May 12, 2021

Mr. Roberto Impero
Industry AMS srl
Via Dante Giacosa
Marcianise (CE), 81025
Italy

Dear Mr. Impero:

This letter is in response to your February 24, 2021 request for the Federal Highway Administration (FHWA) to review a roadside safety device, hardware, or system for eligibility for reimbursement under the Federal-aid highway program. This FHWA letter of eligibility is assigned FHWA control number CC-166 and is valid until a subsequent letter is issued by FHWA that expressly references this device.

Decision

The following device is eligible within the length-of-need, with details provided in the form which is attached as an integral part of this letter:

- Ermes End Terminal

Scope of this Letter

To be found eligible for Federal-aid funding, new roadside safety devices should meet the crash test and evaluation criteria contained in the American Association of State Highway and Transportation Officials’ (AASHTO) Manual for Assessing Safety Hardware (MASH). However, the FHWA, the Department of Transportation, and the United States Government do not regulate the manufacture of roadside safety devices. Eligibility for reimbursement under the Federal-aid highway program does not establish approval, certification or endorsement of the device for any particular purpose or use.

This letter is not a determination by the FHWA, the Department of Transportation, or the United States Government that a vehicle crash involving the device will result in any particular outcome, nor is it a guarantee of the in-service performance of this device. Proper manufacturing, installation, and maintenance are required in order for this device to function as tested.

This finding of eligibility is limited to the crashworthiness of the system and does not cover other structural features, nor conformity with the Manual on Uniform Traffic Control Devices.
Eligibility for Reimbursement

Based solely on a review of crash test results and certifications submitted by the manufacturer, and the crash test laboratory, FHWA agrees that the device described herein meets the crash test and evaluation criteria of the AASHTO’s MASH. Therefore, the device is eligible for reimbursement under the Federal-aid highway program if installed under the range of tested conditions.

Name of system: Ermes End Terminal
Type of system: Crash Cushion
Test Level: MASH Test Level 3 (TL3)
Testing conducted by: CSI SpA
Date of request: February 24, 2021

FHWA concurs with the recommendation of the accredited crash testing laboratory on the attached form.

Full Description of the Eligible Device

The device and supporting documentation, including reports of the crash tests or other testing done, videos of any crash testing, and/or drawings of the device, are described in the attached form.

Notice

This eligibility letter is issued for the subject device as tested. Modifications made to the device are not covered by this letter. Any modifications to this device should be submitted to the user (i.e., state DOT) as per their requirements.

You are expected to supply potential users with sufficient information on design, installation and maintenance requirements to ensure proper performance.

You are expected to certify to potential users that the hardware furnished has the same chemistry, mechanical properties, and geometry as that submitted for review, and that it will meet the test and evaluation criteria of AASHTO’s MASH.

Issuance of this letter does not convey property rights of any sort or any exclusive privilege. This letter is based on the premise that information and reports submitted by you are accurate and correct. We reserve the right to modify or revoke this letter if: (1) there are any inaccuracies in the information submitted in support of your request for this letter, (2) the qualification testing was flawed, (3) in-service performance or other information reveals safety problems, (4) the system is significantly different from the version that was crash tested, or (5) any other information indicates that the letter was issued in error or otherwise does not reflect full and complete information about the crashworthiness of the system.
Standard Provisions

- To prevent misunderstanding by others, this letter of eligibility designated as FHWA control number CC-166 shall not be reproduced except in full. This letter and the test documentation upon which it is based are public information. All such letters and documentation may be reviewed upon request.

- This letter shall not be construed as authorization or consent by the FHWA to use, manufacture, or sell any patented system for which the applicant is not the patent holder.

- This FHWA eligibility letter is not an expression of any Agency view, position, or determination of validity, scope, or ownership of any intellectual property rights to a specific device or design. Further, this letter does not impute any distribution or licensing rights to the requester. This FHWA eligibility letter determination is made based solely on the crash-testing information submitted by the requester. The FHWA reserves the right to review and revoke an earlier eligibility determination after receipt of subsequent information related to crash testing.

Sincerely,

Michael S. Griffith
Director, Office of Safety Technologies
Office of Safety

Enclosures
Request for Federal Aid Reimbursement Eligibility of Highway Safety Hardware

Date of Request: February 24, 2021

I request the following devices be considered eligible for reimbursement under the Federal-aid highway program.

<table>
<thead>
<tr>
<th>System Type</th>
<th>Submission Type</th>
<th>Device Name / Variant</th>
<th>Testing Criterion</th>
<th>Test Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC: Crash Cushions, Attenuators, & Terminals</td>
<td>Physical Crash Testing</td>
<td>Ermes End Terminal</td>
<td>AASHTO MASH</td>
<td>TL3</td>
</tr>
</tbody>
</table>

By submitting this request for review and evaluation by the Federal Highway Administration, I certify that the product(s) was (were) tested in conformity with the AASHTO Manual for Assessing Safety Hardware and that the evaluation results meet the appropriate evaluation criteria in the MASH.

Identification of the individual or organization responsible for the product:

Contact Name: Roberto Impero
Company Name: Industry AMS srl
Address: Via Dante Giacosa, Marcianise (CE), 81025
Country: Italy

Enter below all disclosures of financial interests as required by the FHWA 'Federal-Aid Reimbursement Eligibility Process for Safety Hardware Devices' document.

Subject: Disclosure of financial interest

CSI Spa, is an independent research and testing laboratory having no affiliation with any other entity. The principals and staff of CSI Spa have no past or present financial, contractual or organizational interest in any company or entity directly or indirectly related to the products that CSI Spa tests.
PRODUCT DESCRIPTION

New Hardware or Modification to Existing Hardware

Product Description
Ermes End Terminal is a fully-redirective, non-gating End Terminal tested according to MASH-16 criteria. It has a frontal trolley unit that allows a controlled deformation, a collapsable beam made up of a 10 modules that crush in a frontal impact to absorb energy and stop the vehicle in a controlled manner, and side steel tubular for side impact. The unit is a 19.4 feet (5.92m) long, 11.41 inches (0.29) wide and 350 inches (0.817ml high.

CRASH TESTING

A brief description of each crash test and its result:

<table>
<thead>
<tr>
<th>Required Test Number</th>
<th>Narrative Description</th>
<th>Evaluation Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-30 (1100C)</td>
<td>Complete test report 0004_ME_HRB_21 - CSI Spa. Test 3-30 involves a 1100C passenger car impacting the end terminal at a nominal impact speed of 100 km/h (62.2 mph) and an impact at 0 degrees with the quarter point of the vehicle aligned with the center line of the Ermes End Terminal. This test is preliminary intended to evaluate occupant risk and vehicle trajectory criteria. For this test a Kia Rio impacted the Ermes End Terminal at an angle of 0 degrees. Upon impact the vehicle forced the trolley rearward and began to collapse the beam modules. The End Terminal brought the vehicle to a controlled stop. The test vehicle sustained damage to its front end. The occupant compartment was not penetrated and the deformation was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within limits of the MASH specification for OIV and ORA. Ermes End Terminal passed all evaluation criteria for test 3-30.</td>
<td>PASS</td>
</tr>
<tr>
<td>3-31 (2270P)</td>
<td>Complete test report 0081_ME_HRB_18 - CSI Spa. Test 3-31 involves a 2270P pick up truck Impacting the End Terminal at a nominal impact speed of 100m/h (62.2 mph) and a impact at 0 degrees with the center line of the End Terminal. This test is preliminary intended to evaluate the capacity of the End Terminal to stop the vehicle in a safe and controlled manner. For this test, a Dodge Ram 1500 impacted the Ermes End Terminal at an angle of 0 degrees. Upon the impact the vehicle forced the Ermes trolley rearward and began to collapse the beam module. The End Terminal brought the vehicle to a controlled stop. The test vehicle sustained damage to its front end. The occupant compartment was not penetrated and the deformation was within allowable limits. The maximum roll and pitch angles did not exceed 75deg. and the occupant risk values were within limits for MASH specifications for OIV and ORA. Ermes End Terminal passed all evaluation criteria for test TL 3.31</td>
<td>PASS</td>
</tr>
<tr>
<td>Required Test Number</td>
<td>Narrative Description</td>
<td>Evaluation Results</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>3-32 (1100C)</td>
<td>Complete test report 0001\ME\HRB\21 - CSI Spa. Test 3-32 involves a 1100C passenger car impacting the end terminal at a nominal impact speed of 100 km/h (62.2 mph) and an impact at 15 degrees with the centerline of the Ermes End Terminal. This test is preliminary intended to evaluate occupant risk and vehicle trajectory criteria. For this test a Kia Rio impacted the Ermes End Terminal at an angle of 15 degrees. Upon impact the vehicle forced the trolley rearward and began to collapse the beam modules. The End Terminal brought the vehicle to a controlled stop. The test vehicle sustained damage to its front end. The occupant compartment was not penetrated and the deformation was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within limits of the MASH specification for OIV and ORA. Ermes End Terminal passed all evaluation criteria for test 3-32.</td>
<td>PASS</td>
</tr>
<tr>
<td>3-33 (2270P)</td>
<td>Complete test report 0097\ME\HRB\18 - CSI Spa. Test TL 3-33 involves a 2270 pick up truck impacting the End Terminal at a nominal impact speed of 100 km/h (62.2 mph) and an impact at 15 degrees with the centerline of the vehicle aligned with the centerline of the End Terminal. This test is preliminary intended to evaluate occupant risk and vehicle trajectory and the capacity of the end terminal to stop the vehicle in a controlled manner for an oblique impact. For this test a Dodge Ram 1500 impacted Ermes End Terminal. Upon impact the vehicle forced the Ermes trolley rearward and began to collapse the beam modules. The end terminal brought the vehicle to a controlled stop. The test vehicle sustained damage to its front end. The occupant compartment was not penetrated and the deformation was within allowable limits. The maximum pitch and roll angles did not exceed 75 deg. and the occupant risk values were within limits for MASH specification for OIV and ORA. Ermes End Terminal passed all evaluation criteria for test 3-33.</td>
<td>PASS</td>
</tr>
<tr>
<td>3-34 (1100C)</td>
<td>Complete test report 0003\ME\HRB\21 - CSI Spa. Test 3-34 involves a 1100C passenger car impacting the end terminal at a nominal impact speed of 100 km/h (62.2 mph) and an impact at 15 degrees with the CIP at the point where the end terminal behavior changes from capturing to redirective. For this test a Kia Rio impacted the Ermes End Terminal at an angle of 15 deg. The impact point was downstream the trolley. Upon the impact the vehicle was smoothly redirected. The test vehicle sustained damage to its right front corner, doors and rear quarter panel. The occupant compartment was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within allowable limits for MASH specification for OIV and ORA. Ermes End Terminal passed all evaluation criteria for test 3-34.</td>
<td>PASS</td>
</tr>
</tbody>
</table>
Complete test report 0126\ME\HRB\18 - CSI Spa. Test 3-35 involves a 2270P pick up impacting the Ermes End Terminal at a nominal impact speed at 100km/h (62.2mph) and a 25 degrees with the CIP at the point where the End Terminal behavior changes from capturing to redirective. This test is preliminary intended to evaluate the capacity for the end terminal for redirection/containment of heavy vehicles. For this test a Chevrolet Silverado impacted Ermes End Terminal at an angle of 25 degrees. The impact point was located downstream the trolley and very close to the nose. Upon the impact the vehicle was smoothly redirected. The test vehicle sustained damage to its left front corner, doors and rear quarter panel. The occupant compartment was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within limits for MASH specification for OIV and ORA. Ermes end terminal passed all evaluation criteria for test 3-35. In order to evaluate the behavior of the transition between end terminal and rear barrier, was also performed a test described in 0098\ME\HRB\18. In this test a Chevrolet Silverado impact the End Terminal at the point where the center line of the pick up intersect the center line of the backup structure of the terminal. In this point is located the transition piece between end terminal and barrier. During the test was installed a MASH tested barrier.

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Description</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-35 (2270P)</td>
<td>Ermes End Terminal is not attached to a rigid barrier.</td>
<td>PASS</td>
</tr>
<tr>
<td>3-36 (2270P)</td>
<td>Ermes End Terminal is not installed in reverse impact condition.</td>
<td>Non-Critical, not conducted</td>
</tr>
<tr>
<td>3-37 (2270P)</td>
<td>Ermes End Terminal is not installed in reverse impact condition.</td>
<td>Non-Critical, not conducted</td>
</tr>
<tr>
<td>3-38 (1500A)</td>
<td>Numerical Simulation was performed on Ermes End Terminal</td>
<td>Non-Critical, not conducted</td>
</tr>
<tr>
<td>3-39 (1100C)</td>
<td>Test for non-redirective end terminal, NOT APPLICABLE</td>
<td>Non-Critical, not conducted</td>
</tr>
<tr>
<td>3-40 (2270P)</td>
<td>Test for non-redirective end terminal, NOT APPLICABLE</td>
<td>Non-Critical, not conducted</td>
</tr>
<tr>
<td>3-41 (2270P)</td>
<td>Test for non-redirective end terminal, NOT APPLICABLE</td>
<td>Non-Critical, not conducted</td>
</tr>
<tr>
<td>3-42 (1100C)</td>
<td>Test for non-redirective end terminal, NOT APPLICABLE</td>
<td>Non-Critical, not conducted</td>
</tr>
<tr>
<td>3-43 (2270P)</td>
<td>Test for non-redirective end terminal, NOT APPLICABLE</td>
<td>Non-Critical, not conducted</td>
</tr>
<tr>
<td>3-44 (2270P)</td>
<td>Test for non-redirective end terminal, NOT APPLICABLE</td>
<td>Non-Critical, not conducted</td>
</tr>
<tr>
<td>3-45 (1500A)</td>
<td>Test for non-redirective end terminal, NOT APPLICABLE</td>
<td>Non-Critical, not conducted</td>
</tr>
</tbody>
</table>

Full Scale Crash Testing was done in compliance with MASH by the following accredited crash test laboratory (cite the laboratory’s accreditation status as noted in the crash test reports):

<table>
<thead>
<tr>
<th>Laboratory Name:</th>
<th>CSI SPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Signature:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td>Viale Lombardia 20 - Bollate - MI</td>
</tr>
<tr>
<td>Country:</td>
<td>Italy</td>
</tr>
<tr>
<td>Accreditation Certificate Number and Dates of current Accreditation period:</td>
<td>Accredita 0006 rev.05 Expiring Date: 08-03-24</td>
</tr>
</tbody>
</table>

CSI SPA
Viale Lombardia 20
20097 Bollate (MI)
C.F./P.IVA 11363160181
ATTACHMENTS

Attach to this form:
1) Additional disclosures of related financial interest as indicated above.
2) A copy of the full test report, video, and a Test Data Summary Sheet for each test conducted in support of this request.
3) A drawing or drawings of the device(s) that conform to the Task Force-13 Drawing Specifications [Hardware Guide Drawing Standards]. For proprietary products, a single isometric line drawing is usually acceptable to illustrate the product, with detailed specifications, intended use, and contact information provided on the reverse. Additional drawings (not in TF-13 format) showing details that are relevant to understanding the dimensions and performance of the device should also be submitted to facilitate our review.

FHWA Official Business Only:

<table>
<thead>
<tr>
<th>Eligibility Letter</th>
<th>AASHTO TF13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Date</td>
</tr>
<tr>
<td></td>
<td>Designator</td>
</tr>
<tr>
<td></td>
<td>Key Words</td>
</tr>
</tbody>
</table>
General Information
- **Test agency:** CSI S.p.A.
- **Test No.:** 0004/ME/HRB/21
- **Date:** 20/01/2021

Test Article
- **Type:** ERNES
- **Installation length [m]:** 5.688
- **Size and/or dimension and material of key elements:** See attached drawings
- **Foundation type and condition:** Compacted SOIL

Test Vehicle
- **Type/Designation:** Kia Rio
- **Mass [kg]:**
 - Curb: 1007.8
 - Test Inertial: 1081.8
 - Gross static: 1157.4

Impact Conditions
- **Speed [km/h]:** 98.2
- **Angle [deg]:** 0.0
- **Impact Severity [kJ]:** 430.6
- **Impact Location:** Frontal, offset W/4, 0º
- **Exit Speed [km/h]:** < 10
- **Exit Angle [deg]:** N/A

Post-impact Trajectory
- **Vehicle Stability:** Satisfactory
- **Stopping Distance:** 3 m upstream
- **Vehicle snagging:** None
- **Vehicle pocketing:** None

Occupant Risk Values
- **Impact Velocity [m/s]:**
 - X-direction: 11.9
 - Y-direction: -1.1
- **Ride down Acceleration [g/s]:**
 - X-direction: -18.3
 - Y-direction: 3.7
- **THIV:** 42.8
- **PHO:** 18.3
- **ASI 2010:** 1.43

Test Article Damage
- **Test Article Deflections [m]:**
 - Permanent: 11.9
 - Dynamic: -1.1
 - Working Width: -18.3
- **Vehicle Damage:** See appendix A
 - Maximum internal deformation: 19 mm
 - Maximum external deformation: 290 mm
General Information
Test agency: CSI S.p.A.
Test No: 0081/ME/HR8/18
Date: 30/05/2018

Test Article
Type: ‘ERMES’
Installation length [m]: 5.688
Size and/or dimension and material of key Elements: See attached drawings

Foundation type and condition: Soil

Test Vehicle
Type/Designation: 2279P
Model: DODGE RAM 1500
Mass [kg]:
Curb: 2222.4
Gross Static: 2300.6

Impact Conditions
Speed [km/h]: 99.0
Angle [deg]: 0.0
Impact Severity [kJ]: 869.9
Impact Location: Frontal, centered
Exit Speed [km/h]: < 10
Exit Angle [deg]: 27

Impact Velocity [m/s]
X-direction: 9.5
Y-direction: 1.7

Ridedown Acceleration [g’s]
X-direction: -18.0
Y-direction: -9.0

THV: 34.6
PHD: 18.1
ASI 2010: 1.31

Test Article Damage
See appendix A
Maximum internal deformation: 38 mm
Maximum external deformation: 345 mm
General Information

<table>
<thead>
<tr>
<th>Test agency</th>
<th>CSI S.p.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test No.</td>
<td>0001/ME/H/HRB/21</td>
</tr>
<tr>
<td>Date</td>
<td>15/01/2021</td>
</tr>
</tbody>
</table>

Test Article

- **Type**: ERMES
- **Installation length [m]**: 5.688
- **Size and/or dimension and material of key Elements**: See attached drawings
- **Foundation type and condition**: Compacted SOIL

Test Vehicle

- **Type/ Designation**: 1100C
- **Model**: Kia Rio
- **Mass [kg]**:
 - Curb: 1046.6
 - Test Inertial: 1102.0
 - Gross static: 1178.0

Impact Conditions

Speed [km/h]	97.1
Angle [deg]	15.0
Impact Severity [kJ]	438.5
Impact Location	Frontal, head centered, 15°
Exit Speed [km/h]	< 10
Exit Angle [deg]	N/A

Post-impact Trajectory

- **Vehicle Stability**: Satisfactory
- **Stopping Distance**:
 - 3 m downstream
 - 12 m Laterally
- **Vehicle snagging**: None
- **Vehicle pocketing**: None

Occupant Risk Values

Impact Velocity [m/s]	11.5
X-direction	-1.2
Y-direction	-15.9
Ridedown Acceleration [g's]	
X-direction	4.8
Y-direction	16.2
THIV	1.18
PHD	N/A
ASI 2010	Moderate

Test Article Deflections [mm]

- **Permanent**: 2.53
- **Dynamic**: 2.53
- **Working Width**: N/A

Vehicle Damage

- **See appendix A**
 - Maximum Internal deformation: 12 mm
 - Maximum external deformation: 265 mm
General Information

<table>
<thead>
<tr>
<th>Test agency</th>
<th>CSI S.p.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test No.</td>
<td>0097/ME/HRB/18</td>
</tr>
<tr>
<td>Date</td>
<td>11/09/2018</td>
</tr>
</tbody>
</table>

Test Article	'ERMES'
Installation length [m]	5.683
Size and/or dimension and material of key Elements	See attached drawings

| Foundation type and condition | Soil |

Test Vehicle

Type/ Designation	2270P
Model	EODGE RAM 1500
Mass [kg]	2163.4
Curb	2193.6
Test Inertial	2293.6

Impact Conditions

Speed [km/h]	96.6
Angle [deg]	15.0
Impact Severity [kJ]	825.5
Impact Location	Frontal, centered
Exit Speed [km/h]	<10
Exit Angle [deg]	30

Post-Impact Trajectory

Vehicle Stability	Satisfactory
Stopping Distance	4 m downstream
	1.5 m Laterally
Vehicle snagging	None
Vehicle pocketing	None

Occupant Risk Values

<table>
<thead>
<tr>
<th>Impact Velocity [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-direction</td>
</tr>
<tr>
<td>Y-direction</td>
</tr>
<tr>
<td>Ridedown Acceleration [g's]</td>
</tr>
<tr>
<td>X-direction</td>
</tr>
<tr>
<td>Y-direction</td>
</tr>
<tr>
<td>THV</td>
</tr>
<tr>
<td>PHD</td>
</tr>
<tr>
<td>ASI 2010</td>
</tr>
</tbody>
</table>

Test Article Damage

Permanent	1.07
Dynamic	1.07
Working Width	N/A

Vehicle Damage

| See appendix A |
| Maximum internal deformation | 21 mm |
| Maximum external deformation | 580 mm |
General Information

Test agency ... CSI S.p.A.
Test No. ... 0003/ME/HRB/21
Date ... 19/01/2021

Test Article
Type ... ERME5
Installation length [m] .. 5.688
Size and/or dimension and material of key Elements .. See attached drawings
Foundation type and condition Compacted SOL

Test Vehicle
Type/ Designation .. Kia Rio
Model ... 1100C
Mass [kg] .. 1106.8
Curb ... 1065.0
Test Inertial .. 1106.8
Gross static .. 1181.6

Impact Conditions
Speed [km/h] ... 98.6
Angle [deg] ... 15.0
Impact Severity [kJ] .. 29.7
Impact Location ... Laterally
Exit Speed [km/h] ... 66.0
Exit Angle [deg] ... 8.0

Occasional Risk Values
Impact Velocity [m/s]
X-direction .. 6.9
Y-direction ... -5.2
Rideown Acceleration [g’s]
X-direction ... -6.3
Y-direction ... 7.3
THIV ... 32.6
PHD ... 9.6
ASI 2010 ... 1.04

Test Article Damage .. Moderate

Test Article Deflections [m]
Permanent ... 0.11
Dynamic .. 0.24
Working Width .. 0.5

Vehicle Damage
See appendix A
Maximum internal deformation 15 mm
Maximum external deformation 220 mm

Post-impact Trajectory
Vehicle Stability .. Satisfactory
Stopping Distance .. 48 m downstream
Vehicle snagging .. None
Vehicle pocketing .. None

Impact Conditions
Impact Severity [kJ] 29.7
Impact Location Laterally
Exit Speed [km/h] 66.0
Exit Angle [deg] 8.0

Vehicle Stability .. Satisfactory
Stopping Distance .. 48 m downstream
Vehicle snagging .. None
Vehicle pocketing .. None
General Information
Test agency: CSI S.p.A.
Test No: 0126/ME/HRB/18
Date: 30/11/2018

Test Article
Type: ‘ERMES’
Installation length [m]: 5.698
Size and/or dimension and material of key Elements: See attached drawings
Foundation type and condition: Soil

Test Vehicle
Type/ Designation: 2270P
Model: CHEVROLET SILVERADO
Mass [kg]: 2117.0
Curb: 2007.0
Test Inertial: 2307.0

Impact Conditions
Speed [km/h]: 96.7
Angle [deg]: 25.0
Impact Severity [kJ]: 148.6
Impact Location: Lateral
Exit Speed [km/h]: 55.5
Exit Angle [deg]: 18.0

Post-Impact Trajectory
Vehicle Stability: Satisfactory
Stopping Distance: 32 m downstream
Vehicle snagging: None
Vehicle pocketing: None

Occupant Risk Values
Impact Velocity [m/s]:
X-direction: 6.3
Y-direction: -5.3
Ridedown Acceleration [g’s]:
X-direction: -7.4
Y-direction: 10.7
THIV: 27.8
PHD: 12.9
ASI 2010: 1.09
Test Article Damage: Moderate

Test Article Deflections [m]
Permanent: 0.40
Dynamic: 0.44
Working Width: 0.73

Vehicle Damage
See appendix A
Maximum internal deformation: 166 mm
Maximum external deformation: 1205 mm
General Information

Test agency: CSI S.p.A.
Test No: 0098/ME/HRB/18
Date: 12/09/2018

Test Article

Type: 'ERMES'
Installation length [m]: 5.688
Size and/or dimension and material of key elements: See attached drawings
Foundation type and condition: Soil

Test Vehicle

Type/ Designation: Chevrolet Silverado
Model: 2270P
Mass [kg]:
Curb: 2134.6
Test Inertial: 2243.0
Gross static: 2243.0

Impact Conditions

Speed [km/h]: 97.4
Angle [deg]: 25.0
Impact Severity [kJ]: 146.6
Impact Location: Final part of the device.
Exit Speed [km/h]: 66.9
Exit Angle [deg]: 17.0

Test Article Deflections [m]

Permanent: 5.3
Dynamic: -5.3
Working Width: -11.7

Vehicle Damage

Permanent: 0.33
Dynamic: 0.47
Working Width: 0.75

Occupant Risk Values

Impact Velocity [m/s]:
X-direction: 26.7
Y-direction: 14.7
THIV: 1.21
PHO: 0.75
ASl2010: 0.33

Test Article Damage

See appendix A

Post-impact Trajectory

Vehicle Stability: Satisfactory
Stopping Distance: 34 m Downstream
Vehicle snagging: None
Vehicle pocketing: None

Impact Location: Final part of the device.
Exit Speed [km/h]: 66.9
Exit Angle [deg]: 17.0