

October 1, 2020

1200 New Jersey Ave., SE Washington, D.C. 20590

In Reply Refer To: HSST-1/B-350

Mr. Jeff Jeffers State of Alaska Department of Transportation and Public Facilities 3132 Channel Drive Juneau, AK 99811-2500 USA

Dear Mr. Jeffers:

This letter is in response to your April 17, 2020 request for the Federal Highway Administration (FHWA) to review a roadside safety device, hardware, or system for eligibility for reimbursement under the Federal-aid highway program. This FHWA letter of eligibility is assigned FHWA control number B-350 and is valid until a subsequent letter is issued by FHWA that expressly references this device.

## Decision

The following device is eligible within the length-of-need, with details provided in the form which is attached as an integral part of this letter:

• 2019 MASH 2-Tube Bridge Rail Transition

## **Scope of this Letter**

To be found eligible for Federal-aid funding, new roadside safety devices should meet the crash test and evaluation criteria contained in the American Association of State Highway and Transportation Officials'(AASHTO) Manual for Assessing Safety Hardware (MASH). However, the FHWA, the Department of Transportation, and the United States Government do not regulate the manufacture of roadside safety devices. Eligibility for reimbursement under the Federal-aid highway program does not establish approval, certification or endorsement of the device for any particular purpose or use.

This letter is not a determination by the FHWA, the Department of Transportation, or the United States Government that a vehicle crash involving the device will result in any particular outcome, nor is it a guarantee of the in-service performance of this device. Proper manufacturing, installation, and maintenance are required in order for this device to function as tested.

This finding of eligibility is limited to the crashworthiness of the system and does not cover other structural features, nor conformity with the Manual on Uniform Traffic Control Devices.

## **Eligibility for Reimbursement**

Based solely on a review of crash test results and certifications submitted by the manufacturer, and the crash test laboratory, FHWA agrees that the device described herein meets the crash test and evaluation criteria of the AASHTO's MASH. Therefore, the device is eligible for reimbursement under the Federal-aid highway program if installed under the range of tested conditions.

Name of system: 2019 MASH 2-Tube Bridge Rail Transition Type of system: Longitudinal Barrier Transition Test Level: Test Level 3 (TL3) Testing conducted by: Texas A&M Transportation Institute (TTI) Date of request: April 17, 2020

FHWA concurs with the recommendation of the accredited crash testing laboratory on the attached form

## Full Description of the Eligible Device

The device and supporting documentation, including reports of the crash tests or other testing done, videos of any crash testing, and/or drawings of the device, are described in the attached form.

## **Notice**

This eligibility letter is issued for the subject device as tested. Modifications made to the device are not covered by this letter. Any modifications to this device should be submitted to the user (i.e., state DOT) as per their requirements.

You are expected to supply potential users with sufficient information on design, installation and maintenance requirements to ensure proper performance.

You are expected to certify to potential users that the hardware furnished has the same chemistry, mechanical properties, and geometry as that submitted for review, and that it will meet the test and evaluation criteria of AASHTO's MASH.

Issuance of this letter does not convey property rights of any sort or any exclusive privilege. This letter is based on the premise that information and reports submitted by you are accurate and correct. We reserve the right to modify or revoke this letter if: (1) there are any inaccuracies in the information submitted in support of your request for this letter, (2) the qualification testing was flawed, (3) in-service performance or other information reveals safety problems, (4) the system is significantly different from the version that was crash tested, or (5) any other information indicates that the letter was issued in error or otherwise does not reflect full and complete information about the crashworthiness of the system.

### **Standard Provisions**

- To prevent misunderstanding by others, this letter of eligibility designated as FHWA control number B-350 shall not be reproduced except in full. This letter and the test documentation upon which it is based are public information. All such letters and documentation may be reviewed upon request.
- This letter shall not be construed as authorization or consent by the FHWA to use, manufacture, or sell any patented system for which the applicant is not the patent holder.
- This FHWA eligibility letter is not an expression of any Agency view, position, or determination of validity, scope, or ownership of any intellectual property rights to a specific device or design. Further, this letter does not impute any distribution or licensing rights to the requester. This FHWA eligibility letter determination is made based solely on the crash-testing information submitted by the requester. The FHWA reserves the right to review and revoke an earlier eligibility determination after receipt of subsequent information related to crash testing.

Sincerely,

Michael & Juffith

Michael S. Griffith Director, Office of Safety Technologies Office of Safety

Enclosures

Version 10.0 (05/16) Page 1 of 8

# Request for Federal Aid Reimbursement Eligibility of Highway Safety Hardware

|           | Date of Request: | April 17, 2020                                                       |  |  |  |
|-----------|------------------|----------------------------------------------------------------------|--|--|--|
|           | Name:            | leff Jeffers                                                         |  |  |  |
| ter       | Company:         | State of Alaska Department of Transportation and Public Facilities   |  |  |  |
| Submitter | Address:         | 3132 Channel Drive, Juneau, AK 99811-2500                            |  |  |  |
| Sut       | Country:         | United States of America                                             |  |  |  |
|           | To:              | Michael S. Griffith, Director<br>FHWA, Office of Safety Technologies |  |  |  |

I request the following devices be considered eligible for reimbursement under the Federal-aid highway program.

| Device & Testing Criterion - Enter from right to left starting with Test L | t starting with Test L ! - ! - ! |
|----------------------------------------------------------------------------|----------------------------------|
|----------------------------------------------------------------------------|----------------------------------|

| System Type                                                             | Submission Type | Device Name / Variant                      | Testing Criterion | Test<br>Level |
|-------------------------------------------------------------------------|-----------------|--------------------------------------------|-------------------|---------------|
| 'B':Rigid/Semi-Rigid Barriers<br>(Roadside, Median, Bridge<br>Railings) |                 | 2019 MASH 2-Tube<br>Bridge Rail Transition | AASHTO MASH       | TL3           |

By submitting this request for review and evaluation by the Federal Highway Administration, I certify that the product(s) was (were) tested in conformity with the AASHTO Manual for Assessing Safety Hardware and that the evaluation results meet the appropriate evaluation criteria in the MASH.

## Individual or Organization responsible for the product:

| Contact Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jeff Jeffers                                                                                             | Same asSubmitter $\boxtimes$ |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------|--|--|
| Company Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | State of Alaska Department of Transportation and Public Facilities                                       | Same asSubmitter $\boxtimes$ |  |  |
| Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3132 Channel Drive, Juneau, AK 99811-2500                                                                | Same asSubmitter             |  |  |
| Country:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | United States of America                                                                                 | Same asSubmitter             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | closures of financial interests as required by the FHWA `Federa<br>or Safety Hardware Devices' document. | al-Aid Reimbursement         |  |  |
| Texas A&M Transportation Institute (TTI) was contracted by the State of Alaska Department of Transportation<br>and Public Facilities and the North Dakota Department of Transportation to perform full-scale crash testing of<br>the 2019 MASH2-Tube Bridge Rail Transition. There are no shared financial interests in the 2019 MASH2-Tube<br>Bridge Rail Transition by TTI, or between the State of Alaska Department of Transportation and Public Facilities<br>and/or the North Dakota Department of Transportation, and TTI, other than costs involved in the actual crash<br>testsand reports for this submission to FHWA. |                                                                                                          |                              |  |  |
| 608331-4, 5, 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |                              |  |  |

# PRODUCT DESCRIPTION

| New Hardware or     Significant Modification                                                                                                                                                                                                                                                                                                                     | Modification to<br>Existing Hardware                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|
| reinforced concrete bridge deck<br>thrie beams (RTM08a) attached t<br>guardrail connector, astandard                                                                                                                                                                                                                                                             | Rail Transition test installation was com<br>that incorporated two steel rails, a 12½-<br>o the bridge rails with a thrie beam term<br>symmetrical 75 inch long (nominal) thr<br>m guardrail (in length of need), and asta<br>d.                                                                                                                                                                                                                                                                                                                                                        | t long (nominal) section of two nested<br>inal connector (RTE01b) and unique<br>e-beam-to-W-beam transition rail |  |  |
| bridge deck). The top edges of th                                                                                                                                                                                                                                                                                                                                | ion wasapproximately 207 ft-3½ inchest<br>ne DAT rail and W-beam were located 31<br>nchesabove grade, and the tops of the b<br>c.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | inchesabove grade. The top edge of                                                                               |  |  |
| long, and posts 9 through 15 we<br>10 were at 37½ inches; and posts<br>installed on posts 2 through 6.                                                                                                                                                                                                                                                           | Transition section Posts 3 through 6 were 72 inches long (embedded 40 inches), posts 7 and 8 were 72 inches long, and posts 9 through 15 were 78 inches long. Posts 1 through 6 were spaced at 75 inches; posts 7 through 10 were at 37½ inches; and posts 10 through 15 were at 18¾ inches. Timber blockouts, 8-inches deep, were installed on posts 2 through 6. Posts 7 and 8 were fitted with 12-inch deep, short (14 inches) steel hollow structural section (HSS) tubing blockouts, and posts 9 through 15 were fitted with 12-inch deep, long (21 ½ inches) steel HSS blockouts. |                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  | The bridge deck's curb was 10 inches tall, with a 4-inch thick lift of grout, yielding a 6-inch tall traffic side face.<br>The curb was 18 inches wide at the base, and 17 inches wide at the top, with the traffic side face sloping 1-inch<br>toward the field side.                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  | Sixteen fabricated steel posts were longitudinally spaced on 10 ft centers, beginning at 24 inches from each end of the concrete curb. Two steel rectangular HSS rail elements spanned the posts and extended past them at each end of the installation.                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  | <b>CRASH TESTING</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  |  |  |
| By signature below, the Engineer affiliated with the testing laboratory, agrees in support of this submission that all of the critical and relevant crash tests for this device listed above were conducted to meet the MASH test criteria. The Engineer has determined that no other crash tests are necessary to determine the device meets the MASH criteria. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  |  |  |
| Engineer Name:                                                                                                                                                                                                                                                                                                                                                   | William F. Williams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |  |  |
| Engineer Signature:                                                                                                                                                                                                                                                                                                                                              | William Williams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Digitally signed by William Williams<br>Date: 2020.09.28 16:15:43 -05'00'                                        |  |  |
| Address:                                                                                                                                                                                                                                                                                                                                                         | TTI, TAMU 3135 College Station, TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77843-3135 Same asSubmitter                                                                                      |  |  |
| Country:                                                                                                                                                                                                                                                                                                                                                         | United States of America                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Same asSubmitter                                                                                                 |  |  |

Country: United States of America A brief description of each crash test and its result:

Help

### Version 10.0 (05/16) Page 3 of 8

|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Page 3 of 8           |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Required Test<br>Number | Narrative<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evaluation<br>Results |
|                         | Test 3-20 involves an 1100C vehicle<br>impacting the test article at a target impact<br>speed of 62 mi/h and target angle of 25°.<br>The target CIP for the left corner of the front<br>bumper was 5.1 ft upstream of the end of<br>the concrete curb/deck.                                                                                                                                                                                                                                            |                       |
|                         | The results of the test conducted on<br>September 2, 2019, are found in TTI Test<br>Report No. 608331-4-6 as Test #4. The test<br>vehicle was traveling at aspeed of 60.9 mi/h<br>as it made contact with the 2019 MASH 2-<br>Tube Bridge Rail Transition 6.06 ft upstream<br>of the end of the concrete curb/deck at<br>impact angle of 26.5°. After loss of contact<br>with the transition, the vehicle came to rest<br>145 ft downstream of the impact point and<br>137 ft toward the traffic side. |                       |
|                         | The 2019 MASH 2-Tube Bridge Rail<br>Transition contained and redirected the<br>1100C vehicle. The vehicle did not<br>penetrate, underride, or override the<br>installation. The vehicle exited within the<br>exit box criteria defined in MASH.<br>Maximum dynamic deflection of the rail<br>during the test was 3.5 inches. Maximum                                                                                                                                                                   | 5400                  |
| 3-20 (1100C)            | permanent deformation was 1.25 inches.<br>Working width was 26.1 inches.<br>No detached elements, fragments, or other<br>debris were present to penetrate, or to<br>show potential for penetrating, the<br>occupant compartment, or to present<br>undue hazard for others in the area.<br>The 1100C vehicle remained upright during<br>and after the collision event. Maximum roll                                                                                                                     | PASS                  |
|                         | and pitch angles were 12° and 3°,<br>respectively.<br>Longitudinal OIV was 22.6 ft/s and lateral<br>OIV was 30.5 ft/s. Maximum longitudinal<br>occupant ridedown acceleration was 14.5 g,<br>and maximum lateral occupant ridedown<br>acceleration was 9.2 g. Occupant risk factors<br>were within the maximum limitsspecified in<br>MASH.                                                                                                                                                             |                       |
|                         | Maximum exterior crush to the vehicle was<br>14.0 inches in the side plane in the front<br>plane at the left front corner at bumper<br>height. Maximum occupant compartment<br>deformation was 3.5 inches in the left kick<br>panel area. No damage to the fuel tank was<br>observed.<br>The 2019 MASH 2-Tube Bridge Rail                                                                                                                                                                              |                       |
|                         | Transition performed acceptably for MASH test 3-20.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |

### Version 10.0 (05/16) Page 4 of 8

|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page 4 of 8           |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Required Test<br>Number | Narrative<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evaluation<br>Results |
|                         | Test 3-21 involves a 2270P vehicle<br>impacting the test article at a target impact<br>speed of 62 mi/h and target angle of 25°.<br>The target CIPfor the left corner of the front<br>bumper was 7.0 ft upstream of the end of<br>the concrete curb/deck.                                                                                                                                                                                                                                            |                       |
|                         | The results of the test conducted on<br>September 5, 2019, are found in TTI Test<br>Report No. 608331-4-6 as Test #5. The test<br>vehicle was traveling at aspeed of 61.9 mi/h<br>as it made contact with the 2019 MASH 2-<br>Tube Bridge Rail Transition 6.52 ft upstream<br>of the end of the concrete curb/deck and at<br>an impact angle of 25.3°. After loss of<br>contact with the transition, the vehicle<br>came to rest 174 ft downstream of the<br>impact point and in-line with the rail. |                       |
|                         | The 2019 MASH 2-Tube Bridge Rail<br>Transition contained and redirected the<br>2270P vehicle. The vehicle did not<br>penetrate, underride, or override the<br>installation. The vehicle exited within the<br>exit box criteria defined in MASH.<br>Maximum dynamic deflection during the<br>test was 6.1 inches. Maximum permanent<br>deformation was 3.75 inches. Working                                                                                                                           |                       |
| 3-21 (2270P)            | width was 26.9 inches.<br>No detached elements, fragments, or other<br>debris were present to penetrate, or to<br>show potential for penetrating, the<br>occupant compartment, or to present<br>undue hazard for others in the area.<br>The 2270P vehicle remained upright during<br>and after the collision event. Maximum roll<br>and pitch angles were 8° and 11°,<br>respectively.                                                                                                               | PASS                  |
|                         | Longitudinal OIV was20.3 ft/s and lateral<br>OIV was23.6 ft/s.<br>Maximum longitudinal occupant ridedown<br>acceleration was7.4 g and maximum lateral<br>occupant ridedown acceleration was13.0 g.<br>Occupant risk factors were within the<br>preferred limitsspecified in MASH.<br>Maximum exterior crush to the vehicle was<br>15.0 inches in the side plane at the left front<br>corner at bumper height. Maximum<br>occupant compartment deformation was4                                       |                       |
|                         | inches in the left side kick panel. No damage<br>to the fuel tank was observed.<br>The 2019 MASH 2-Tube Bridge Rail<br>Transition performed acceptably for MASH<br>test 3-21.                                                                                                                                                                                                                                                                                                                        |                       |

## Version 10.0 (05/16) Page 5 of 8

|            |                                                                                       | 5 |
|------------|---------------------------------------------------------------------------------------|---|
|            | The reported tests were for the Transition section.                                   |   |
|            | Tests 3-10 & 3-11 pertain to Length-of-Need.                                          |   |
|            | The Length-of-Need Tests 4-10, 4-11, & 4-12                                           |   |
| 3-10, 3-11 | were performed in December 2018, and are found in TTITest Report No. 608331-1A, 2, 3. |   |
|            | =======================================                                               |   |
|            | >>>> Continued on Page 7 of 8 <<<<<                                                   |   |
| L          |                                                                                       |   |

Version 10.0 (05/16) Page 6 of 8

## Version 10.0 (05/16) Page 7 of 8

|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fage / 010 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|              | Test 3-21 involves a 2270P vehicle<br>impacting the test article at a target impact<br>speed of 62 mi/h and target angle of 25°.<br>The target CIP for the left corner of the front<br>bumper was 7.3 ft upstream of centerline of<br>Post #7.                                                                                                                                                                                                                                                                                                             |            |
|              | The results of the test conducted on<br>December 19, 2019, are found in TTI Test<br>Report No. 608331-4-6 as Test #6. The test<br>vehicle was traveling at aspeed of 62.6 mi/h<br>as it made contact with the 2019 MASH 2-<br>Tube Bridge Rail Transition 7.5 ft upstream<br>of the centerline of Post #7 and at an impact<br>angle of 24.9°. After loss of contact with the<br>barrier, the vehicle came to rest 133 ft<br>downstream of the impact point and 2 ft<br>toward the traffic side.                                                            |            |
|              | The 2019 MASH 2-Tube Bridge Rail<br>Transition contained and redirected the<br>2270P vehicle. The vehicle did not<br>penetrate, underride, or override the<br>installation. The vehicle exited within the<br>exit box criteria defined in MASH.<br>Maximum dynamic deflection during the<br>test was 33.6 inches. Maximum permanent<br>deformation was 28.0 inches. Working<br>width was 44.7 inches.                                                                                                                                                      |            |
| 3-21 (2270P) | No detached elements, fragments, or other<br>debris were present to penetrate or to show<br>potential for penetrating the occupant<br>compartment, or to present undue hazard<br>for others in the area.<br>The 2270P vehicle remained upright during<br>and after the collision event. Maximum roll<br>and pitch angles were 15° and 14°,<br>respectively.<br>Longitudinal OIV was24.9ft/s and lateral<br>OIV was16.4ft/s.<br>Maximum longitudinal occupant ridedown<br>acceleration was 10.7 g and maximum<br>lateral occupant ridedown acceleration was | PASS       |
|              | <ul> <li>9.8 g.</li> <li>Occupant risk factors were within the preferred limitsspecified in MASH.</li> <li>Maximum exterior crush to the vehicle was 20.0 inches in the side plane at the left front corner at bumper height. No occupant compartment deformation or intrusion was observed. No damage to the fuel tank was observed.</li> </ul>                                                                                                                                                                                                           |            |
|              | The 2019 MASH 2-Tube Bridge Rail<br>Transition performed acceptably for MASH<br>test 3-21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |

Full Scale Crash Testing was done in compliance with MASH by the following accredited crash test laboratory (cite the laboratory's accreditation status as noted in the crash test reports.):

| Laboratory Name:                                                                   | Texas AM Transportation Institute                                                         |                  |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------|
| LaboratorySignature:                                                               | Digitally signed by Darrell L. Kuhn<br>'Date: 2020.09.28 14:02:31 -05'00                  | LKuhn            |
| Address:                                                                           | TTI, TAMU 3135 College Station, TX 77843-3135                                             | Same asSubmitter |
| Country:                                                                           | United States of America                                                                  | Same asSubmitter |
| Accreditation Certificate<br>Number and Dates of current<br>Accreditation period : | ISO 17025-2017 Laboratory<br>A2LA Certificate Number: 2821.01<br>Valid To: April 30, 2021 |                  |

Submitter Signature\*: Jeff. CJeffer Ster 2020.09.2813:32:31-0800'

Submit Form

# ATTACHMENTS

Attach to this form:

- 1) Additional disclosures of related financial interest as indicated above.
- 2) A copy of the full test report, video, and a Test Data Summary Sheet for each test conducted in support of this request.
- 3) A drawing or drawings of the device(s) that conform to the Task Force-13 Drawing Specifications [Hardware Guide Drawing Standards]. For proprietary products, a single isometric line drawing is usually acceptable to illustrate the product, with detailed specifications, intended use, and contact information provided on the reverse. Additional drawings (not in TF-13 format) showing details that are relevant to understanding the dimensions and performance of the device should also be submitted to facilitate our review.

FHWA Official Business Only:

| Eligibility Letter |  |           |
|--------------------|--|-----------|
| Number Date        |  | Key Words |
|                    |  |           |



| 18         |                          |                                                                   |                                          |         |
|------------|--------------------------|-------------------------------------------------------------------|------------------------------------------|---------|
| $\infty$   | General Information      |                                                                   | Impact Conditions                        | Post-Im |
|            | Test Agency              | Texas A&M Transportation Institute (TTI)                          | Speed 60.9 mi/h                          | Stopp   |
|            | Test Standard Test No    | MASH Test 3-20                                                    | Angle                                    |         |
|            | TTI Test No              | 608331-01-4                                                       | Location/Orientation 6.06 ft upstream of | Vehicle |
|            | Test Date                | 2019-09-02                                                        | end of curb/deck                         | Maxim   |
|            | Test Article             |                                                                   | Impact Severity 61 kip-ft                | Maxim   |
|            | Туре                     | Transition                                                        |                                          | Maxim   |
|            | Name                     | 2019 MASH 2-Tube Bridge Rail Thrie                                | Exit Conditions                          | Vehic   |
|            |                          | Beam Transition                                                   | Speed 39.5 mi/h                          | Vehic   |
|            | Installation Length      | 207 ft 3 <sup>1</sup> / <sub>2</sub> inches (incl 154 ft of deck) | Trajectory/Heading Angle 7.1° / 14.0°    | Test Ar |
|            | Material or Key Elements | Thrie beam guardrail terminal to 38-inch                          | Occupant Risk Values                     | Dynar   |
|            |                          | tall 2-tube bridge rail, 34¾ inch tall thrie                      | Longitudinal OIV 22.6 ft/s               | Perma   |
|            |                          | beam guardrail section, symmetrical                               | Lateral OIV 30.5 ft/s                    | Worki   |
|            |                          | W-beam to thrie beam terminal, 25 ft of                           | Longitudinal Ridedown 14.5 g             | Heigh   |
|            |                          | W-beam guardrail                                                  | Lateral Ridedown 9.2 g                   | Vehicle |
|            | Soil Type and Condition  | AASHTO M147 Grading B Soil (crushed                               | THIV 41.0 km/h                           | VDS.    |
|            |                          | limestone), Damp                                                  | ASI 2.17                                 | CDC.    |
|            | Test Vehicle             |                                                                   | Max. 0.050-s Average                     | Max. I  |
| 2          | Type/Designation         |                                                                   | Longitudinal12.0 g                       | OCDI.   |
| 2          | Make and Model           |                                                                   | Lateral 16.8 g                           | Max.    |
| õ          | Curb                     |                                                                   | Vertical3.6 g                            | Defe    |
| ò          | Test Inertial            |                                                                   |                                          |         |
| 2020-03-26 | Dummy                    |                                                                   |                                          |         |
| 2          | Gross Static             | 2611 ID                                                           |                                          |         |

8

-Exit Angle Box

#### Impact Trajectory

A -

6 **★**B 9

8

C -----14

3

4-space W-beam Guardrail 12 gauge - RWM04a

| Stopping Distance         | 145 ft downstream  |
|---------------------------|--------------------|
|                           | 137 ft twd traffic |
| Vehicle Stability         |                    |
| Maximum Yaw Angle         | 63°                |
| 5                         |                    |
| Maximum Pitch Angle       |                    |
| Maximum Roll Angle        | 12°                |
| Vehicle Snagging          | No                 |
| Vehicle Pocketing         | No                 |
| Test Article Deflections  |                    |
| Dynamic                   | 3.5 inches         |
| Permanent                 | 1.25 inches        |
| Working Width             | 26.1 inches        |
| Height of Working Width   | 34.75 inches       |
| Vehicle Damage            |                    |
| VDS                       | 11LFQ6             |
| CDC                       | 11FLEW5            |
| Max. Exterior Deformation | 14.0 inches        |
| OCDI                      | FL0010000          |
| Max. Occupant Compartment |                    |
|                           | 0 5 inches         |
| Deformation               | 3.5 Inches         |
|                           |                    |

Figure 5.6. Summary of Results for MASH Test 3-20 on 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition.



| N )    |
|--------|
| v      |
| $\sim$ |
|        |

Impact Angle

| 61.9 mi/h<br>25.3°<br>6.52 ft upsi<br>end of cur<br>118 kip-ft<br>47.9 mi/h<br>6.9° / 6.5° |
|--------------------------------------------------------------------------------------------|
| 6.52 ft ups<br>end of cur<br>118 kip-ft<br>47.9 mi/h<br>6.9° / 6.5°                        |
| end of cur<br>118 kip-ft<br>47.9 mi/h<br>6.9° / 6.5°                                       |
| 118 kip-ft<br>47.9 mi/h<br>6.9° / 6.5°                                                     |
| 47.9 mi/h<br>6.9° / 6.5°                                                                   |
| 6.9° / 6.5°                                                                                |
| 6.9° / 6.5°                                                                                |
| 6.9° / 6.5°                                                                                |
|                                                                                            |
| 00.0 (1/-                                                                                  |
| 00 0 11/-                                                                                  |
| 20.3 ft/s                                                                                  |
| 23.6 ft/s                                                                                  |
| 7.4 g                                                                                      |
| 13.0 g                                                                                     |
| 33.5 km/h                                                                                  |
| 1.51                                                                                       |
|                                                                                            |
| –8.7 g                                                                                     |
| 10.9 g                                                                                     |
| -4.7 g                                                                                     |
| -                                                                                          |
|                                                                                            |
|                                                                                            |

Heading Angle

-Exit Angle Box

..... 61.9 mi/h ..... 25.3° on ...... 6.52 ft upstream of end of curb/deck

| Speed                    | . 47.9 mi/h   |
|--------------------------|---------------|
| Trajectory/Heading Angle | . 6.9° / 6.5° |
| Occupant Risk Values     |               |
| Longitudinal OIV         | . 20.3 ft/s   |
| Lateral OIV              | . 23.6 ft/s   |
| Longitudinal Ridedown    | . 7.4 g       |
| Lateral Ridedown         | . 13.0 g      |
| THIV                     | . 33.5 km/h   |
| ASI                      | . 1.51        |
| Max. 0.050-s Average     |               |
| Longitudinal             | . –8.7 g      |
| Lateral                  | . 10.9 g      |
| Vertical                 | . –4.7 g      |
|                          | -             |

#### Post-Impact Trajectory

3

4-space W-beam Guardrail 12 gauge - RWM04a

A 🔫 

| Stopping Distance         |                        |
|---------------------------|------------------------|
|                           | Aligned w/traffic face |
| Vehicle Stability         |                        |
| Maximum Yaw Angle         | 43°                    |
| Maximum Pitch Angle       | 11°                    |
| Maximum Roll Angle        | 8°                     |
| Vehicle Snagging          | No                     |
| Vehicle Pocketing         | No                     |
| Test Article Deflections  |                        |
| Dynamic                   | 6.1 inches             |
| Permanent                 |                        |
| Working Width             | 26.9 inches            |
| Height of Working Width   | 34.75 inches           |
| Vehicle Damage            |                        |
| VDS                       | 11LFQ5                 |
| CDC                       | 11FLEW4                |
| Max. Exterior Deformation | 15.0 inches            |
| OCDI                      | FL0011000              |
| Max. Occupant Compartment |                        |
| Deformation               | 4.0 inches             |
|                           |                        |

R

C-14

Gross Static ...... 5215 lb

Figure 6.6. Summary of Results for MASH Test 3-21 on 2019 MASH 2-Tube Transition from Thrie Beam to Bridge Rail.





#### General Information

| General Information      |                                              | Impact Conditions        |                    |
|--------------------------|----------------------------------------------|--------------------------|--------------------|
| Test Agency              | Texas A&M Transportation Institute (TTI)     | Speed                    | 62.6 mi/h          |
| Test Standard Test No    | MASH Test 3-21                               | Angle                    | 24.9°              |
| TTI Test No              | 608331-01-6                                  | Location/Orientation     | 7.5 ft upstream of |
| Test Date                | 2019-12-19                                   |                          | post 7             |
| Test Article             |                                              | Impact Severity          | 117 kip-ft         |
| Туре                     | Transition                                   |                          | •                  |
| Name                     | 2019 MASH 2-Tube Bridge Rail Thrie           | Exit Conditions          |                    |
| Installation Length      |                                              | Speed                    | 31.8 mi/h          |
| Material or Key Elements | 207 ft 31/2 inches (incl 154 ft of deck)     | Trajectory/Heading Angle | 23.3° / 24.7°      |
|                          | Thrie beam guardrail terminal to 38-inch     | Occupant Risk Values     |                    |
|                          | tall 2-tube bridge rail, 34¾ inch tall thrie | Longitudinal OIV         | 24.9 ft/s          |
|                          | beam guardrail section, symmetrical          | Lateral OIV              |                    |
|                          | W-beam to thrie beam terminal, 25 ft of      | Longitudinal Ridedown    | 10.7 g             |
|                          | W-beam guardrail                             | Lateral Ridedown         | 9.8 g              |
| Soil Type and Condition  | AASHTO M147 Grading B Soil (crushed          | THIV                     | 8.6 m/s            |
|                          | limestone), Damp                             | ASI                      | 1.02               |
| Test Vehicle             |                                              | Max. 0.050-s Average     |                    |
| Type/Designation         | 2270P                                        | Longitudinal             | -9.1 g             |
| Make and Model           | 2013 RAM 1500 Pickup                         | Lateral                  | 7.7 g              |
| Curb                     | 4890 lb                                      | Vertical                 | -4.6 g             |
| Test Inertial            | 5038 lb                                      |                          | -                  |
| Dummy                    | No dummy                                     |                          |                    |
| Gross Static             | 5038 lb                                      |                          |                    |

#### Post-Impact Trajectory

| Fust-impact majectory     |                   |
|---------------------------|-------------------|
| Stopping Distance         | 133 ft downstream |
|                           | 2 ft twd traffic  |
| Vehicle Stability         |                   |
| Maximum Yaw Angle         | 53°               |
| Maximum Pitch Angle       | 14°               |
| Maximum Roll Angle        | 15°               |
| Vehicle Snagging          | No                |
| Vehicle Pocketing         | No                |
| Test Article Deflections  |                   |
| Dynamic                   | 33.6 inches       |
| Permanent                 | 28.0 inches       |
| Working Width             | 44.7 inches       |
| Height of Working Width   | 61.8 inches       |
| Vehicle Damage            |                   |
| VDS                       | 11LFQ5            |
| CDC                       | 11FLEW4           |
| Max. Exterior Deformation | 20.0 inches       |
| OCDI                      | LF0000000         |
| Max. Occupant Compartment |                   |
| Deformation               | None              |
|                           |                   |

Figure 7.8. Summary of Results for MASH Test 3-21 2019 MASH 2-Tube Transition from W-Beam to Thrie Beam.



T:\1-ProjectFiles\608331- Alaska - Williams\Drafting, 608331 4-5\608331 4-6 Drawing









**5e.** The Anchor Bars will be bare steel, and the bars in the Working Slab may be bare steel. All other bars shall be epoxy coated, and all bars are grade 60.

| Te.<br>Tra<br>Ins                                       | xas A&M<br>Insportatio<br>Stitute | Roadside Safety and<br>Physical Security Division -<br>Proving Ground |  |
|---------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------|--|
| Project #608331 4-6 Alaska Bridge Transition 2019-07-03 |                                   |                                                                       |  |
| Drawn by GES                                            | Scale 1:10                        | Sheet 5 of 13 Rebar Details                                           |  |



1:\1-ProjectFiles\608331- Alaska - Williams\Drafting, 608331 4-5\608331 4-6 Drawing



T:\1-ProjectFiles\608331- Alaska - Williams\Drafting, 608331 4-5\608331 4-6 Drawing



T:\1-ProjectFiles\608331- Alaska - Williams\Drafting, 608331 4-5\608331 4-6 Drawing







r:\1-ProjectFiles\608331- Alaska - Williams\Drafting, 608331 4-5\608331 4-6 Drawing



