

- Pedestrian
 - Using the crosswalk
 - Captured / diverted
 - Looking for cars before crossing
 - Trapped in the middle of the street
 - Pedestrian-vehicle Conflicts
 - Pedestrian waiting for signal to cross
 - Delay

- Driver
 - Yielding behavior, distance
 - Blocking crosswalk
 - Speed
Speed Trailer and Vehicle Speeds

Average Speed (mph)

Direction of Traffic

Before
After
54.6 kph 31.5
35.0 50.7 kph
64.3 kph
31.9 51.3 kph
Speed Trailer: Vehicle Speeds Analysis

<table>
<thead>
<tr>
<th>MOE</th>
<th>Baseline vs. Stage 1</th>
<th>Baseline vs. Stage 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delta Mean Speed</td>
<td>P-value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound</td>
<td>5.5 (8.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>mph (kmph)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westbound</td>
<td>6.5 (10.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>mph (kmph)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H₀ : \(V_{\text{before}} = V_{\text{after}} \) vs. \(H_a : V_{\text{after}} < V_{\text{before}} \)
Speed Trailer: Analysis of Pedestrians

<table>
<thead>
<tr>
<th>(Safety) Measures of Effectiveness</th>
<th>Baseline (Sample = 165)</th>
<th>Stage 1 (Sample = 47)</th>
<th>Stage 2 (Sample = 156)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% pedestrians who look for vehicles before beginning to cross</td>
<td>80</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>% pedestrians who look for vehicles before crossing 2(^{nd}) half of street</td>
<td>85</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>% pedestrians trapped in the roadway</td>
<td>41</td>
<td>34</td>
<td>37</td>
</tr>
</tbody>
</table>
Highly Effective Countermeasures

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Yield Markings for Motorists</td>
<td>Low</td>
</tr>
<tr>
<td>In-roadway Knockdown Signs</td>
<td>Low</td>
</tr>
<tr>
<td>Pedestrian Countdown Signals with Animated Eyes</td>
<td>Medium</td>
</tr>
<tr>
<td>Danish Offset</td>
<td>High</td>
</tr>
<tr>
<td>Median Refuge</td>
<td>High</td>
</tr>
<tr>
<td>Portable Speed Trailer</td>
<td>High</td>
</tr>
<tr>
<td>Pedestrian Activated Flashing Yellow</td>
<td>High</td>
</tr>
</tbody>
</table>
Moderately Effective Countermeasures

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian Call buttons that Confirm Call (Visible/Audible confirmation)</td>
<td>Low</td>
</tr>
<tr>
<td>Turning Vehicles Yield to Pedestrians</td>
<td>Low</td>
</tr>
<tr>
<td>ITS No-Turn on Red Signs</td>
<td>Medium</td>
</tr>
<tr>
<td>ITS Automatic Pedestrian Detection Devices</td>
<td>High</td>
</tr>
</tbody>
</table>
Countermeasures with Low Effectiveness

Effectiveness

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning Signs for Motorists</td>
<td>Low</td>
</tr>
<tr>
<td>High Visibility Crosswalk Treatment</td>
<td>Medium</td>
</tr>
<tr>
<td>Pedestrian Channelization</td>
<td>High</td>
</tr>
<tr>
<td>Smart Lighting</td>
<td>High</td>
</tr>
</tbody>
</table>

Summary

• Significant overall benefits
 ➢ Pedestrian
 ➢ Driver
• Permitting & deployment considerations
• Administrative / jurisdictional hurdles
• Vendor / procurement difficulties
• Education needs: pedestrians, motorists
Acknowledgments

• US Dept of Transp., Federal Highway Admin
• Nevada Dept of Transportation
• Nevada Office of Traffic Safety
• Regional Transp Commission of So. Nevada
• Clark County, Nevada
• City of Las Vegas
• UNLV TRC: students, staff