Mr. Ron Faulkenberry
Gibraltar Global, LLC.
1208 Houston Clinton Dr
Burnet TX 78611
USA

Dear Mr. Faulkenberry:

This letter is in response to your January 30, 2020 request for the Federal Highway Administration (FHWA) to review a roadside safety device, hardware, or system for eligibility for reimbursement under the Federal-aid highway program. This FHWA letter of eligibility is assigned FHWA control number CC-162 and is valid until a subsequent letter is issued by FHWA that expressly references this device.

Decision

The following device is eligible within the length-of-need, with details provided in the form which is attached as an integral part of this letter:

- TL-3 4 Cable End Terminal

Scope of this Letter

To be found eligible for Federal-aid funding, new roadside safety devices should meet the crash test and evaluation criteria contained in the American Association of State Highway and Transportation Officials’ (AASHTO) Manual for Assessing Safety Hardware (MASH). However, the FHWA, the Department of Transportation, and the United States Government do not regulate the manufacture of roadside safety devices. Eligibility for reimbursement under the Federal-aid highway program does not establish approval, certification or endorsement of the device for any particular purpose or use.

This letter is not a determination by the FHWA, the Department of Transportation, or the United States Government that a vehicle crash involving the device will result in any particular outcome, nor is it a guarantee of the in-service performance of this device. Proper manufacturing, installation, and maintenance are required in order for this device to function as tested.

This finding of eligibility is limited to the crashworthiness of the system and does not cover other structural features, nor conformity with the Manual on Uniform Traffic Control Devices.
Eligibility for Reimbursement

Based solely on a review of crash test results and certifications submitted by the manufacturer, and the crash test laboratory, FHWA agrees that the device described herein meets the crash test and evaluation criteria of the AASHTO’s MASH. Therefore, the device is eligible for reimbursement under the Federal-aid highway program if installed under the range of tested conditions.

- Name of system: TL-3 4 Cable End Terminal
- Type of system: End Terminal
- Test Level: MASH Test Level 3 (TL3)
- Testing conducted by: Applus IDIADA KARCO Engineering, LLC.
- Date of request: January 30, 2020

FHWA concurs with the recommendation of the accredited crash testing laboratory on the attached form.

Full Description of the Eligible Device

The device and supporting documentation, including reports of the crash tests or other testing done, videos of any crash testing, and/or drawings of the device, are described in the attached form.

Notice

This eligibility letter is issued for the subject device as tested. Modifications made to the device are not covered by this letter. Any modifications to this device should be submitted to the user (i.e., state DOT) as per their requirements.

You are expected to supply potential users with sufficient information on design, installation and maintenance requirements to ensure proper performance.

You are expected to certify to potential users that the hardware furnished has the same chemistry, mechanical properties, and geometry as that submitted for review, and that it will meet the test and evaluation criteria of AASHTO’s MASH.

Issuance of this letter does not convey property rights of any sort or any exclusive privilege. This letter is based on the premise that information and reports submitted by you are accurate and correct. We reserve the right to modify or revoke this letter if: (1) there are any inaccuracies in the information submitted in support of your request for this letter, (2) the qualification testing was flawed, (3) in-service performance or other information reveals safety problems, (4) the system is significantly different from the version that was crash tested, or (5) any other information indicates that the letter was issued in error or otherwise does not reflect full and complete information about the crashworthiness of the system.
Standard Provisions

- To prevent misunderstanding by others, this letter of eligibility designated as FHWA control number CC-162 shall not be reproduced except in full. This letter and the test documentation upon which it is based are public information. All such letters and documentation may be reviewed upon request.

- This letter shall not be construed as authorization or consent by the FHWA to use, manufacture, or sell any patented system for which the applicant is not the patent holder.

- This FHWA eligibility letter is not an expression of any Agency view, position, or determination of validity, scope, or ownership of any intellectual property rights to a specific device or design. Further, this letter does not impute any distribution or licensing rights to the requester. This FHWA eligibility letter determination is made based solely on the crash-testing information submitted by the requester. The FHWA reserves the right to review and revoke an earlier eligibility determination after receipt of subsequent information related to crash testing.

Sincerely,

Michael S. Griffith
Director, Office of Safety Technologies
Office of Safety

Enclosures
Request for Federal Aid Reimbursement Eligibility of Highway Safety Hardware

I request the following devices be considered eligible for reimbursement under the Federal-aid highway program.

Device & TestingCriterion - Enter from right to left starting with Test Level

<table>
<thead>
<tr>
<th>System Type</th>
<th>Submission Type</th>
<th>Device Name / Variant</th>
<th>Testing Criterion</th>
<th>Test Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘CC’:CrashCushions, Attenu-</td>
<td>Physical Crash Testing</td>
<td>TL-34 Cable End Terminal</td>
<td>AASHTOMASH</td>
<td>TL3</td>
</tr>
<tr>
<td>r-</td>
<td>Engineering Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

By submitting this request for review and evaluation by the Federal Highway Administration, I certify that the product(s) was (were) tested in conformity with the AASHTO Manual for Assessing Safety Hardware and that the evaluation results meet the appropriate evaluation criteria in the MASH.

Individual or Organization responsible for the product:

<table>
<thead>
<tr>
<th>Contact Name:</th>
<th>Ron Faulkenberry</th>
<th>Same as Submitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company Name:</td>
<td>Gibraltar Global, LLC.</td>
<td>Same as Submitter</td>
</tr>
<tr>
<td>Address:</td>
<td>1208 Houston Clinton Dr, Burnet TX 78611</td>
<td>Same as Submitter</td>
</tr>
<tr>
<td>Country:</td>
<td>United States of America</td>
<td>Same as Submitter</td>
</tr>
</tbody>
</table>

Enter below all disclosures of financial interests as required by the FHWA `Federal-Aid Reimbursement Eligibility Process for Safety Hardware Devices’ document.

Gibraltar Global, LLC, and Applus IDIADA Karco Engineering, LLC, share no ($0.00) financial interests between the two organizations. This includes no ($0.00) financial interest but not limited to:

i. Compensation, including wages, salaries, commissions, professional fees, or fees for business referrals (dollar values are not needed);
ii. Consulting relationships;
iii. Research funding or other forms of research support;
iv. Patents, copyrights, and other intellectual property interests;
v. Licenses or contractual relationships; or
vi. Business ownership and investment interest.
PRODUCT DESCRIPTION

The Gibraltar Global TL-34 Cable End Terminal consists of one (1) anchor post assembly, one (1) cable release assembly, two (2) J-bolt posts, and two (2) sockets. The terminal is classified as a gating redirective end terminal designed to be used with the Gibraltar Global 4 cable MASH system. The Gibraltar Global Cable Barrier system can be installed with post spacing ranging from 7.0 ft (2.1 m) to 21.0 ft (6.4 m), the post spacing used for this test was 7.0 ft (2.1 m) to evaluate vehicle stability and occupant compartment damage. The as-tested terminal had a total length of 27.5 ft (8.4 m) and the complete installation length was 214.8 ft (65.5 m). As recommended in MASH the cables were tensioned to the manufacturer's specified tension at 100°F, which was 4200 lbs.

There was one modification made during the testing of the Gibraltar Global TL-34 Cable End Terminal during the MASH test program. For Tests 30 and 31, the system included a LON line post installed at the end of the terminal section, 7.5 ft (2.3 m) downstream of the second J-bolt post and 27.5 ft (8.4 m) from the anchor post. The final system design, as used for Tests 32, 33, 34, 35, and 37, the LON line post at the downstream end of the terminal was moved to 14.5 ft downstream from the second J-bolt post. The overall terminal length for both versions of the system was 27.5 ft (8.4 m). Complete details on the design modification is included in Attachment A to this submission and in the complete test reports.

CRASH TESTING

By signature below, the Engineer affiliated with the testing laboratory, agrees in support of this submission that all of the critical and relevant crash tests for this device listed above were conducted to meet the MASH test criteria. The Engineer has determined that no other crash tests are necessary to determine the device meets the MASH criteria.

Engineer Name: Steven Matsusaka

Address: 9270 Holly Rd, Adelanto, CA 92301

Country: United States of America

A brief description of each crash test and its result: Help
<table>
<thead>
<tr>
<th>Required Test Number</th>
<th>Narrative Description</th>
<th>Evaluation Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-30 (1100C)</td>
<td>ApplusIDIADAKARCO Test No. P37410-01. An 1100C test vehicle impacting the terminal end at a nominal speed and angle of 62 mph and 0°, respectively, with the quarter point of the vehicle aligned with the centerline of the terminal. This test is primarily intended to evaluate structural adequacy, occupant risk, and vehicle trajectory. A 2013 Kia Rio 4-door sedan with a test inertial mass of 2425.0 lbs (1100.0 kg) impacted the terminal at a velocity of 61.48 mph (98.95 km/h) and an angle of 0.4°. The impact activated the cable release post and the vehicle was allowed to penetrate the system in a controlled manner. The occupant compartment was not penetrated and deformation limits were not exceeded. The Occupant Impact Velocities (OIV) were 8.9 ft/s (2.7 m/s) and 1.0 ft/s (0.3 m/s) in the x- and y-directions, respectively. The Ridedown Accelerations were -5.6 g and -3.9 g, respectively. The Gibraltar Global TL-34 Cable Terminal met all of the requirements for MASH Test 3-30.</td>
<td>PASS</td>
</tr>
<tr>
<td>3-31 (2270P)</td>
<td>ApplusIDIADAKARCO Test No. P37411-01. A 2270P test vehicle impacting the terminal end at a nominal speed and angle of 62 mph and 0°, respectively, with the centerline of the vehicle aligned with the centerline of the terminal. This test is primarily intended to evaluate structural adequacy, occupant risk, and vehicle trajectory. A 2012 Chevrolet Silverado 1500 4-door pickup truck with a test inertial mass of 4992.3 lbs (2264.5 kg) impacted the terminal at a velocity of 60.11 mph (96.74 km/h) and an angle of 1.1°. The impact activated the cable release post and the vehicle was allowed to penetrate the system in a controlled manner. The occupant compartment was not penetrated and deformation limits were not exceeded. The Occupant Impact Velocities (OIV) were 2.6 ft/s (0.8 m/s) and 3.9 ft/s (1.2 m/s) in the x- and y-directions, respectively. The Ridedown Accelerations were -2.0 g and 1.7 g, respectively. The Gibraltar Global TL-34 Cable Terminal met all of the requirements for MASH Test 3-31.</td>
<td>PASS</td>
</tr>
<tr>
<td>Required Test Number</td>
<td>Narrative Description</td>
<td>Evaluation Results</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>3-32 (1100C)</td>
<td>Applus IDIADA KARCO Test No. P37403-01. An 1100C test vehicle impacting the terminal end at a nominal speed and angle of 62 mph and 5°, respectively, with the centerline of the vehicle aligned with the centerline of the terminal. This test is primarily intended to evaluate structural adequacy, occupant risk, and vehicle trajectory. A 2013 Hyundai Accent 4-door sedan with a test inertial mass of 2425.0 lbs (1100.0 kg) impacted the terminal at a velocity of 62.53 mph (100.64 km/h) and an angle of 5.3°. The impact activated the cable release post and the vehicle was allowed to penetrate the system in a controlled manner. The occupant compartment was not penetrated and deformation limits were not exceeded. The Occupant Impact Velocities (OIV) were 8.9 ft/s (2.7 m/s) and 1.3 ft/s (0.4 m/s) in the x- and y-directions, respectively. The Ridedown Accelerations were -4.0 g and -5.0 g, respectively. The Gibraltar Global TL-3 4 Cable Terminal met all of the requirements for MASH Test 3-32.</td>
<td>PASS</td>
</tr>
<tr>
<td>3-33 (2270P)</td>
<td>Applus IDIADA KARCO Test No. P38257-01. A 2270P test vehicle impacting the terminal end at a nominal speed and angle of 62 mph and 5°, respectively, with the centerline of the vehicle aligned with the centerline of the terminal. This test is primarily intended to evaluate structural adequacy, occupant risk, and vehicle trajectory. A 2012 Chevrolet Silverado 1500 4-door pickup truck with a test inertial mass of 4946.0 lbs (2243.5 kg) impacted the terminal at a velocity of 61.60 mph (99.14 km/h) and an angle of 5.2°. The impact activated the cable release post and the vehicle was allowed to penetrate the system in a controlled manner. The occupant compartment was not penetrated and deformation limits were not exceeded. The Occupant Impact Velocities (OIV) were 0.3 ft/s (0.1 m/s) and 3.0 ft/s (0.9 m/s) in the x- and y-directions, respectively. The Ridedown Accelerations were -1.4 g and 0.8 g, respectively. The Gibraltar Global TL-3 4 Cable Terminal met all of the requirements for MASH Test 3-33.</td>
<td>PASS</td>
</tr>
<tr>
<td>Test No.</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>P38333-01</td>
<td>An 1100C test vehicle impacting the terminal at a nominal speed and angle of 62 mph and 15°, respectively, with the corner of the vehicle bumper aligned with the Critical Impact Point (CIP) of the Length of Need (LON) of the terminal. This test is primarily intended to evaluate structural adequacy, occupant risk, and vehicle trajectory. A 2013 Kia Rio 4-door sedan with a test inertial mass of 2432.8 lbs (1103.5 kg) impacted the terminal at a velocity of 62.33 mph (100.31 km/h) and an angle of 15.6°. The system contained and redirected the vehicle within the exit box and with a Working Width of 3.7 ft. (1.1 m). The occupant compartment was not penetrated and deformation limits were not exceeded. The Occupant Impact Velocities (OIV) were 10.8 ft/s (3.3 m/s) and 12.1 ft/s (3.7 m/s) in the x- and y-directions, respectively. The Ridedown Accelerations were -6.1 g and -8.0 g, respectively. The Gibraltar Global TL-3.4 Cable Terminal met all of the requirements for MASH Test 3-34.</td>
<td></td>
</tr>
<tr>
<td>P38194-01</td>
<td>A 2270P test vehicle impacting the terminal at a nominal speed and angle of 62 mph and 25°, respectively, with the corner of the vehicle bumper aligned with the beginning of the Length of Need (LON) of the terminal. This test is primarily intended to evaluate structural adequacy, occupant risk, and vehicle trajectory. A 2012 Chevrolet Silverado 1500 4-door pickup truck with a test inertial mass of 5008.8 lbs (2272.0 kg) impacted the terminal at a velocity of 63.23 mph (101.76 km/h) and an angle of 25.2°. The system contained and redirected the vehicle within the exit box and with a Working Width of 9.7 ft. (3.0 m). The occupant compartment was not penetrated and deformation limits were not exceeded. The Occupant Impact Velocities (OIV) were 3.9 ft/s (1.2 m/s) and 10.5 ft/s (3.2 m/s) in the x- and y-directions, respectively. The Ridedown Accelerations were -3.7 g and 4.4 g, respectively. The Gibraltar Global TL-3.4 Cable Terminal met all of the requirements for MASH Test 3-35.</td>
<td></td>
</tr>
<tr>
<td>Test Designation</td>
<td>Description</td>
<td>Outcome</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>3-36 (2270P)</td>
<td>MASH Test Designation 3-36. A 2270P test vehicle impacting the terminal at a nominal impact speed and angle of 62 mph and 25°, respectively, with the corner of the vehicle bumper aligned with the Critical Impact Point (CIP) with respect to the transition to a stiff barrier or backup structure. This test is primarily intended to evaluate the performance of the terminal when connected to a stiff barrier or a backup structure. As a cable barrier terminal, the Gibraltar Global TL-34 Cable Terminal is not designed to be transition into a stiff barrier or backup structure and therefore Test 36 is not relevant and was not conducted.</td>
<td>Non-Relevant Test, not conducted</td>
</tr>
<tr>
<td>3-37 (2270P)</td>
<td>Applus IDIADA KARCOTest No. P38236-01. An 1100C test vehicle impacting the terminal at a nominal speed and angle of 62 mph and 25°, respectively, with the corner of the vehicle bumper aligned with the Critical Impact Point (CIP) of the terminal for reverse direction impacts. This test is primarily intended to evaluate structural adequacy, occupant risk, and vehicle trajectory in a reverse direction impact. A 2012 Kia Rio 4-door sedan with a test inertial mass of 2448.2 lbs (1110.5 kg) impacted the terminal at a velocity of 62.53 mph (100.63 km/h) and an angle of 24.9°. Upon impact, cables released and allowed the vehicle to gate through the system in a controlled manner. The occupant compartment was not penetrated and deformation limits were not exceeded. The Occupant Impact Velocities (OIV) were 23.3 ft/s (7.1 m/s) and 19.7 ft/s (6.0 m/s) in the x- and y-directions, respectively. The Ridedown Accelerations were -16.0g and 12.9g, respectively. The Gibraltar Global TL-34 Cable Terminal met all of the requirements for MASH Test 3-37b.</td>
<td>PASS</td>
</tr>
<tr>
<td>3-38 (1500A)</td>
<td>MASH Test Designation 3-38. A 1500A test vehicle impacting the terminal end-on at a nominal impact speed and angle of 62 mph and 0°, respectively, with the centerline of the vehicle aligned with the centerline of the terminal. This test is primarily intended to evaluate the performance of a staged attenuator/terminal when impacted by a mid-size vehicle. The Gibraltar Global TL-34 Cable Terminal is not a staged device, because the force required to move the Impact head down the rail does not change. Therefore, Test 38 is not relevant and was not conducted.</td>
<td>Non-Relevant Test, not conducted</td>
</tr>
<tr>
<td>Test Number</td>
<td>Test Description</td>
<td>Relevant Status</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>3-40 (1100C)</td>
<td>Test for non-redirective crash cushions, not applicable for terminals.</td>
<td>Non-Relevant Test, not conducted</td>
</tr>
<tr>
<td>3-41 (2270P)</td>
<td>Test for non-redirective crash cushions, not applicable for terminals.</td>
<td>Non-Relevant Test, not conducted</td>
</tr>
<tr>
<td>3-42 (1100C)</td>
<td>Test for non-redirective crash cushions, not applicable for terminals.</td>
<td>Non-Relevant Test, not conducted</td>
</tr>
<tr>
<td>3-43 (2270P)</td>
<td>Test for non-redirective crash cushions, not applicable for terminals.</td>
<td>Non-Relevant Test, not conducted</td>
</tr>
<tr>
<td>3-44 (2270P)</td>
<td>Test for non-redirective crash cushions, not applicable for terminals.</td>
<td>Non-Relevant Test, not conducted</td>
</tr>
<tr>
<td>3-45 (1500A)</td>
<td>Test for non-redirective crash cushions, not applicable for terminals.</td>
<td>Non-Relevant Test, not conducted</td>
</tr>
</tbody>
</table>

Full Scale Crash Testing was done in compliance with MASH by the following accredited crash test laboratory (cite the laboratory’s accreditation status as noted in the crash test reports.):

Laboratory Name: Applus IDIADA KARCO Engineering, LLC.

Laboratory Signature: Steven Matsusaka

Address: 9270 Holly Rd, Adelanto, CA 92301

Country: United States of America

Accreditation Certificate Number and Dates of current Accreditation period: TL-371: July 2019 - July 2022

Submitter Signature: Steven Matsusaka

ATTACHMENTS

Attach to this form:
1) Additional disclosures of related financial interest as indicated above.
2) A copy of the full test report, video, and a Test Data Summary Sheet for each test conducted in support of this request.
3) A drawing or drawings of the device(s) that conform to the Task Force-13 Drawing Specifications [Hardware Guide Drawing Standards]. For proprietary products, a single isometric line drawing is usually acceptable to illustrate the product, with detailed specifications, intended use, and contact information provided on the reverse. Additional drawings (not in TF-13 format) showing details that are relevant to understanding the dimensions and performance of the device should also be submitted to facilitate our review.

FHWA Official Business Only:

<table>
<thead>
<tr>
<th>Eligibility Letter</th>
<th>Number</th>
<th>Date</th>
<th>Key Words</th>
</tr>
</thead>
</table>
MASH 2016 Test 3-30 Summary

GENERAL INFORMATION
- Test Agency: Applus IDIADA KARCO
- Test No.: P37410-01
- Test Designation: 3-30
- Test Date: 1/29/18

Impact Conditions
- Impact Velocity: 61.48 mph (98.95 km/h)
- Impact Angle: 0.4°
- Location / Orientation: Offset 16.3 in. (414 mm)
- Kinetic Energy: 306.4 kip-ft (415.5 kJ)

Exit Conditions
- Exit Velocity: Vehicle did not exit
- Exit Angle: N/A
- Final Vehicle Position: 135.4 ft. (41.3 m) Downstream
- Exit Box Criteria Met: N/A

Vehicle Snagging: None
Vehicle Pocketing: None
Vehicle Stability: Satisfactory
Maximum Roll Angle: 4.0°
Maximum Pitch Angle: 1.7°
Maximum Yaw Angle: 17.8°

Occupant Risk
- Longitudinal OIV: 8.9 ft/s (2.7 m/s)
- Lateral OIV: 1.0 ft/s (0.3 m/s)
- Longitudinal RA: -5.6 g
- Lateral RA: -3.9 g
- THIV: 8.9 ft/s (2.7 m/s)
- PHD: 5.8 g
- ASI: 0.21

Test Article Deflections
- Static: N/A
- Dynamic: 5.6 ft. (1.7 m)
- Working Width: 5.6 ft. (1.7 m)
- Debris Field: 129.4 ft. (39.4 m) Downstream
- Working Width: 5.3 ft. (1.6 m) Left

Vehicle Damage
- Vehicle Damage Scale: 12-FD-3
- CDC: 12FDEW2
- Maximum Intrusion: 0.2 in. (5 mm)

Figure 4 Summary of Test 3-30
MASH 2016 Test 3-31 Summary

GENERAL INFORMATION
Test Agency Applus IDIADA KARCO
Test No. P37411-01
Test Designation 3-31
Test Date 1/29/18

TEST ARTICLE
Name / Model TL-3 4 Cable Terminal
Type End Terminal
Installation Length 214.8 ft. (65.5 m)
Terminal Length 27.5 ft. (8.4 m)
Road Surface Compacted Soil

TEST VEHICLE
Type / Designation 2270P
Year, Make, and Model ... 2012 Chevrolet Silverado 1500
Curb Mass 4,898.6 lbs (2,222.0 kg)
Test inertial Mass 4,992.3 lbs (2,264.5 kg)
Gross Static Mass 4,992.3 lbs (2,264.5 kg)

Impact Conditions
Impact Velocity 60.11 mph (96.74 km/h)
Impact Angle 1.1°
Location / Orientation 1.4 in (36 mm) Left
Kinetic Energy 603.0 kip-ft (817.6 kJ)

Exit Conditions
Exit Velocity Vehicle did not exit
Exit Angle N/A
Final Vehicle Position 227.9 ft. (69.5 m) Left
1.4 ft. (0.4 m) Downstream
Exit Box Criteria Met N/A
Vehicle Snagging None
Vehicle Pocketing None
Vehicle Stability Satisfactory
Maximum Roll Angle 2.3°
Maximum Pitch Angle -2.5°
Maximum Yaw Angle 4.4°

Occupant Risk
Longitudinal OIV 2.6 ft/s (0.8 m/s)
Lateral OIV 3.9 ft/s (1.2 m/s)
Longitudinal RA -2.0 g
Lateral RA 1.7 g
THV 4.9 ft/s (1.5 m/s)
PHD 2.2 g
ASI 0.1

Test Article Deflections
Static N/A
Dynamic 3.3 ft. (1.0 m)
Working Width 3.3 ft. (1.0 m)
Debris Field Lateral 6.7 ft. (2.0 m)

Vehicle Damage
Vehicle Damage Scale 12-FD-2
CDC 12FDEW2
Maximum Intrusion 0.3 in. (8 mm)

Figure 4 Summary of Test 3-31
MASH 2016 Test 3-32 Summary

General Information
- **Test Agency**: Applus IDIADA KARCO
- **Test No.**: P37403-01
- **Test Designation**: 3-32
- **Test Date**: 2/12/18

Test Article
- **Name / Model**: TL-3 4 Cable Terminal
- **Type**: End Terminal
- **Installation Length**: 213.0 ft. (64.9 m)
- **Terminal Length**: 27.5 ft. (8.4 m)
- **Road Surface**: Compacted Soil

Test Vehicle
- **Type / Designation**: 1100C
- **Year, Make, and Model**: 2013 Hyundai Accent
- **Curb Mass**: 2,489.0 lbs (1,129.0 kg)
- **Test Inertial Mass**: 2,425.0 lbs (1,100.0 kg)
- **Gross Static Mass**: 2,592.6 lbs (1,176.0 kg)

Impact Conditions
- **Impact Velocity**: 62.53 mph (100.64 km/h)
- **Impact Angle**: 5.3°
- **Location / Orientation**: 1.5 in. (38 mm) Right of CL
- **Kinetic Energy**: 317.0 kip-ft (429.8 kJ)

Exit Conditions
- **Exit Velocity**: Vehicle did not exit
- **Exit Angle**: N/A
- **Final Vehicle Position**: 136.6 ft. (41.6 m) Downstream
- **Exit Box Criteria Met**: N/A

Vehicle Damage
- **Vehicle Damage Scale**: 12-FR-4
- **CDC**: 12FZEW2
- **Maximum Intrusion**: Negligible

Test Article Deflections
- **Static**: N/A
- **Dynamic**: 5.6 ft. (1.7 m)
- **Working Width**: 11.1 ft. (3.4 m)
- **Debris Field**: 119.1 ft. (36.3 m) Downstream

Vehicle Damage
- **Vehicle Damage Scale**: 12-FR-4
- **CDC**: 12FZEW2
- **Maximum Intrusion**: Negligible

Occupant Risk
- **Longitudinal OIV**: 8.9 ft/s (2.7 m/s)
- **Lateral OIV**: 1.3 ft/s (0.4 m/s)
- **Longitudinal RA**: -4.0 g
- **Lateral RA**: -5.0 g
- **THIV**: 8.9 ft/s (2.7 m/s)
- **PHD**: 6.3 g
- **ASI**: 0.23

Figure 3 Summary of Test 3-32

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1</td>
</tr>
<tr>
<td>0.120</td>
<td>2</td>
</tr>
<tr>
<td>0.240</td>
<td>3</td>
</tr>
<tr>
<td>0.360</td>
<td>4</td>
</tr>
<tr>
<td>0.540</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 3 Summary of Test 3-32
MASH 2016 Test 3-33 Summary

General Information
- Test Agency: IDIADA KARCO Engineering
- Test No.: P38257-01
- Test Designation: 3-33
- Test Date: 8/31/18

Test Article
- Name / Model: TL-3 4 Cable Terminal
- Type: End Terminal
- Installation Length: 213.0 ft. (64.9 m)
- Terminal Length: 27.5 ft. (8.4 m)
- Road Surface: Compacted Soil

Test Vehicle
- Type / Designation: 2270P
- Year, Make, and Model: 2012 Chevrolet Silverado 1500
- Curb Mass: 5,060.6 lbs (2,295.5 kg)
- Test Inertial Mass: 4,946.0 lbs (2,243.5 kg)
- Gross Static Mass: 4,946.0 lbs (2,243.5 kg)

Impact Conditions
- Impact Velocity: 61.60 mph (99.14 km/h)
- Impact Angle: 5.2°
- Location / Orientation: 0.75 in. (19 mm) left of CL
- Kinetic Energy: 615.8 kip-ft (835.0 kJ)

Exit Conditions
- Exit Velocity: 59.36 mph (95.53 km/h)
- Exit Angle: 3.4°
- Final Vehicle Position: 204.9 ft. (62.5 m) Downstream
- Exit Box Criteria Met: N/A

Occupant Risk
- Longitudinal OIV: 0.3 ft/s (0.1 m/s)
- Lateral OIV: 3.0 ft/s (0.9 m/s)
- Longitudinal RA: -1.4 g
- Lateral RA: 0.8 g
- THIV: 3.6 ft/s (1.1 m/s)
- PHO: 1.6 g
- ASI: 0.09

Test Article Deflections
- Static: N/A
- Dynamic: 3.3 ft. (1.0 m)
- Working Width: 3.3 ft. (1.0 m)
- Debris Field: 64.3 ft. (19.6 m) Downstream
- Vehicle Damage: 7.9 ft. (2.4 m) Left

Vehicle Damage
- Vehicle Damage Scale: 12-FD-2*
- CDC: 12FDLW1*
- Maximum Intrusion: Negligible*

* Before secondary impact

Figure 4 Summary of Test 3-33
MASH 2016 Test 3-34 Summary

![Test Article Images](image)

GENERAL INFORMATION
- **Test Agency**: Applus IDIADA KARCO
- **Test No.**: P38333-01
- **Test Designation**: 3-34
- **Test Date**: 11/20/18

TEST ARTICLE
- **Name / Model**: TL-34 Cable Terminal
- **Type**: End Terminal
- **Installation Length**: 318.3 ft. (97.0 m)
- **Terminal Length**: 27.5 ft. (8.4 m)
- **Road Surface**: Compacted soil

TEST VEHICLE
- **Type / Designation**: 1100C
- **Year, Make, and Model**: 2013 Kia Rio
- **Curb Mass**: 2,554.0 lbs (1,158.5 kg)
- **Test Inertial Mass**: 2,432.8 lbs (1,103.5 kg)
- **Gross Static Mass**: 2,637.8 lbs (1,196.5 kg)

Impact Conditions
- **Impact Velocity**: 62.33 mph (100.31 km/h)
- **Impact Angle**: 15.6°
- **Location / Orientation**: 3.4 in. (86 mm) from midspan
- **Impact Severity**: 22.8 kip-ft (31.0 kJ)

Exit Conditions
- **Exit Velocity**: 48.09 mph (77.39 km/h)
- **Exit Angle**: 4.5°
- **Final Vehicle Position**: 195.8 ft. (59.7 m) Downstream
 37.9 ft. (11.6 m) Right
- **Exit Box Criteria Met**: Yes
- **Vehicle Snagging**: None
- **Vehicle Pocketing**: None
- **Vehicle Stability**: Satisfactory
- **Maximum Roll Angle**: 2.9°
- **Maximum Pitch Angle**: 8.9°
- **Maximum Yaw Angle**: -19.5°

Occupant Risk
- **Longitudinal OIV**: 10.8 ft/s (3.3 m/s)
- **Lateral OIV**: 12.1 ft/s (3.7 m/s)
- **Longitudinal RA**: -6.1 g
- **Lateral RA**: -8.0 g
- **THIV**: 18.0 ft/s (5.5 m/s)
- **PHD**: 9.8 g
- **ASI**: 0.41

Test Article Deflections
- **Static**: N/A
- **Dynamic**: 3.2 ft. (1.0 m)
- **Working Width**: 3.7 ft. (1.1 m)
- **Debris Field**: 100.1 ft. (30.5 m) Downstream
 24.7 ft. (7.5 m) Lateral

Vehicle Damage
- **Vehicle Damage Scale**: 11-LFQ-4
- **CDC**: 11LYEW3
- **Maximum Intrusion**: 0.6 in. (15 mm)

Figure 3 Summary of Test 3-34
MASH 2016 Test 3-35 Summary

Impact Conditions
- Impact Velocity: 63.23 mph (101.76 km/h)
- Impact Angle: 25.2°
- Location / Orientation: LON Point
- Impact Severity: 121.4 kip-ft (164.5 kJ)

Exit Conditions
- Exit Velocity: Out of Camera View
- Exit Angle: N/A
- Final Vehicle Position: 240.9 ft. (73.4 m) Downstream, 18.6 ft. (5.7 m) Right
- Exit Box Criteria Met: Yes
- Vehicle Snagging: None
- Vehicle Pocketing: None
- Vehicle Stability: Satisfactory
- Maximum Roll Angle: 11.3°
- Maximum Pitch Angle: 3.9°
- Maximum Yaw Angle: 24.9°

Vehicle Damage
- Vehicle Damage Scale: 11-LFQ-3
- CDC: 11FRMN2
- Maximum Intrusion: Negligible

Test Article Deflections
- Static: 3.4 ft. (1.0 m)
- Dynamic: 9.7 ft. (3.0 m)
- Working Width: 9.7 ft. (3.0 m)
- Debris Field: 172.8 ft. (52.7 m) Downstream, 37.0 ft. (11.3 m) Field Side

Test Article
- Name / Model: TL-3 4 Cable Terminal
- Type: End Terminal
- Installation Length: 335.7 ft. (102.3 m)
- Terminal Length: 27.5 ft. (8.4 m)
- Road Surface: Concrete and compacted soil

Test Vehicle
- Type / Designation: 2270P
- Year, Make, and Model: 2012 Chevrolet Silverado 1500
- Curb Mass: 5,049.6 lbs (2,290.5 kg)
- Test Inertial Mass: 5,008.8 lbs (2,272.0 kg)
- Gross Static Mass: 5,008.8 lbs (2,272.0 kg)

Figure 4 Summary of Test 3-35
MASH 2016 Test 3-37b Summary

GENERAL INFORMATION
- **Test Agency:** Applus IDIADA KARCO
- **Test No.:** P38236-01
- **Test Designation:** 3-37b
- **Test Date:** 9/17/18

TEST ARTICLE
- **Name / Model:** TL-3 4 Cable Terminal
- **Type:** End Terminal
- **Installation Length:** 314.8 ft (96 m)
- **Terminal Length:** 27.5 ft (8.4 m)
- **Road Surface:** Compacted soil

TEST VEHICLE
- **Type / Designation:** 1100C
- **Year, Make, and Model:** 2012 Kia Rio
- **Curb Mass:** 2,417.3 lbs (1,096.5 kg)
- **Test Inertial Mass:** 2,448.2 lbs (1,110.5 kg)
- **Gross Static Mass:** 2,613.5 lbs (1,185.5 kg)

Impact Conditions
- **Impact Velocity:** 62.53 mph (100.63 km/h)
- **Impact Angle:** 24.9°
- **Location / Orientation:** Terminal Post 2
- **Impact Severity:** 56.7 kip-ft (76.9 kJ)

Exit Conditions
- **Exit Velocity:** 32.06 mph (51.60 km/h)
- **Exit Angle:** 3.2°
- **Final Vehicle Position:** 107.4 ft (32.7 m) Downstream
- **Exit Box Criteria Met:** N/A

Occupant Risk
- **Longitudinal OIV:** 23.3 ft/s (7.1 m/s)
- **Lateral OIV:** 19.7 ft/s (6.0 m/s)
- **Longitudinal RA:** -16.0 g
- **Lateral RA:** 12.9 g
- **THIV:** 39.7 ft/s (12.1 m/s)
- **PHD:** 20.1 g
- **ASI:** 1.39

Test Article Deflections
- **Static:** N/A
- **Dynamic:** 4.3 ft (1.3 m)
- **Working Width:** 16.0 ft (4.9 m)
- **Debris Field:** 146.1 ft (44.5 m) Downstream
- **Vehicle Damage Scale:** 01-LFQ-4
- **CDC:** 01 FDEW3
- **Maximum Intrusion:** 0.7 in (18 mm)

Figure 4 Summary of Test 3-37b
Begin Required Post Spacing (See MASH Test and Post Spacing Chart)

Swaged Cable Connections at CIP
(approximately 20ft downstream from impact point, not on a post)

(4) 3/4" Wire Ropes

Start interchanging top two cables. See Cable Interchange Drawing.

UPSTREAM TERMINAL SECTION

2-3'0" x 10'-0" Reinforced Foundation
(no rebar shown)

27'-6"

13'-9"±12"

7'-6"±12"

Alternate posts for barrier installation

(4) Anchor Terminal Fitting Ends

TP4-4

Anchor Post

1" Anchor Terminal Fitting

C Section Post

DOWNSTREAM TERMINAL SECTION

Cable Reference Line

(4) Swaged Cable Connections

(4) Swaged Terminal Fitting Ends

Cable Release & Anchor Post

Terminal Post
(Welded Rebar Socket)

Terminal Post
(Welded Rebar Socket)

Line Post
(Welded Rebar Socket)

1" Anchor Terminal Fitting

3/4" 0 Wire

C-Slot this side

Steel Socket
1-1/2" 0 Hole w/4-#4 Rebar
3 Sides Welded to Socket (TP1-4 Only)

1" Swaged Cable Connection

3/4" 0 Wire

3/4" J-Bolt

C-Section Post
3-1/4" x 2-1/2" x 57"

C-Section Post
3-1/4" x 2-1/2" x 57"

3" x 6" x 15" Steel Socket w/4-#4 Rebar Welded to Socket

1" RH Swaged Terminal Fitting

12"±

36"±

24"±

72"±

108"±

6-3"±12"

1-1/2" 0 Hole
3 Sides Welded to Socket
(TP1-4 Only)

27'-6"

7'-6"±12"

13'-9"±12"

6-3"±12"

(4) Anchor Terminal Fitting Ends

End of Terminal Section
(no post present)

End of Terminal Section
(no post present)

Alternate posts for barrier installation

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"

1/4"±

1/2"

12"
Continue interchanging top two cables with top hairpin loop for length of installation.

Cable 4 rests on top of hairpin loop
Cable 3 through top hairpin loop

Cable 3 rests on top of hairpin loop
Cable 4 through top hairpin loop

Note:
First five posts after anchor must alternate side of cable, typical each end.

Cable 4 rests on Cable 3
Cable 3 through J-Bolt

Cable Installation Note:
1. Interchanging top two cables run semi-parallel to each other, never twisting.
2. The top cables alternate passing through the top hairpin loop and resting on the top hairpin loop at each post starting after TP4-4.
7/8"Ø Hole Front & Back, Typ. All TP Posts

1-1/2"Ø Hole Two Sides

RH STUD ATF ASSY
Anchor Terminal Fitting RH Stud

ATF
Anchor Terminal Fitting

ATF-END
Anchor Terminal Fitting End

SOCK-S
Short Rebar Socket

TUBE-D
Driven Socket

4-LNP-S
Line Post/Socketed

4-LNP-D
Line Post/Driven

RH/LH SWAGE ASSY

CSTB
Cable Splice Turnbuckle

J-BLT
J-Bolt

U-Bolt Lock-Plate Assembly

4-LOCK
TL4 Lockplate

PROPRIETARY TO GIBRALTAR

TL4 MASH System Parts

Gibraltar Cable Barrier Systems

Scale: NTS
Layout: ANSI B
Date: 12/19/18
Drater: BH
GENERAL NOTES:
1. For additional information contact Gibraltar, Inc. at 1-833-715-0810 or
2. All concrete shall be per specification; minimum 2500 PSI.
3. The Cable Barrier System shall be installed on shoulders or on medians

TERMINAL SECTION
1.1/4"± 1/2" 3. The Cable Barrier System shall be installed on shoulders or on medians

CRP 12" with slopes of 6: 1 or flatter.

If installed on slopes steeper than 6: 1 up to 4: 1 the TL-4 system performs as a TL-3 and Gibraltar must be contacted for various guidelines related to placement. (Max. Post Spacing 18" on 4:1)

4. The Cable Barrier System is accepted by the FHWA Test Level - 4.

5. See the specification for delineation.

6. Rock Clause: Where solid rock is encountered: TP1-4 TP4-4 (no post present)

6.A. For socketed post, continue digging 12" diameter, 15" deep into rock or the required plan depth, whichever comes first.

6.B. For driven post, core drill a 4" diameter hole 18" deep into rock or the required plan depth, whichever comes first.

7. The Gibraltar cable barrier system shall be installed in standard compacted soil. Soil must be well drained.

9. Minimum recommended line post foundation.

9.A. Without mowstrip, 36" Deep x 12" diameter foundations with #3 rebar ring x 8" diameter with two #4 rebar vertical bars 30" long or 30" welded rebar socket.

9.B. With 4" minimum depth hot mix asphalt, 30" deep x 12" diameter foundations with #3 rebar ring x 8" diameter with two #4 rebar vertical bars 30" long or 30" welded rebar socket.

9.C. With 3" minimum depth concrete mowstrip, 24" deep x 12" diameter foundations. (No rebar required).

MASH 4 Cable Tests PROPRIETARY TO GIBRALTAR

TL-4 4M Cable System Layout

Cable Tension Chart*

<table>
<thead>
<tr>
<th>Cable Tension</th>
<th>Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10 °F</td>
<td>8600</td>
</tr>
<tr>
<td>0 °F</td>
<td>8200</td>
</tr>
<tr>
<td>10 °F</td>
<td>7800</td>
</tr>
<tr>
<td>20 °F</td>
<td>7400</td>
</tr>
<tr>
<td>30 °F</td>
<td>7000</td>
</tr>
<tr>
<td>40 °F</td>
<td>6600</td>
</tr>
<tr>
<td>50 °F</td>
<td>6200</td>
</tr>
<tr>
<td>60 °F</td>
<td>5800</td>
</tr>
<tr>
<td>70 °F</td>
<td>5400</td>
</tr>
<tr>
<td>80 °F</td>
<td>5000</td>
</tr>
<tr>
<td>90 °F</td>
<td>4600</td>
</tr>
<tr>
<td>100 °F</td>
<td>4200</td>
</tr>
<tr>
<td>110 °F</td>
<td>3800</td>
</tr>
</tbody>
</table>

*Allowable Deviation from Chart +/- 10%