Mr. Kaddo Kothmann
President
Road Systems, Incorporated
3616 Howard County Airport Road
Big Spring, Texas 79720

Dear Mr. Kothmann:

On December 20, 2004, you requested Federal Highway Administration (FHWA) acceptance of modified versions of your original Sequential Kinking terminal (SKT), your reduced-length Sequential Kinking Terminal (SKT-LITE), and your Flared Energy Absorbing Terminal (FLEAT). The modifications were needed to match these terminals, which were originally tested as standard W-beam terminals, to the higher Midwest Guardrail System (MGS) which was formally accepted as an National Cooperative Highway Research Program (NCHRP) Report 350 test level 3 (TL-3) barrier on March 1, 2005 (acceptance letter B-133). To verify continued crashworthiness of the new designs, the Midwest Roadside Safety Facility (MwRSF) conducted the following four tests:

- Report 350 test 3-30 with the FLEAT-MGS terminal (Test FLEAT-8)
- Report 350 test 3-31 with the SKT-MGS terminal (Test SMG-1)
- Report 350 test 3-34 with the FLEAT-MGS terminal (Test FLEAT-6)
- Report 350 test 3-35 with the FLEAT-MGS terminal (Test FLEAT-5)

To match the MGS barrier design, similar modifications were made to the original SKT, SKT-LITE, and FLEAT designs. These were the following:

- The nominal height to the top of the rail increases from 700 mm (27-5/8 inches) to 787 mm (31 inches). For the anchor posts 1 and 2, the upright posts are increased to 804-mm (31.65 inches) and 842 mm (33.4 inches), respectively. The stub posts to which posts 1 and 2 are bolted are 1829-mm (72-inches) long and must be driven full-depth to provide adequate anchorage.
- All breakaway posts after posts 1 and 2 can be the same configuration as those originally tested, but are driven only 1019 mm (40 inches) deep to match the increased rail height noted above.
• The initial W-beam rail element is increased in length from 3.81 m (12.5 feet) to 4.79 m (15.625 feet) so all rail splices within the terminals fall at mid-span between adjacent posts as with the MGS barrier proper.
• Non-routed wood spacer blocks throughout the terminal are increased from 203 mm (8 inches) to 305 mm (12 inches), again to match the offset blocks used with the MGS barrier.

The NCHRP Report 350 requires up to seven crash tests to determine the adequacy of a traffic barrier terminal at TL-3. However, since the original designs for attachment to standard W-beam guardrail remain crashworthy, only those tests that are likely to be affected by the design changes noted above are considered necessary. You successfully completed test 3-31 (head-on into the SKT-MGS with the 2000-kg pickup truck) and test 3-35 (20-degree impact with the pickup truck at post 3 with a FLEAT terminal). Also with a FLEAT terminal, you conducted the small car head-on test and the Critical Impact Point (CIP) test. Summary sheets for each of these tests are shown in Enclosure 1 to this letter. English-unit drawings for steel-post versions of each of the tested applications are shown in Enclosure 2. I understand that corresponding drawings for wood-post designs are available from you upon request, as well as metric-unit drawings for each of the design configurations.

The modifications to the SKT and FLEAT terminals described above are acceptable and both terminals remain TL-3 designs that can be used on the National Highway System (NHS) when connected to the MGS barrier. While the barrier itself is non-proprietary, your terminals are proprietary and remain subject to the conditions stated in Title 23, Code of Federal Regulations, Section 635.411 when used on Federal-aid highway projects, except exempt, non-NHS projects.

Sincerely yours,

/Original Signed by/

John R. Baxter, P.E.
Director, Office of Safety Design
Office of Safety

2 Enclosures
<table>
<thead>
<tr>
<th>Test Number</th>
<th>FLEAT-8 (3-30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>2/27/04</td>
</tr>
<tr>
<td>Test Article Type</td>
<td>FLEAT-MGS End Terminal</td>
</tr>
<tr>
<td>Key Elements</td>
<td>FLEAT impact head</td>
</tr>
<tr>
<td>Orientation</td>
<td>1/4 point offset to the center of post no.1</td>
</tr>
<tr>
<td>Soil Type</td>
<td>Grading B - AASHTO M 147-65 (1990)</td>
</tr>
<tr>
<td>Vehicle Model</td>
<td>1998 Suzuki Swift</td>
</tr>
<tr>
<td>Curb</td>
<td>799 kg (1,762 lbs)</td>
</tr>
<tr>
<td>Test Inertial</td>
<td>821 kg (1,811 lbs)</td>
</tr>
<tr>
<td>Gross Static</td>
<td>899 kg (1,977 lbs)</td>
</tr>
<tr>
<td>Vehicle Speed</td>
<td>Impact 98.7 km/h</td>
</tr>
<tr>
<td></td>
<td>Exit 0.0 km/h</td>
</tr>
<tr>
<td>Vehicle Angle</td>
<td>Impact (trajectory) -0.83 deg</td>
</tr>
<tr>
<td></td>
<td>Exit (trajectory) NA</td>
</tr>
<tr>
<td>Vehicle Stability</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Occupant Ridedown Deceleration (10 msec avg.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Longitudinal 12.24 g’s < 20 g’s</td>
</tr>
<tr>
<td></td>
<td>Lateral 6.58 g’s < 20 g’s</td>
</tr>
<tr>
<td>Occupant Impact Velocity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Longitudinal 7.79 m/s < 12 m/s</td>
</tr>
<tr>
<td></td>
<td>Lateral 0.27 m/s < 12 m/s</td>
</tr>
<tr>
<td>Vehicle Damage</td>
<td>TAD13 12-FD-4</td>
</tr>
<tr>
<td></td>
<td>SAE14 12FYEW2</td>
</tr>
<tr>
<td>Vehicle Stopping Distance</td>
<td>........ 8.23 m downstream</td>
</tr>
<tr>
<td></td>
<td>........ 0.78 m to the left</td>
</tr>
<tr>
<td>Test Article Damage</td>
<td>Moderate</td>
</tr>
<tr>
<td>Maximum Deflection</td>
<td>Permanent Set 7,659 mm</td>
</tr>
<tr>
<td></td>
<td>Dynamic 7,676 mm</td>
</tr>
<tr>
<td>Working Width</td>
<td>........ 8.5-m long by 2.14-m wide</td>
</tr>
</tbody>
</table>

Figure 24. Summary of Test Results and Sequential Photographs, Test FLEAT-8
- Test Number SMG-1 (3-31)
- Date 9/23/03
- Test Article
 Type SKT-MGS End Terminal
 Key Elements SKT impact head
 Orientation Centerline of truck with center of post no. 1
- Soil Type Grading B - AASHTO M 147-65 (1990)
- Vehicle Model 1997 GMC C2500 pickup truck
 Curb 1,988 kg
 Test Inertial 2,028 kg
 Gross Static 2,028 kg
- Vehicle Speed
 Impact 100.5 km/hr
 Exit 0.0 km/hr
- Vehicle Angle
 Impact (trajectory) 0.28 deg
 Exit (trajectory) NA
- Vehicle Stability Satisfactory
- Occupant Ridedown Deceleration (10 msec avg.)
 Longitudinal 8.67 g’s < 20 g’s
 Lateral 4.11/-5.66 g’s < 20 g’s
- Occupant Impact Velocity
 Longitudinal 5.64 m/s < 12 m/s
 Lateral 0.28 m/s < 12 m/s
- Vehicle Damage Minimal
- TAD^8 12-FC-3
- SAE^9 12FCEN2
- Vehicle Stopping Distance 17.53 m downstream
- Test Article Damage Extensive
- Maximum Deflection
 Permanent Set 17.53 m
 Dynamic NA
- Working Width 26.87-m long by 4.23-m wide

Figure 24. Summary of Test Results and Sequential Photographs, Test SMG-1
- Test Number FLEAT-6 (3-34)
- Date 7/23/03
- Test Article
 Type FLEAT-MGS End Terminal
 Key Elements FLEAT impact head
 Breakaway steel posts
 Midwest Guardrail System
- Orientation Impact at post no. 2
- Soil Type Grading B - AASHTO M 147-65 (1990)
- Vehicle Model 1997 Geo Metro
 Curb 755 kg (1,664 lbs)
 Test Inertial 822 kg (1,813 lbs)
 Gross Static 898 kg (1,979 lbs)
- Vehicle Speed
 Impact 102.6 km/h
 Exit 73.5 km/h
- Vehicle Angle
 Impact (trajectory) 15.8 deg
 Exit (trajectory) NA
- Vehicle Stability Satisfactory
- Occupant Ridedown Deceleration (10 msec avg.)
 Longitudinal 7.34 g’s < 20 g’s
 Lateral 12.77 g’s < 20 g’s
- Occupant Impact Velocity
 Longitudinal 5.94 m/s < 12 m/s
 Lateral 4.98 m/s < 12 m/s
- Vehicle Damage Moderate
 TAD11 11-LFQ-5
 SAE12 11FZEW2
 YES11 11LYES1
- Vehicle Stopping Distance 40.2 m downstream
 11.4 m to the right
- Test Article Damage Moderate
- Maximum Deflection
 Permanent Set 603 mm
 Dynamic 837 mm
- Working Width 1,372 mm

Figure 25. Summary of Test Results and Sequential Photographs, Test FLEAT-6
Figure 24. Summary of Test Results and Sequential Photographs, Test FLEAT-5